06/06/2023

Single Boson Exchange fRG for Extended Interactions: A Handy Computational Scheme

Collaborators:

S. Heinzelmann

M. Scherer

S. Andergassen

Uni Bochum, Uni Tuebingen

Hubbard Model J. Hubbard (1963)

"Fermions hopping on a lattice"

$$\mathcal{H} = \sum_{i \neq j,\sigma} t_{ij} c_{i\sigma}^{\dagger} c_{j\sigma} + \frac{1}{2} \sum_{i,j,\sigma,\sigma'} V_{0,ij} n_{i\sigma} n_{j\sigma'} - \mu \sum_{i,\sigma} n_{i\sigma}$$

Why extended?

• More realistic; Coloumb interactions not completely screened.

Onsite ~> AFM fluctuations, extended ~> CDW fluctuations.

AFM - CDW transition at low T. Bari et al (1971)

Moire heterobilayers of TMDs ~> Single band on triangular lattice with extended interactions. F. Wu et al (2018)

 Electron - Phonon couplings are non-local in time ~> competition between conventional and unconventional superconductivity.

fRG promotional

"Interpolate between a solvable and a more difficult theory"

e.g. by deforming $\, \mathcal{G}_{0} \rightsquigarrow \mathcal{G}_{0,t} \,$

Tower of flow equations for the 1PI vertices:

$$\partial_t \Gamma_t^{(2n)} = \mathcal{F}[\Gamma_t^{(2n+2)}, \cdots, \Gamma_t^{(2)}]$$

Truncation:

$$\partial_{\lambda}\Gamma_{\lambda}^{(2n)} = 0 \quad \text{for} \quad n \geq 3 \rightsquigarrow \quad \text{state:} \ \vec{\psi} = \begin{pmatrix} \Sigma \\ V \end{pmatrix} \rightsquigarrow \quad \begin{array}{l} \text{Solve} \\ \text{numerically} \end{array}$$

Sales pitch:

- treatment of channels ~> no bias
 - frustration or finite doping at low T \rightsquigarrow no problem
 - d > 1 ~~> no fundamental limitations
 - 2P consistency \rightsquigarrow extensions (multiloop) F. Kugler et al (2018)
 - Strong coupling \longrightarrow extensions (DMF2RG) C. Taranto et al (2014)

Single Boson Exchange Decomposition

Bare interaction:
$$V_0 = U\delta(\sum k_i = 0) \stackrel{\circ}{=} \checkmark$$

Bare interaction (U)-reducibility ($X \in \{pp, ph, xph\}$):

 $V = \sum \nabla^X + \sum M^X - 3V_0 + V_{2PI}$ set to V_0

Single Boson and Multi Boson Exchanges

Factorise

6

Frequency Dependence and Self-Energy

Frequency Asymptotics

G. Rohringer (dissertation), N. Wentzell et al (2020)

Dependence on fermionic frequencies enter only through $~G(\omega)\sim\omega^{-1}$

Isolate fermionic frequency dependence from the bosonic and treat fermionic only on a small finite interval

Note: SBE quantities fall naturally under this classification!

At large frequencies, they decay to their static bare values.

SBE approximations

P. Bonetti et al (2022) K. Fraboulet, S. Heinzelman et al (2022) M. Gievers et al (2022)

"Neglect multi-boson exchanges $\,M^X$ "

Two Ways:

before taking derivative "SBEb approximation"

ОГ

after taking derivative

"SBEa approximation"

Different equations! E.g.

SBE approximations Comparison

Schematic of diagrams generated for flow of $\,\lambda^X$

Row n = diagrams now present due to step n

K. Fraboulet, S. Heinzelman et al (2022)

SBE Approximations Performance

SBEb -> No good..

SBEa -> very successful, even quantitatively (at transition, only qualitative)

$$U = 2.0, t' = -0.2, VHF$$

$$- T = 0.2 \text{ w.o. } M \qquad - T = 0.2 \text{ with } M$$

$$\frown$$
 $T = 0.4$ w.o. M \neg $T = 0.4$ with M

Extended Interactions: Challenges

Non-local bare interactions:

Attempts to apply bona fide SBE with $\,V_0$ - reducibility yields....

Challenges

•
$$w^X(q) \longrightarrow w^X(q, k)$$
 not any more purely Bosonic
• Frequency asymptotics $q, k, k' = 0$, $q, k, k' = 0$, u inefficient!

High momentum dependence is needed (form factors) to capture the extended interaction, even for s-wave physics!

• In the parametrisation of each channel, we split:

$$V_0^{(X)}(k_1, k_2, k_3) = V_{0,bos}^X(q) + V_{0,ferm}^X(k, k')$$

$$(bare interaction included)$$

- Classify the diagrams in terms of $V_{0,\textit{bos}}^{(X)}$ reducibility

Extended SBE

• $V_{0,bos}^{(X)}$ now plays the role of the bare interaction in each channel.

• $V_{0 \ ferm}^{(X)}$ pushed to the rest function.

 $\leadsto w(q)$ retains its pure bosonic momentum dependence!

• New initial conditions:

$$w_{t=0}^X = V_{0,bos}^X, \ M_{t=0}^X = V_{0,ferm}^X, \ \lambda_{t=0}^X = 1$$
 if s-wave, else 0

• Technical results:

- For "s-wave orders", the multiboson exchange contributions are negligible (SBEa)
- Non-local form factors not needed
- The asymptotic objects for M and lambda are negligible.

Technical Results: Form Factors

U = 2, W = 0.5

(obtained by S. Heinzelman on the square lattice)

T = 0.2

Reasonings:

- Mixed bubbles vanish
- Hedin vertex is zero at the start of the flow

Technical Results: SBEa

U=2, W=0.5 (obtained by S. Heinzelman)

Phase Diagrams (SBEa)

- Square lattice: Agreement with other methods in CDW to AFM transition. Agreement with E. Linner et al (2023) in the attractive regime (Fluctuating field method)

SBE via Partial Bosonisation T. Denz et al (2019)

Alternative way to derive the SBE equations

$$V_0 = (V_0 + V_0 + V_0) - 2V_0 \longrightarrow$$
 Hubbard-Stratanovich transform each term in the bracket for each of the three channels
 $\checkmark \rightarrow$ fRG on $S_{bos}[\bar{\psi}, \psi, \bar{\phi}_m, \phi_d, \phi_{sc}, \phi_{sc}^*]$

with regulator only on fermionic part

As a matter of fact, we can formulate extended SBE also in this language:

$$V_0 = \sum_X (V_{0,bos}^X) + \sum_X (V_{0,ferm}^X) - 2V_0$$

Fierz ambiguity problem:

Multitude of ways to do this splitting! Upon truncation -> Potential bias!

SBEa approximation (pretty much) T. Denz et al (2019)

Fierz Ambiguity

T. Denz et al (2019)

"Dichotomy of Approximations" R. A. Smith (1991)

- L. Kadanoff and G. Baym(1961)
- Φ -derivable approximations

C. De Dominicis and P. C. Martin (1964)

Parquet Formalism

Pauli Preserving Many Body Approximations

Multiloop Extension

F. Kugler and J. von Delft (2018)

Conclusion

Very efficient approximation scheme!

- SBEa approximation: no flow for ${\cal M}^{\cal X}$
- Reduction in number of form factors
- No extra asymptotics.
- Shows promise in exploring new grounds quantitatively.