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1. Introduction: Cold quantum gases and BEC formation

Time evolution of a 8’Rb condensate
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The thermal cloud from which the Bose-Einstein
condensate emerges equilibrates subsequent to

The time-dependent approach to the equilibrium value of the
condensate fraction can be measured, and will be accounted
for in a nonequilibrium-statistical model
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H.-J. Miesner et al., Science A 499, 1005 (1998)



2. An analytical model for thermalization

iaﬁgt(t) = [Hur(t), pn(t)] +iK n(t) (ﬁl(t))a’a = n(eq,t) = na(e, t)

2.1 Derivation of the nonlinear diffusion equation

Quantum Boltzmann collision term for bosons/ fermions, ergodic approximation
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[(1 + nl)(l + 77,2) ns g — (1 + ng)(l + n4) ni 77,2}

Here: elastic collision kernel

(Vis,)  second moment of the interaction 3 \ 4
G (€1 + €2,€3 +€4) energy-conserving function
.. . <V21534>
— md(€1 + €2 — €3 — €4) in infinite systems
nji = n" (¢j,t) occupation number: nT bosons, n~ fermions
1 2

The Bose-Einstein/ Fermi-Dirac distributions are stationary solutions
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Write the collision term in form of a Master equation (ME) with gain- and loss term

ont
8t1 — (1 + nl) Z Wf—ﬂ ng — N1 Z le:—>4(1 + 714)

€4 €4

with the transition probability ( 137;_,4 accordingly)

Wf_ﬂ(el, €4, t) = Z <V12234> G (61 + €2, €3 + 64) (1 + n2> ns

€2,€3
Introduce the density of states g; = g(g;); omit +

Was1 = Waig1, Wisg = Wiags

Wia = Wy = W [g(ea + €1), |ea — €]

W is peaked at ¢, =¢, . Obtain an approximation to the ME through a Taylor

expansion of n, and g4n4 around ¢, = g4 to second order.
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Introduce transport coefficients via moments of the transition probability (x=¢4-&1)

. d
D*(e1,t) = = 91/ WE (e, ) 2%dx; vE(er,t) = g5 1d (g1 DF)
€1
and arrive at the nonlinear partial dlfferentlal equation for the distribution of
the occupation numbers nt = (e t) i(el, t) =n
on* 0 oD 02
=——lon(ltn)+n—|+ =5 |Dnl.

ot Oe Oe Oe?

Dissipative effects are expressed through the drift term -v(e, t), diffusive
effects through the diffusion term D(e, t)_ '

In the limit of constant transport coefficients, the nonlinear diffusion equation
for the occupation-number distribution of bosons/ fermions becomes

on* 0 0%n
e —v&[n(lzlzn)]nLDaT

G Wolschin, Physica A 499, 1 (2018); A 597, 127299 (2022)



The Bose-Einstein/Fermi-Dirac distributions n*qq (¢) are stationary solutions
of this equation with the equilibrium temperature

T = —D/v with v < 0

Thermalization of cold atoms: Through elastic collisions, the nonlinear evolution
pushes a certain fraction of particles from the thermal cloud into the Bose-Einstein
Condensate. The equilibration time at any given value of the energy depends on both
transport coefficients, teq(D,V).

The nonlinear boson diffusion equation (NBDE) properly accounts for the
thermalization provided the boundary condition n (e = < 0) > oo

at the the singularity is introduced.
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2.2 Exact solution of the nonlinear equation

The solution of the NBDE for single-particle bosonic level occupation
probabilities n(e,t) can be written as the logarithmic derivative

n(et) = dﬂan(e t) — l = Tid—z —l

of the time-dependent partition function
+oo
Z(e,t) = G(e,z,t) F(z)dz

which is an integral over Green'’s function G (g, x, t) of the linear diffusion equation

) 92
[5 _ Da?] Gle,x,t) = 8(e — x)8(t)

and an exponential function that contains the initial conditions

F(x) =exp [—% (vx + 20A;(x))| .

Here, Ai(x) = | ni(y) dy is the indefinite integral over the initial distribution n..
(The integration constant drops out when taking the logarithmic derivative of the partition function.)
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For a solution without boundary conditions, Green'’s function Ggee(€; X; t) is a
single Gaussian

Gfree(€, X, 1) ! exp (e —x)°
free € LRAS) e ayr————— T
VA Dt 4Dt 80

601

Now, include boundary conditions for bosons at the singularity € = u, with p; < 0 for elastic & 4o}
collisions as determined from particle-number conservation. This requires a new Green’s

function that equals zero at € = 20/

eln
Then we have Z(y, t) = 0 and lim,,n(e, t)== V t as needed. Moreover, the energy range is IZ j%(_)sr}K,;K

restricted to € = .

To conserve particle number during the time evolution for elastic scatterings, a time-varying
parameter (‘chemical potential’) p(t) is introduced. Once p(t) reaches zero, condensate
formation starts. (Particle number is not conserved in the inelastic case with p = 0).



Equilibration time for bosons vs. fermions

An explicit expression for the bosonic equilibration time at the cut ¢; follows
from an asymptotic expansion of the error functions occuring in the analytical

solutions for theta-function initial distributions with boundary ¢; "
1
1 . 1 156 Neq(€) = — T -1
erf(zp) ~ 1 — exp[—2p] + exp(—2p) (’)(—3) L e/

ﬁzb 'Zb c 10¢
with argument z, at the boundary ¢; for an initial box distribution o

1 R S —

Zb — [61 — € + th] 0 5 10 15 20

2v/'D k)

&
Deviations from the thermal solution thus scale with

exp[—9v°t/(4D)] = exp|—t/Teq]

and the equilibration time in a Bose system at the cut becomes

7_Bose — 4D/(91)2) — 7_e]F‘quni/g

€q

GW, Physica A 499, 1 (2018)

For an arbitrary initial distribution ni(¢), the equilibration time becomes teqoc f D/v2 10



Exact solution of the NBDE for a quenched initial distribution

Time-dependent partition function

£ (nK)
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Single-particle distribution function for bosonic atoms

n(e,t) = T; (0Z(s,t) 08) | Z(&,t) - 1/2

N. Rasch and GW, Phys. Open 2, 100013 (2020)
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3. Application to ultracold atoms and BEC formation

3.1 Thermalization via elastic scattering

The nonlinear diffusion model is applied to the thermalization of bosonic ultracold atoms,
and Bose-Einstein condensate formation subsequent to evaporative cooling

Example: Evaporative cooling of atoms produces a highly nonequilibrium state at an initial
temperature of T; = 240 nK and p; = -8 nK, which thermalizes to attain a lower temperature
T¢ = 100 nK according to the NBDE time evolution. The parameter pu(t) approaches zero at

the initiation time 7;,;, when condensate formation starts J
207 Ty
15/
w10
<
5/
0“\‘_0 688828 900a 0
-10 0 10 20 30 40 50
€ (nK)
--- analytical solutions of the NBDE A. Simon and GW, Physica A 573, 125930 (2021)

o numerical results using Matlab 12



3.2 Time-dependent condensate formation in Na-23

The nonlinear diffusion model is particularly suited to account for the time-dependent Bose-Einstein condensate
formation when particle-number conservation is considered in the NBDE

Example: Evaporative cooling of Na-23 atoms, producing a nonequilibrium state at an initial
temperature of T, = 876 nK as in the historical MIT experiment, Science 279, 1005 (1998).
Time-dependent condensate formation with T; = 750 nK is compared with our model calculations
that include particle-number conservation:

0.14 T T T T T T T Nc(t) - Ni - Nth(t)
0.12 - e
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Fig. 7. Condensate fraction N(t)/N in an equilibrating Bose gas of 2°Na subsequent to fast evaporative cooling in a single step from T; = 876
nK to Tr = 750 nK as calculated from the analytical solution of the NBDE Eq. (13) with kmx = K = 5,10,20,40 in the series expansion
of the exact solution, cutoff energy ¢ = 2190 nK, i = —8 nK, and the density of states for a free Bose gas. The transport coefficients are

D = 3750 (nK)* ms~!, v = —5 nKms~'. The MIT data for the condensate fraction (crosses, no error bars) are from Ref. [8]. Physica A 573, 125930 (2021)



3.3 Thermalization and condensate formation in K-39

The nonlinear diffusion model is particularly suited to account for the thermalization of bosonic ultracold atoms,
and Bose-Einstein condensate formation in case of a deep quench (instead of gradual evaporative cooling)

Example: Deep quench in K-39 atoms, producing a highly nonequilibrium state at an initial
temperature of T, = 130 nK as in the Cambridge experiment Nature Phys. 17, 457 (2021).
Time-dependent condensate formation is measured for various scattering lengths, and
compared to our model calculations:
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T, /T¢ = 4: infinite series terminates! A. Kabelac and GW, Eur. Phys. J. D76, 178 (2022)
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Time-dependent condensate formation in K-39 vapour at various interaction energies

The nonlinear diffusion model can be applied to the time-dependent Bose-Einstein condensate formation.
Here, particle number is conserved following the deep quench:

N; = Nin(t) + Ng (1) = [ n(e,t) g(e) de + N, (t) = Condensate fraction = N¢(t)/N; = 1- N (t)/N;
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3 = Bohr radius = 0.0529 M s, i fr0m J.AP. Glidden et al,, Nature Phys. 17, 457461 (2021). G Wolschin, submitted to EPL (2022)

a = s-wave scattering length



Table 1 Transport coefficients, initiation and equilibration times
for BEC formation in 3K

(Ti =130 nK, Tf = —D/v = 32.5 nK)

a(ass) D(nK?/ms) v(nK/ms) 7ipi(ms) 7eq(ms)

140 0.08 —0.00246 130 600
280 0.16 —0.00492 65 300
400 0.229 —0.00705 46 210
800 0.457 —0.01406 23 105

D= fT?/7eq~0.08(nK)"/ms,
D,V oca; 1y, teqoc 1/a

v = —fT¢/Teq =~ —0.00246 nK /ms
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4. Summary and Conclusion

» From the quantum Boltzmann collision term, a nonlinear partial

differential equation for the time-dependent occupation-number distribution
in a finite Fermi/ Bose system is derived

» The nonlinear boson diffusion equation (NBDE) is solved analytically including
the boundary conditions at the singularity

» The solution accounts for the thermalization of ultracold atoms and time-dependent
Bose-Einstein condensate formation

0 The model can also be applied to the thermalization of quarks and gluons
in the initial stages of relativistic heavy-ion collisions, and other nonequilibrium
processes in physics.

UHD_CQC_10/2022 17



Thank you for your attention !
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