Aiman Al-Eryani

06/06/2023
Single Boson Exchange fRG for Extended Interactions: A Handy Computational Scheme Collaborators:

Uni Bochum, Uni Tuebingen

Hubbard Model

J. Hubbard (1963)

"Fermions hopping on a lattice"
$\mathcal{H}=\sum_{i \neq j, \sigma} t_{i j} c_{i \sigma}^{\dagger} c_{j \sigma}+\frac{1}{2} \sum_{i, j, \sigma, \sigma^{\prime}} V_{0, i j} n_{i \sigma} n_{j \sigma^{\prime}}-\mu \sum_{i, \sigma} n_{i \sigma}$

Why extended?

- More realistic; Coloumb interactions not completely screened. Onsite ~> AFM fluctuations, extended ~> CDW fluctuations.
- AFM - CDW transition at low T. Bari et al (1971)
- Moire heterobilayers of TMDs $\sim>$ Single band on triangular lattice with extended interactions. F. Wu et al (2018)
- Electron - Phonon couplings are non-local in time ~> competition between conventional and unconventional superconductivity.

fRG promotional

"Interpolate between a solvable and a more difficult theory"

$$
\text { e.g. by deforming } \mathcal{G}_{0} \rightsquigarrow \mathcal{G}_{0, t}
$$

Tower of flow equations for the 1 Pl vertices:

$$
\partial_{t} \Gamma_{t}^{(2 n)}=\mathcal{F}\left[\Gamma_{t}^{(2 n+2)}, \cdots, \Gamma_{t}^{(2)}\right]
$$

Truncation:

$$
\partial_{\lambda} \Gamma_{\lambda}^{(2 n)}=0 \quad \text { for } \quad n \geq 3 \rightsquigarrow \quad \text { state: } \vec{\psi}=\binom{\Sigma}{V} \rightsquigarrow \begin{gathered}
\text { Solve } \\
\text { numerically }
\end{gathered}
$$

Sales pitch:

- treatment of channels \rightsquigarrow no bias
- frustration or finite doping at low T \rightsquigarrow no problem
- d>1 $1 \rightsquigarrow$ no fundamental limitations
- 2P consistency $\leadsto \rightarrow$ extensions (multiloop) F. Kugleretal (2018)
- Strong coupling \rightsquigarrow extensions (DMF2RG) c. Tarantoetal(2014)

Single Boson Exchange Decomposition

Bare interaction: $\quad V_{0}=U \delta\left(\sum k_{i}=0\right) \hat{=}$
Bare interaction (U)-reducibility ($X \in\{p p, p h, x p h\}$):

SBE decomposition:

$$
V=\sum_{X} \nabla^{X}+\sum_{X} M^{X}-3 V_{0}+V_{2 P I} \text { set to } V_{0}
$$

Single Boson and Multi Boson Exchanges

Factorise

$\nabla^{X}\left(q, k, k^{\prime}\right)=\lambda^{X}(k, q) \cdot w^{X}(q) \cdot \bar{\lambda}^{X}\left(k^{\prime}, q\right)$
Hedin Vertex (L)
"single boson exchange"

Can show:

$$
\lambda^{X}=\bar{\lambda}^{X}
$$

Everything else: M^{X} "multi boson exchanges"

$$
V=\sum_{X} \nabla^{X}+\sum_{X} M^{X}-3 V_{0}+V_{2 P I}
$$

SBE 1-loop flow equations

P. Bonetti et al (2022)

Flow equations (with $\frac{\partial}{\partial t} \mathcal{G}_{\Sigma=\text { cost }} \hat{}=\tau$)
Plug in SBE decomposed vertex, use properties of $w^{X}, \lambda^{X}, M^{X}$

$$
\begin{aligned}
& \partial_{t} w^{X}(q) \hat{=}=\dot{m}=\text { with } w_{t=0}^{X}=V_{0}^{(X)} \\
& \partial_{t} \lambda_{k}^{X}(q) \hat{=} \text { with } \lambda_{t=0}^{X}=1 \\
& \partial_{t} M_{k, k^{\prime}}^{X}(q) \hat{=} \text { with } M_{t=0}^{X}=0 \\
& M^{x}=
\end{aligned}
$$

Frequency Dependence and Self-Energy

Naive power counting argument: ט

From top to bottom:

- $V(\omega) \Sigma(\alpha)$
- $V\left(x_{0}\right) ~ \Sigma(u)$
- $V(\omega) \Sigma(\omega)$

A quantitative and a qualitative difference!

Frequency Asymptotics

G. Rohringer (dissertation), N. Wentzell et al (2020)

Dependence on fermionic frequencies enter only through $G(\omega) \sim \omega^{-1}$
\leadsto Isolate fermionic frequency dependence from the bosonic and treat fermionic only on a small finite interval

Constant on\{v\}x\{v'\}

Asym. Decays on $\{v\}$ Constant on\{v'\}

Asym. Decay on $\{\mathbf{v}\} \times\left\{v^{\prime}\right\}$

Note: SBE quantities fall naturally under this classification!

w^{X}

λ^{X}

At large frequencies, they decay to their static bare values.

SBE approximations
"Neglect multi-boson exchanges M^{X} "

Two Ways:

before taking derivative
"SBEb approximation"

Or
after taking derivative
"SBEa approximation"

Different equations!
E.g.

SBEb

SBEa

$$
\partial_{t} \lambda_{k}^{X}(q) \hat{=}
$$

$$
n=
$$

SBE approximations Comparison

Schematic of diagrams generated for flow of λ^{X}
Row $\mathrm{n}=$ diagrams now present due to step n

SBE with M

K. Fraboulet, S. Heinzelman et al (2022)

SBE Approximations Performance

SBEb -> No good..
SBEa -> very successful, even quantitatively (at transition, only qualitative)

example plots (square lattice)

$$
U=2.0, t^{\prime}=-0.2, V H F
$$

Huge reduction of numerical effort

Extended Interactions: Challenges

Non-local bare interactions:

$$
V_{0}=U \delta\left(\sum k_{i}=0\right)+W\left(k_{1}-k_{2}\right) \hat{=} \quad q
$$

Attempts to apply bona fide SBE with V_{0} - reducibility yields....
Challenges

- $w^{X}(q) \leadsto w^{X}(q, k)$ not any more purely Bosonic
- Frequency asymptotics

- High momentum dependence is needed (form factors) to capture the extended interaction, even for s-wave physics!

Rethinking SBE

SBE = Single Boson Exchange

Must retain the pure bosonic dependence of w^{X}

- In the parametrisation of each channel, we split:

$$
V_{0}^{(X)}\left(k_{1}, k_{2}, k_{3}\right)=V_{0, \text { bos }}^{X}(q)+V_{0, \text { ferm }}^{X}\left(k, k^{\prime}\right)
$$

- Classify the diagrams in terms of $V_{0, \text { bos }}^{(X)}$ reducibility

Extended SBE

- $V_{0, b o s}^{(X)}$ now plays the role of the bare interaction in each channel.
- $V_{0, \text { ferm }}^{(X)}$ pushed to the rest function.
$\rightsquigarrow w(q)$ retains its pure bosonic momentum dependence!
- New initial conditions:

$$
w_{t=0}^{X}=V_{0, b o s}^{X}, \quad M_{t=0}^{X}=V_{0, \text { ferm }}^{X}, \quad \lambda_{t=0}^{X}=1 \text { if s-wave, else } 0
$$

- Technical results:
- For "s-wave orders", the multiboson exchange contributions are negligible (SBEa)
- Non-local form factors not needed
- The asymptotic objects for M and lambda are negligible.

Technical Results: Form Factors

$$
U=2, W=0.5
$$

(obtained by S. Heinzelman on the square lattice)

$$
T=0.2
$$

Reasonings:

- Mixed bubbles vanish
- Hedin vertex is zero at the start of the flow

Technical Results: SBEa

$$
U=2, W=0.5
$$

Phase Diagrams (SBEa)

Triangular lattice (W.I.P)

Square lattice

- Square lattice: Agreement with other methods in CDW to AFM transition. Agreement with E. Linner et al (2023) in the attractive regime (Fluctuating field method)

SBE via Partial Bosonisation

T. Denz et al (2019)

Alternative way to derive the SBE equations

$$
V_{0}=\left(V_{0}+V_{0}+V_{0}\right)-2 V_{0} \quad \leadsto \begin{aligned}
& \text { Hubbard-Stratanovich transform each term in the } \\
& \text { bracket for each of the three channels }
\end{aligned}
$$

\leadsto fRG on $S_{b o s}\left[\bar{\psi}, \psi, \vec{\phi}_{m}, \phi_{d}, \phi_{s c}, \phi_{s c}^{*}\right]$
with regulator only on fermionic part
As a matter of fact, we can formulate extended SBE also in this language:

$$
V_{0}=\sum_{X}\left(V_{0, b o s}^{X}\right)+\sum_{X}\left(V_{0, f e r m}^{X}\right)-2 V_{0}
$$

Fierz ambiguity problem:

Multitude of ways to do this splitting! Upon truncation -> Potential bias!

SBEa approximation (pretty much)

T. Denz et al (2019)

Fierz Ambiguity

Table reported:

"bias free"

But we know from the SBE point of view that the two are equivalently bias-free!

DBF

T. Denz et al (2019)

"Dichotomy of Approximations"

R. A. Smith (1991)

C. De Dominicis and P. C. Martin (1964)

Parquet Formalism

Thm (Smith): Both \Longrightarrow Exact solution

Pauli Preserving Many Body Approximations

Example: Parquet Formalism

Multi-valuedness of LW functional...
"A treacherous forest.."

Multiloop Extension
 F. Kugler and J. von Delft (2018)

Low finite temperatures

more unphysical sinks, difficulty to converge.
flow equations for "corrections"

- to the state such that when converged -> Parquet
- Promise in avoiding unphysical solutions (given "good" frequency treatment).
- Preliminary results
(collab with:K. Fraboulet): SBEa approximation works well at 2-loop leve!!

Conclusion

SBE with

$$
V_{0}^{(X)}\left(k_{1}, k_{2}, k_{3}\right)=V_{0, b o s}^{X}(q)+V_{0, f e r m}^{X}\left(k, k^{\prime}\right)
$$

Very efficient approximation scheme!

- SBEa approximation: no flow for M^{X}
- Reduction in number of form factors
- No extra asymptotics.
- Shows promise in exploring new grounds quantitatively.

