1 Inhaltsverzeichnis

2 1	Qua	antenm	echanik, allgemein	5			
3	1.1	Mini-O	Mini-Geschichte				
4	1.2	Allgen	emeine Grundlagen				
5		1.2.1	Einige grundlegende mathematische Konzepte	8			
6			1.2.1.1 1) Hilbertraum \mathcal{H}	8			
7			1.2.1.2 2)Lineare Operatoren	10			
8		1.2.2	Mathematisch deduktiver Aufbau der QM	14			
9		1.2.3	Anmerkungen zu den Axiomen der QP	18			
10			1.2.3.1 Spektralsatz und Unschärfe	18			
11			1.2.3.2 Zeitliche Entwicklung	19			
12			1.2.3.3 Zusammengestzte Systeme und der statistische Operator	20			
13		1.2.4	Die Schmidt Darstellung	22			
14			1.2.4.1 Beispiele	24			
15		1.2.5	Entropie in der QP	25			
16		1.2.6	Das Korrespondenzprinzip und die "höhere Mechanik"	26			
17		1.2.7	Erweiterungen der Axiome der QP	28			
18		1.2.8	Frühe Kritik an der QM	29			
19			1.2.8.1 EPR	29			
20			1.2.8.2 Schrödingers Katze	30			
21		1.2.9	Verborgene Variable (Hidden variables)	32			
22	1.3	Altern	ative Quantisierungs-Methoden	32			
23		1.3.1	Pfadintegral, stark vereinfacht	32			
24		1.3.2	Holographische Quantisierung, AdS/CFT ; noch stärker vereinfacht .	34			

25 2 Qubits in der Quantenmechanik

26		2.1	Ein Qubit				
27			2.1.1	Informationsgehalt eines Qubits	36		
28			2.1.2	Pauli'sche σ Matrizen	37		
29			2.1.3	Bahndrehimpuls und Spin	38		
30			2.1.4	Quantengatter quantum gates	40		
31			2.1.5	Zeitliche Entwicklung eines Qubits	40		
32		2.2	Der Stern Gerlach Vesuch als Prototyp einer Messung				
33			2.2.1	Drehimpuls und magnetisches Moment	42		
34			2.2.2	Der Stern Gerlach Versuch als Realisierung eines Messprozesses \ldots	44		
35				2.2.2.1 Polarisierte Photonen	47		
36		2.3	2 und	mehr Qubits	48		
37			2.3.1	Notation	48		
38			2.3.2	Quantenteleportation	49		
39			2.3.3	Zeitliche Entwicklung in einem Produktraum	51		
40			2.3.4	Die Bellschen Ungleichungen	51		
41			2.3.5	Fouriertransformation mit Qubits [*]	54		
42	3	Gru	ndsätz	liches	56		
42 43	3	Gru 3.1	ndsätz Superp	d iches Dosition und Gemisch	56 56		
42 43 44	3	Gru 3.1	ndsätz Superp 3.1.1	d iches position und Gemisch	56 56 57		
42 43 44 45	3	Gru 3.1	ndsätz Superp 3.1.1	bosition und Gemisch	56 56 57 58		
42 43 44 45 46	3	Gru 3.1 Die	ndsätz Superr 3.1.1	diches position und Gemisch Dekohärenz 3.1.1.1 Kohärenz und Dekohärenz in der Optik nten" Fourier Transformation	 56 57 58 60 		
42 43 44 45 46 47	3 4	Gru 3.1 Die 4.1	ndsätz Superp 3.1.1 e "Qua Fourie	Biliches position und Gemisch Dekohärenz Jekohärenz 3.1.1.1 Kohärenz und Dekohärenz in der Optik nten" Fourier Transformation r Transformation und Fourier Reihe	 56 57 58 60 60 		
42 43 44 45 46 47 48	3	Gru 3.1 Die 4.1 4.2	ndsätz Superp 3.1.1 e "Qua Fourie: Wiede	Biliches position und Gemisch Dekohärenz Jekohärenz 3.1.1.1 Kohärenz und Dekohärenz in der Optik Inten" Fourier Transformation r Transformation und Fourier Reihe rholung: computatorische Basis	 56 57 58 60 60 61 		
42 43 44 45 46 47 48 49	3	Gru 3.1 Die 4.1 4.2	ndsätz Superp 3.1.1 e "Qua Fourie: Wiede: 4.2.1	Biches position und Gemisch Dekohärenz 3.1.1.1 Kohärenz und Dekohärenz in der Optik nten" Fourier Transformation r Transformation und Fourier Reihe rholung: computatorische Basis Definition der FT in der CB	 56 57 58 60 60 61 62 		
42 43 44 45 46 47 48 49 50	3	Gru 3.1 Die 4.1 4.2	ndsätz Superp 3.1.1 e "Qua Fourie: Wiede: 4.2.1 4.2.2	Biches position und Gemisch Dekohärenz 3.1.1.1 Kohärenz und Dekohärenz in der Optik atten" Fourier Transformation r Transformation und Fourier Reihe rholung: computatorische Basis Definition der FT in der CB Auf Qubits adaptierte Form der Fourier-Transformierten	 56 57 58 60 61 62 63 		
42 43 44 45 46 47 48 49 50 51	3	Gru 3.1 Die 4.1 4.2	ndsätz Superp 3.1.1 e "Qua Fourie: Wiede: 4.2.1 4.2.2 Anwen	Biliches position und Gemisch Dekohärenz Dekohärenz 3.1.1.1 Kohärenz und Dekohärenz in der Optik atten" Fourier Transformation r Transformation und Fourier Reihe rholung: computatorische Basis Definition der FT in der CB Auf Qubits adaptierte Form der Fourier-Transformierten adung: Periodenbestimmung durch QFT	 56 57 58 60 61 62 63 65 		
 42 43 44 45 46 47 48 49 50 51 52 	3	Gru 3.1 Die 4.1 4.2 4.3	ndsätz Superp 3.1.1 e "Qua Fourie: Wiede: 4.2.1 4.2.2 Anwen 4.3.1	Beliches position und Gemisch Dekohärenz Dekohärenz 3.1.1.1 Kohärenz und Dekohärenz in der Optik nten" Fourier Transformation r Transformation und Fourier Reihe rholung: computatorische Basis Definition der FT in der CB Auf Qubits adaptierte Form der Fourier-Transformierten adung: Periodenbestimmung durch QFT Zusammenfassung	 56 57 58 60 61 62 63 65 67 		
 42 43 44 45 46 47 48 49 50 51 52 53 	3	Gru 3.1 Die 4.1 4.2 4.3	ndsätz Superp 3.1.1 e "Qua Fourie 4.2.1 4.2.2 Anwen 4.3.1 4.3.2	Biliches position und Gemisch Dekohärenz 3.1.1.1 Kohärenz und Dekohärenz in der Optik anten" Fourier Transformation r Transformation und Fourier Reihe rholung: computatorische Basis Definition der FT in der CB Auf Qubits adaptierte Form der Fourier-Transformierten dung: Periodenbestimmung durch QFT Zusammenfassung Numerisches Beispiel	 56 57 58 60 61 62 63 65 67 68 		
 42 43 44 45 46 47 48 49 50 51 52 53 54 	3 4 5	Gru 3.1 Die 4.1 4.2 4.3	ndsätz Superp 3.1.1 e "Qua Fourie: Wiede: 4.2.1 4.2.2 Anwen 4.3.1 4.3.2 is des \$	Hiches position und Gemisch Dekohärenz Dekohärenz 3.1.1.1 Kohärenz und Dekohärenz in der Optik nten" Fourier Transformation r r Transformation und Fourier Reihe rholung: computatorische Basis Definition der FT in der CB Auf Qubits adaptierte Form der Fourier-Transformierten Idung: Periodenbestimmung durch QFT Numerisches Beispiel Shore'schen Algorithmus.	 56 57 58 60 61 62 63 65 67 68 70 		
 42 43 44 45 46 47 48 49 50 51 52 53 54 55 	3 4 5	Gru 3.1 Die 4.1 4.2 4.3 Basi 5.1	ndsätz Superp 3.1.1 e "Qua Fourie: Wiede: 4.2.1 4.2.2 Anwen 4.3.1 4.3.2 is des S Für Ve	diches position und Gemisch Dekohärenz Dekohärenz 3.1.1.1 Kohärenz und Dekohärenz in der Optik nten" Fourier Transformation r rtransformation und Fourier Reihe rholung: computatorische Basis Definition der FT in der CB Auf Qubits adaptierte Form der Fourier-Transformierten dung: Periodenbestimmung durch QFT Zusammenfassung Numerisches Beispiel Shore'schen Algorithmus. erschlüsselung und Entschlüsselung wichtige Elemente der Zahlentheorie	 56 57 58 60 61 62 63 65 67 68 70 71 		
 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 	3	Gru 3.1 Die 4.1 4.2 4.3 Bass 5.1	ndsätz Superp 3.1.1 e "Qua Fourie: Wiede: 4.2.1 4.2.2 Anwen 4.3.1 4.3.2 is des Für Ve 5.1.1	diches oosition und Gemisch Dekohärenz	 56 57 58 60 61 62 63 65 67 68 70 71 71 		

57		5.1.2	Theoreme
58			5.1.2.1 Inversee Restklasse:
59			5.1.2.2 Kleiner Fermat: $\dots \dots \dots$
60			5.1.2.3 Euler-Fermat $\ldots \ldots 74$
61			5.1.2.4 Periodizität T
62	5.2	RSA-V	Verschlüsselung $\ldots \ldots .$ 75
63		5.2.1	Chiffrierung
64		5.2.2	Dechiffrierung
65	5.3	Berech	nung des Schlüssels aus dem öffentlichen n
66		5.3.1	Faktorzerlegung von n
67		5.3.2	Numerisches Beispiel

68 7. Juli 2022

⁶⁹ Vorbemerkungen

⁷⁰ Kein Buch! Nur zum Gebrauch neben der Vorlesung ⁷¹ bestimmt! Vor Druck- und anderen Fehlern wird ge ⁷² warnt!!!

Voraussetzung: Theoretische Quantenmechanik. In dieser Vorlesung werden aber hauptsächlich
die Punkte betont, die für QC nötig. Dies bringt einige Vereinfachunge technischer Natur (i.
A endlich dimensionale Räume und beschränkte Operatoren), aber die begrifflichen Aspekte
der QM werden hier sehr viel stärker in den Vordergrund gerückt:

Grössere Reichhatigkeit der Information (Stichwort Qubit vs. Bit) und vor allem
 Dingen die

Parallelität der Information (Stichwort: Überlagerung, Verschränkung entanglement)

- 81 Klasische Bücher:
- ⁸² W. Heisenberg
- ⁸³ "Die Physikalischen Prinzipien de Quantentheorie" (1928, 2. 1931) Leipzig 1928 (2. 1931) [?]
- ⁸⁴ H. Weyl, "Gruppentheorie und Quantenmechanik" Leipzig 1928 (2. 1931)
- 85 J. von Neumann
- ⁸⁶ "Mathematische Grundlagen der Quantenmechanik" (1932) Berlin 1932
- 87 P A M Dirac
- ⁸⁸ "The Principles of Quantum Mechanics" (1930, 4. 1957) Oxford 1930 (4. 1957)
- ⁸⁹ Auch in den spezialisierten Büchern zum QC finden sich Abschnitte über die QM allgemein,
- ⁹⁰ manchmal mit mehr Rücksicht auf Informatiker als auf Physiker.

⁹¹ Kapitel 1

²² Quantenmechanik, allgemein

⁹³ 1.1 Mini-Geschichte

⁹⁴ Dies ist keine Geschichte der QM, sondern nur eine kurze Orientierung zur Einordnung der
 ⁹⁵ neueren Entwicklung in Richtung QC.

⁹⁶ "If there is any moment that marks the birth of quantum mechanics, it would ⁹⁷ be the vacation taken by the young Werner Heisenberg [?, ?] in 1925" (S. ⁹⁸ Weinberg).

⁹⁹ Heisenberg schreibt kurz und bündig:

"In der Arbeit soll versucht werden, Grundlagen zu gewinnen für eine quantentheoretische Mechanik, die ausschliesslich auf Beziehungen zwischen prinzipiell
beobachtbaren Grössen basiert ist."

Die beobachtbaren Grössen (z.B. Energieniveaux eines Atoms) werden in Tabellen (Vekto ren) angegeben. Auf diese wirken Matrizen, daher der frühe Name für die QM: Matrizenme chanik.

¹⁰⁶ Dies erforderte für ein System wie das H-atom schon äusserst komplizierte Rechnung, eine ¹⁰⁷ gewaltige Vereinfachung erfolgte durch die Schrödinger-Gleichung [?]².

¹⁰⁸ Bald wurde die Gleichwertigkeit der beiden Zugänge durch die damals besonders in Göttin-

¹⁰⁹ gen entwickelte Funktionalanalysis aufgedeckt: Hilbertraum kann durch Funktionen (Wel-

¹¹⁰ lenfunktionen von Schrödinger) oder Vektoren (von Heisenberg, Born, Jordam und Pauli),

¹¹¹ die Operatoren sind bei Heisenberg Matrizen, bei Schrödinger Funktionsoperationen wie

¹¹² Ableitungen, Multiplikation mit Variablen etc.

¹W. Heisenberg: Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen ²E. Schrödinger: Quantisierung als Eigenwertproblem

		Hilbert	raum	C^*	Phasenraum
		1925	1926	1932	< 1925
		Heisenberg	Schrödinger	v. Neumann	klassisch
113	Observable	Matrizen	$\partial_x, x \cdots$	$\in C^*$	F(p,q)
	Zustände	Vektoren	Funktionen	$\in C^*$	$\rho(p,q)$
	Mathem.	Lin. Algebra.	Funkt. Anal.	lin. Algebra	Diff-Int. Rechn.

¹¹⁴ Die formale Entwicklung der Quantenmechanik wurde weitgehend abgeschlossen durch John ¹¹⁵ von Neumanns Buch: MATHEMATISCHE GRUNDLAGEN DER QUANTENMECHANIK (1932).

¹¹⁵ von Neumanns Buch: MATHEMATISCHE GRUNDLAGEN DER QUANTENMECHANIK (1932).

¹¹⁶ Neben der klaren mathematischen Darstellung war ein äusserst wichtiger Beitrag des Ma-

thematikers John von Neumann die Einführtung der gemischten Zustände, durch den statistischen Operator. Dieser Zugang führtte zu der recht abstrakten Formulierung der QP im

stischen Operator. Dieser Zugang führtte zu der recht abstrakten Formulierung der QP in Rahmen der abstrakten C^* -Algebren, die besonders bei Mathematikern sehr beliebt ist.

¹²⁰ Der Schrödinger'sche Zugang brachte grosse technische Erleichterungen:

121 1) Gewaltige Vereinfachung beim Rechnen, Anstelle vom Manipulationen mit unendlich-

dimensionalen Matrizen traten übliche Funktionaloperationen wie Differentiation oder Multiplikation. Allerdings spielt im QC heute wieder der Matrixformalismus die füHilberträumende Rolle.

¹²⁵ 2) Das Korrepondenzprinzip, das erlaubt die klassischen Ausdrücke in quantenmechani-¹²⁶ sche Operatoren zu überfüHilberträumen, liess sich leicht anwenden: z.B. Hamiltonfunktion ¹²⁷ $H(p,q) \rightarrow \mathbf{H}(p,q)$ durch $p \rightarrow -i\hbar\partial_q; q \rightarrow q$.

3) Die Gleichungen waren im Funktionalzugang auch formal näher bei den vertrauten Ausdrücken aus der klassischen Physik als die Matrizen. Es handelt sich in der Schrödinger'schen
Darstellung hauptsächlich partielleum Differentialgleichungen, wie in Elektrodynamik und
Kontinuumsmechanik.

Diese formale Nähe zur klassischen Physik verstärkte den prinzipiellen Skeptizismus einiger
Physiker, die wie Schrödinger und Einstein, im Herzen auf eine Rückkehr zur klassischen
Physik hofften.

Besonders die Aspekte, die heute für das QC wesentlich sind, wie die Statistische Imterpretation, die Verschränkung und die daraus resultierende "Teleportartion" erregten dagegen
Misstrauen, darauf gehen wir später nochmals ein (Schrödingersche Katez und Einstein,
Podolski, Rosen Paradoxon)

Die Quantenphysik, die sich nach 1925 nicht als eine blosse EinscHilbertraumänkung der klassischen Physik, sondern als eine sehr viel weiter reichende Alternative zur klassischen Physik
(Mechanik und Elektrodynamik) erwies, ist vielleicht die physikalische Theorie, die unser
Leben am stärksten beeinflusst hat. Sie zeitigte gewaltige Erfolge, nicht nur in Atomphysik,
für die sie hauptsächlich entwickelt wurde, sondern besonders auch in Festkörperphysik. Ein
typische Frucht der Quantenphysik ist der Transistor ³

Als Gamow 1928 den α -Zerfall der Kerne mit Hilfe der QM erklären konnte, war es noch eine Überraschung, dass diese auch in der Grössenordnung der Kernradien ($\approx 10^{-12}$ cm)

 $^{^3\}mathrm{J}$ Bardeen, W Shockley and W Brattain 1948.

¹⁴⁷ gültig ist. Bei der subnuklearen Physik (Teilchenphysik) erwartete man die Gültigkeit schon,

 $_{148}$ $\,$ aber es gab durchaus auch eine Epoche, in der man zwar nicht an der Gültigkeit der QP (in

der Form der QFT) zweifelte, wohl aber an iHilberträumem Nutzen für viele Aspekte der
 Teilchenphysik ⁴.

Inzwischen ist allerdings die QFT wieder voll auferstanden und es gibt keine Gründe an IHilbertraum zu zweifeln bis hinab zu Grössenordnungen von $\approx 10^{-35}m$ (Planck Länge), denn

ein noch offenes Problem ist allerdings die Vereinigung von Quantenphysik und Allgemeiner

154 Relativitätstheorie.

¹⁵⁵ Die praktischen Hauptbrobleme entsteht dadurch, dass viele Operatoren nicht beschränkt
¹⁵⁶ sind, was zu "nicht-normierbaren Eigenfunktionen" (Eigendistributionenen) in der QM führtt
¹⁵⁷ und zu Unendlichkeiten in der relativistischen QFT (Renormierungsprobelm). Von all die¹⁵⁸ sen Problemen is das QC nicht berüHilbertraumt, da man sich hier auf endlichdimensionale

159 Hilberträume beschränkt.

¹⁶⁰ Die Beschäftigung mit den mehr grundsätzlichen Problemen die beim Übergangs von der ¹⁶¹ klassischen Physik, an die wir durch unsre Anschauung gewöhnt sind, zur weniger anschau-¹⁶² lichen QM hat in der jüngeren Zeit wieder zugenommen. Dies hat einen wesentlichen Grund ¹⁶³ in der experimentellen Entwicklung in der Atomphysik: Es gab grosse FortscHilbertraumit-¹⁶⁴ te in der Kühltechnik (man kommt immer näher zu T = 0) und es war möglich einzelne ¹⁶⁵ QM Systeme zu isolieren (Ionenfallen). (Paul und Dehmelt, Nobelpreis 1989, Haroche und

¹⁶⁶ Wineland, Nobelpreis 2012)

¹⁶⁷ Entscheidend war auch die Entwicklung der Quantenoptik durch Laser.

Dies fürte auch zu einem verstärkten Interesse an den grundsätzlichen (manchmal etwas abschätzig "philosophisch" genannten) Problemen der QM; s. z. B. zu den Bellsche Ungleichungen. Das Ergebnis einiger Präzisionsexperimente in dieser Richtung hat die Mehrzahl der Physiker allerdings nicht überrachet:

¹⁷² Das Ergebnis war nämlich: Die QM ist richtig !

 173 Ein grosser Spin-off Effekt dieser Entwicklung in der Atomphysik war das Quanten-Computing 174 (QC) 5

Gegenwärtig kann man das QC als Rückkehr zur Heisenbergschen Matrizenmechanik bezeichnen. Es ist aber rechnerisch sehr einfach, da die auftretenden Matrizen endlich dimensional sind, die Grundeinheit, das Qubit ist nur 2 dimensional. Der Durchbruch zum QC kam hier auch keinesfalls durch neue Einsichten in die QM, sondern durch die Entwicklung von Algorithnmen, die auf einfachen Prinzipien der QM beruhen.

¹⁸⁰ Zu erwähnene ist hier besonders der Algorithmus von Shore, der komplexe Zahlentheoreti¹⁸¹ sche Theoreme zusammen mit Algorithmen, die auf den Prinzipien der QM basieren, zur
¹⁸² Primzahlfaktorisierung benutzt.

Genauso wichtig war der ForscHilbertraumitt in der experimentellen Technik, die es erlaubt Systeme von Qubits über eine nützliche Zeit kohärent zu halten. Allerdings können wir

⁴Quantum field theory will not die, but just fade away, G Chew ca 1950

⁵Richard P Feynman. Simulating physics with computers, 1981. International Journal of Theoretical Physics, 21(6/7). Yuri Manin. Computable and Uncomputable. Sovetskoye Radio, Moscow, 128, 1980.

¹⁸⁵ auf diesen wichtigen Aspekt in dieser Vorlesung, aus Mangel an Zeit und Expertise, nicht ¹⁸⁶ eingehen.

187 **1.2** Allgemeine Grundlagen

mathing 1.2.1 Einige grundlegende mathematische Konzepte

¹⁸⁹ Nur eine kurze Erinnerung und Wiederholung.

190 1.2.1.1 1) Hilbertraum \mathcal{H}

- ¹⁹¹ Ein Hilbertraum ist ein vollständiger linearer Vektorraum mit Metrik (Skalarpro-
- ¹⁹² dukt). Wir stellen mit Dirac ein Element davon durch einen "ket" $|\cdot\rangle$ dar. Es gilt das ¹⁹³ Superpositionsprinzip:
- 194 $\{|\psi\rangle, |\phi\rangle \cdots\} \in \mathcal{H}; \quad \alpha, \beta \cdots \in \mathcal{C} \to, \alpha |\psi\rangle + \beta |\phi\rangle \in \mathcal{H};$
- ¹⁹⁵ Für das Scalarprodukt gilt:
- ¹⁹⁶ $\mathcal{H} \times \mathcal{H} \to \mathcal{C}$ bezeichnet mit $\langle \phi | \psi \rangle \in \mathcal{C}$
- ¹⁹⁷ Schiefsymmetrisch (skew symmetric): $\langle \phi | \psi \rangle = \langle \psi | \phi \rangle^*$
- Positiv $\langle \psi | \psi \rangle > 0 \ \forall | \psi \rangle \neq 0$ $| | \psi | | = \sqrt{\langle \psi | \psi \rangle}$ heist **Norm** des Vektors $| \psi \rangle$.
- 199 Linear $\langle \phi | (\alpha | \psi_1 \rangle + \beta | \psi_2 \rangle) = \alpha \langle \phi | \psi_1 \rangle + \beta \langle \phi | \psi_2 \rangle$
- Nach Dirac wird der duale Vektor (der der links im Skalarprodukt steht) mit bra, $\langle \cdot |$ bezeichnet. Das Skalarprodukt hat also die Form *bra ket*: $\langle \cdot | \cdot \rangle$
- ²⁰² Vollständigkeit] Der \mathcal{H} is vollständig in der Norm, d.h. jede Cauchyfoge im \mathcal{H} convergiert ²⁰³ gegen ein Element des \mathcal{H}^{6}
- 204 Basis eines \mathcal{H}

Es gibt eine abzählbare Zahl von Basis-Vektoren. In den für das QC wesentlichen Hilberträumen ist diese Zahl endlich, dh. es gibt endlich viele Basisvektoren:

$$|1\rangle, |2\rangle, \cdots |N\rangle \tag{1.1}$$

²⁰⁷ als deren Summe jedes Element dargestellt werden kann:

$$|\phi\rangle = \sum_{1}^{N} \alpha_i |i\rangle \tag{1.2}$$

⁶Im QC spielen i. A. nur endlichdimensionale \mathcal{H} eine Rolle, daher ist das Vollständigkeitsaxiom, das in der allgemeinen QM eminent wichtig ist, hier trivial.

Wir können ohne BescHilbertraumänkung der Allgemeinheit annehmen, dass die Basis orthonormal ist, d.h.

$$\langle i|k\rangle = \delta_{ik} \tag{1.3}$$

²¹⁰ dann gilt: $\alpha_i = \langle i | \phi \rangle$ und wir haben allgemein:

$$|\phi\rangle = \sum_{i} \langle i|\phi\rangle |i\rangle \equiv \sum_{i} |i\rangle\langle i|\phi\rangle \tag{1.4}$$

211 d.h.

$$\sum_{i} |i\rangle\langle i| = 1 \tag{1.5}$$

Wenn ein vollständiges System nicht orthogonal ist, können wir es orthonormaliseren (VerfaHilberträumenvon E. Schmidt):

$$\begin{aligned} |\tilde{\psi}_{1}\rangle &= \frac{1}{\|\psi_{1}\|} |\psi_{1}\rangle \\ |\hat{\psi}_{2}\rangle &= |\psi_{2}\rangle - \langle \tilde{\psi}_{1} |\psi_{2}\rangle |\tilde{\psi}_{1}\rangle; \ |\tilde{\psi}_{2}\rangle = \frac{1}{\|\hat{\psi}_{2}\|} \hat{\psi}_{2} \\ &\vdots \\ |\hat{\psi}_{N}\rangle &= |\psi_{N}\rangle - \sum_{i=1}^{N-1} \langle \tilde{\psi}_{i} |\psi_{N}\rangle; \ |\tilde{\psi}_{N}\rangle = \frac{1}{\|\hat{\psi}_{N}\|} |\hat{\psi}_{N}\rangle \end{aligned}$$
(1.6)

214 Die neuen Vektoren

$$|\tilde{\psi}_1\rangle, |\tilde{\psi}_2\rangle, \cdots |\tilde{\psi}_N\rangle$$
 (1.7)

 $_{215}$ bilden eine orthonormale Basis (vollständiges Orthonormalsystem ${\bf voS}$

Strahl Ein Strahl (ray) im \mathcal{H} ist der eindimensionale Unterraum von Vektoren, die sich nur durch einen komplexen Faktor $\alpha \neq 0$ unterscheiden. Normalerweise wählt man als den Representatnten dieser Klasse den Vektor aus, der die Norm 1 hat.

Direktes Produkt Das direkte Produkt zweier Hilberträume, $\mathcal{H}_A \otimes \mathcal{H}_B$ ist ein Hilbertraum, der alle geordneten Paare $|\psi\rangle_A, |\phi\rangle_B$ von Vektoren aus \mathcal{H}_A und \mathcal{H}_B und deren Summen enthält. Das Skalarprodukt eines solchen Paares ist Produkt der Skalaarprodukte:

$$\langle (\langle \psi |_A \otimes \langle \phi |_B) | (|\chi \rangle_A \otimes |\xi \rangle_B) \rangle = \langle \psi |\chi \rangle_A \langle \phi |\xi \rangle_B$$
(1.8)

Am einfachsten werden die Eigenschaften über die Orthonormalbasen beschrieben: Seien $\{|\psi_n\rangle_A\}$ und $\{|\phi_n\rangle_B\}$ solche Ortonormalbasen. Dann ist

 $|m,n\rangle_{AB} = |\psi_m\rangle_A \otimes |\phi_n\rangle_B$ eine Orthonormalbasis von $\mathcal{H}_A \otimes \mathcal{H}_B$ mit dem Slalarprodukt

$$\langle m', n'|m, n \rangle_{AB} = \langle m'|m \rangle_A \langle n'|n \rangle_B = \delta_{m'm} \,\delta_{n',n} \tag{1.9}$$

²²⁵ Ein allgemeiner Zustand aus $\mathcal{H}_A \otimes \mathcal{H}_B$ ist demnach:

$$|\chi\rangle_{AB} = \sum_{m,n} \alpha_{m,n} |m,n\rangle_{AB}$$
(1.10)

²²⁶ Für endlichdimensionale Hilberträume gilt: $dim(\mathcal{H}_A \otimes \mathcal{H}_B) = dim(\mathcal{H}_A) \cdot dim(\mathcal{H}_b)$

 $_{227}$ Das direkte Produkt lässt sich assoziativ auf N Hilbertraum erweitern

$$(\mathcal{H}_1 \otimes \mathcal{H}_2) \otimes \mathcal{H}_3 = \mathcal{H}_1 \otimes (\mathcal{H}_2 \otimes \mathcal{H}_3) \equiv \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \mathcal{H}_3$$
(1.11)

228 und allgemein

$$\mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \mathcal{H}_N \tag{1.12}$$

229 hat dann die Orthonormalbasis

$$|m_1, m_2 \cdots m_N\rangle = |m_1\rangle \otimes |m_2\rangle \otimes \cdot \otimes |m_N\rangle \tag{1.13}$$

²³⁰ Für endlichdimensionale Hilberträume gilt:

²³¹ $dim(\mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_N) = dim(\mathcal{H}_1) \cdot dim(\mathcal{H}_1) dim(\mathcal{H}_2) \cdots dim(\mathcal{H}_N)$

Im QC wird i. A. ein Hilbertraum betrachtete, der das direkte Produkt von N 2-dimensionalen Hilberträumen ist (Qubits). Dieser beschreibt dann einen Raum von der Dimension 2^N , d.h.

²³³ Hilbertraumen ist (Qubits). Dieser beschreibt dann einen Raum von der J
²³⁴ die Zahl der Dimensionen wächst exponentiell mit der Zahl der Qubits.

1.2.1.1.1 Beispiel für direkte Produkte in der QM : Direkte Produkte von Hilberträumen spielen in der Physik eine eminent wichtige Rolle.

²³⁷ Das vielleicht einfachste Beispiel dafür sind zwei Spin $\frac{1}{2}$ Teilchen: Für ein Teilchen gibt ²³⁸ es den 2-dim Hilbertraum \mathcal{H}_2 mit z. B. den Basisvektoren $|\uparrow_z\rangle$, $|\downarrow_z\rangle$ Der Spin von 2 ²³⁹ Teilchen (z.B. Hülle des He-Atoms) wird in dem direkten Produkt $\mathcal{H}_2 \otimes \mathcal{H}_2$ beschrieben. Ein ²⁴⁰ Quantencomputer ist, zumindest zur Zeit, in einem direkten Produkt von N 2-dimensionalen ²⁴¹ Hilberträumen realisiert.

242 1.2.1.2 2)Lineare Operatoren

Bemerkung: Meist nimmt man in der Physik Linearität an, um die Probleme zu vereinfachen,
z.B. beim Hooke'schen Gesetz. Es ist bemerkenswert, dass in der QM lineare Operatoren eine
fundamentale Rolle spielen. Nichtlinearitäten bei den Operatoren, die in den deduktiven Aufbau
der QM eingehen, müssen, wenn überhaupts sehr sehr klein sein, da sie zu messbaren Abweichungen
z. B. in der Atomphysik mit iHilberträumer ungeheuren Präzision führtten. Auch für das QC is die
Linearität der Operatoren wesentlich.

²⁴⁹ **A**, **B**... Lineare Abb im in einem Raum, für unsre Zwecke ein Hilbertraum \mathcal{H} : $\mathcal{H} \to \mathcal{H}$.

$$\begin{aligned} \mathbf{A} : & |\psi\rangle \mapsto \mathbf{A} |\psi\rangle; \quad \mathbf{A} (\alpha |\psi_1\rangle + \beta |\psi_2\rangle = \alpha \mathbf{A} |\psi_1\rangle + \beta \mathbf{A} |\psi_2\rangle \\ & (\mathbf{A} + \mathbf{B}) |\psi\rangle = \mathbf{A} |\psi\rangle + \mathbf{B} |\psi\rangle; \ (\mathbf{A} \mathbf{B}) |\psi\rangle = \mathbf{A} (\mathbf{B} |\psi\rangle) \end{aligned}$$

²⁵⁰ Der adjungierte Operator \mathbf{A}^{\dagger} zu \mathbf{A} ist definiert durch:

$$\langle \mathbf{A}^{\dagger} \phi | \psi \rangle = \langle \phi | \mathbf{A} \psi \rangle \tag{1.14}$$

²⁵¹ Ein Operator ist selbstadjungiert oder hermitisch, wenn

$$\mathbf{A} = \mathbf{A}^{\dagger} \tag{1.15}$$

²⁵² und **unitär** wenn

$$\mathbf{A}^{-1} = \mathbf{A}^{\dagger} \tag{1.16}$$

²⁵³ Ein unitärer Operator erhält das Skalarprodukt:

$$\langle \mathbf{A}\phi | \mathbf{A}\psi \rangle = \langle \mathbf{A}^{\dagger} \mathbf{A}\phi | \psi \rangle = \langle \mathbf{A}^{-1} \mathbf{A}\phi | \psi \rangle = \langle \phi | \psi \rangle$$
(1.17)

²⁵⁴ Ein Matrix-Operator
$$\mathbf{A} = \begin{pmatrix} A_{11} & A_{12} & \cdots \\ A_{21} & A_{22} & \cdots \\ A_{31} & A_{32} & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}$$

ist selbstadjungiert (hermitisch), wenn gilt $A_{ik} = A_{ki}^*$

²⁵⁶ ist unitär wenn Zeilen und Spalten orthonormal sind:

257
$$\sum_{k} A_{ki}^* A_{kl} = \delta_{il}$$
 und $\sum_{k} A_{ik}^* A_{lk} = \delta_{il}$

Ein **Projektionsoperator** $\mathbf{P}_{\psi} = |\psi\rangle\langle\psi|$ is die Abbildung auf ein Element des Hilbertraum:

$$\mathbf{P}_{|\psi\rangle} : |\phi\rangle \mapsto \langle\psi|\phi\rangle |\psi\rangle \tag{1.18} \quad \texttt{project}$$

²⁵⁹ Eigenwerte und die Spektraldarstellung

Ist die Wirkung eines Operators **E** auf einen Zustand $|\psi\rangle$ eine Multiplikation mit der Zahl *E*, d.h.

$$\mathbf{E}|\psi\rangle = E\,|\psi\rangle\tag{1.19}$$

dann heisst $|\psi\rangle$ Eigenvektor von **E** und *E* Eigenwert. Gibt es meHilberträumere linear unabhängige Eigenvektoren zu dem gleichen Wert von *E*, so ist der Zustand entartet. Sind ein oder meHilberträumere Eigenwerte entartet, so können die zugehörigen Eigenvektoren orthonormalisiert werden, z. B. nach E.Schmidt, ($|\tilde{\mathbf{I.6}}\rangle$).

²⁶⁶ Eine der Grundlagen der QM ist die Spektraldarstellung:

Die Eigenvektoren eines (beschränkten) unitären Operators bilden eine Ortho normalbasis ⁷

Danach lässt sich jeder Vektor aus \mathcal{H} als Summe von der Eigenvektoren darstellen: $|n\rangle$ mit $\mathbf{E}|n\rangle = \frac{1}{270} E_n |n\rangle$ darstellen:

$$|\phi\rangle = \sum_{n} \rho_n |n\rangle \quad \text{with } \rho_n = \langle n | \phi \rangle$$
 (1.20)

- ²⁷¹ Im allgemeinen ist die Summe unendlich, in Anwendungen des QC aber endlich.
- ²⁷² Man kann den Operator **E** darstellen als die Summe von Projektionsoperatoren auf die ²⁷³ Eigenvektoren:

$$\mathbf{E} = \sum_{n} E_n |n\rangle \langle n| \tag{1.21} \quad \texttt{sd}$$

²⁷⁴ Denn $\mathbf{E}|\phi\rangle = \sum_{n} \langle n|\phi\rangle \mathbf{E}|n\rangle = \sum_{n} E_{n} |n\rangle \langle n|\phi\rangle$

⁷Viele wichtige Operatoren der QM sind nicht beschränkt und dann muss die Spektraldarstellung erweitert werden, z. B. durch Distributionen im Gelfandschen Raumtrippel. Beispiele sind die Eigendistribution des Ortsoperators, $\delta(x-a)$ oder des Impulsoperators $e^{i px}$.

²⁷⁵ Das direkte Operatorprodukt $\mathbf{M}_A \otimes \mathbf{N}_b$ wirkt im direkten Produkt $\mathcal{H}_A \otimes \mathcal{H}_B$:

$$(\mathbf{M}_A \otimes \mathbf{N}_B)(|\psi\rangle_A \otimes |\phi\rangle_B) = \mathbf{M}_A |\psi\rangle_A \otimes \mathbf{N}_B |\phi\rangle_B$$
(1.22)

Auch das direkte Operatorprodukt lässt sich assoziativ erweitern, ganz analog zum direkten
Produkt der Hilberträume.

278 Es wirkt dann auf die Basisvektoren des entsprechenden direkten Produktes der Hilber-279 träume:

$$\mathbf{A}_1 \otimes \mathbf{A}_2 \otimes \cdots \otimes \mathbf{A}_N | m_1, m_2 \cdots m_N \rangle = \mathbf{A}_1 | m_1 \rangle \otimes \mathbf{A}_2 | m_2 \rangle \otimes \cdots \otimes \mathbf{A}_N | m_N \rangle$$
(1.23)

280 Matrixdarstellung von Operatoren

²⁸¹ Man kann die Koeffizienten der Entwicklung nach einem vos $\{|1\rangle, \dots, |n\rangle, \dots, |N\rangle\}$ ²⁸² als Koordinaten kartesischer Vektoren mit komplexen Koordinaten wählen,

$$|\psi\rangle = \sum_{n}^{N} \langle n|\psi\rangle |n\rangle \Leftrightarrow \begin{pmatrix} \langle 1|\psi\rangle \\ \langle 2|\psi\rangle \\ \vdots \\ \langle N|\psi\rangle \end{pmatrix} \equiv \begin{pmatrix} \psi_{1} \\ \psi_{2} \\ \vdots \\ \psi_{N} \end{pmatrix}$$
(1.24)

²⁸³ In der Koordinatendarstellung ist ein linearer Operator eine Matrix:

$$\mathbf{A} \Leftrightarrow \begin{pmatrix} \langle 1|\mathbf{A}1 \rangle & \langle 1|\mathbf{A}2 \rangle & \cdots & \langle 1|\mathbf{A}N \rangle \\ \langle 2|\mathbf{A}1 \rangle & \langle 2|\mathbf{A}2 \rangle & \cdots & \langle 2|\mathbf{A}N \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle N|\mathbf{A}1 \rangle & \langle N|\mathbf{A}2 \rangle & \cdots & \langle N|\mathbf{A}N \rangle \end{pmatrix} \equiv \begin{pmatrix} A_{11} & A_{12} & \cdots & A_{1N} \\ A_{21} & A_{22} & \cdots & A_{1N} \\ \vdots & \vdots & \vdots & \vdots \\ A_{N1} & A_{N2} & \cdots & A_{NN} \end{pmatrix}$$
(1.25)
Bew: $\langle k|\mathbf{A}|\psi\rangle = \langle k|\mathbf{A}\sum_{n} |n\rangle\langle n|\psi\rangle = \sum_{n} A_{kn}\psi_{n}$

Die Matrizen die von einem Operator A durch zwei verschiedene voS erzeugt werden, sind
unitär ähnlich, da zwei verschiedene voS eines Raumes durch eine unitäre Operation verknüpft sind.

²⁸⁷ Bew. A) Seien $\{|k\rangle_R\}$ und $\{|k\rangle_S\}$ zwei verschiedene voSe. Sei $|k\rangle_R = \mathbf{W}|k\rangle_S$

288 Dann gilt $_{R}\langle j|k\rangle_{R} =_{S}\langle j|W^{\dagger}|W|k\rangle_{S} = \delta_{jk}$ Daraus folgt $W^{\dagger}W = \mathbf{I}$, d.h. W ist unitär.

$${}_{R}\langle j|\mathbf{A}|k\rangle_{R} =_{S} \langle j|W^{\dagger}\mathbf{A}W|k\rangle_{S}$$
(1.26)

In der Produktbasis zweier (oder meHilberträumer) Hilberträume verlangt eine Darstellung
der Operatoren als Matrizen (2-fach indizierte Tensoren) eine lineare Anordung der Vektoren, z.B. nach dem Diagonalschema. Dies hatten wir schon in der letzten Stunde bei Herrn

²⁹² Marquard gesehen, z.B. wenn bei $|m, n\rangle$ die erste Basisi $|m\rangle = \begin{pmatrix} p_0 \\ p_1 \end{pmatrix}$ und die zweite ²⁹³ $|n\rangle = \begin{pmatrix} q_0 \\ q_1 \end{pmatrix}$, dann

$$\begin{pmatrix} p_0 \\ p_1 \end{pmatrix} \otimes \begin{pmatrix} q_0 \\ q_1 \end{pmatrix} = \begin{pmatrix} p_0 q_0 \\ p_0 q_1 \\ p_1 q_0 \\ p_1 q_1 \end{pmatrix}$$
(1.27)

Es gibt aber auch dem Problem angemessenere Darstellungen, z. B. die Computatorische
Basis, die wir noch ausführtlich betrachten werden.

²⁹⁶ **1.2.1.2.1 Spur** . Die Spur einer Matrix ist die Summe über die Diagonalelemente:

$$\operatorname{Tr}(\mathbf{A}) = \sum_{k} A_{kk} = \sum_{k} \langle k | \mathbf{A} | k \rangle$$
(1.28)

²⁹⁷ Die Spur ist zyklisch, wie man leicht nacHilberträumechnet.

$$\operatorname{Tr}(\mathbf{A} \mathbf{B} \mathbf{C}) = \sum_{ikm} A_{ik} B_{km} C_{mi} = \sum_{ikm} C_{mi} A_{ik} B_{km} = \operatorname{Tr}(\mathbf{C} \mathbf{A} \mathbf{B})$$
(1.29)

Daraus folgt: Die Spur ist vom gewählten voS unabhängig. Denn zwei voSe, $\{|k_{(R)}\rangle\}$, $\{|j_{(S)}\rangle\}$ sind durch einen unitäre Operator verbunden, d.h.

$$\operatorname{Tr}_{R}\mathbf{A} =_{R} \langle j | \mathbf{A} | j \rangle_{R} =_{S} \langle j | W^{\dagger} \mathbf{A} W | j \rangle_{S} = \operatorname{Tr}_{S} \mathbf{W}^{\dagger} \mathbf{A} \mathbf{W} = \operatorname{Tr}_{S} \mathbf{W} \mathbf{W}^{\dagger} \mathbf{A} = \operatorname{Tr}_{S} \mathbf{A} \quad (1.30)$$

Funktionen von Operatoren Wenn eine Funktion eine Reihenentwicklung besitzt, so kann
 eine Funktion von Operatoren über diese Reihenentwicklung definiert werden.

$$f(x) = \sum_{n} f_n x^n \to f(\mathbf{A}) = \sum_{n} f_n \mathbf{A}^n$$
(1.31)

Ist **A** selbstadjungiert und hat daher ein voS von Eigenvektoren $|n\rangle$, s. ($\stackrel{\text{isd}}{\square 21}$) mit den Eigenwerten a_n , dann kann man die Operatorfunktion über: $f(\mathbf{A})|n\rangle = f(a_n)|n\rangle$ auch ohne Reihendarstellung definieren.

$$f(\mathbf{A})|\phi\rangle = f(\mathbf{A})\sum_{n} \langle n|\phi\rangle |n\rangle = \sum_{n} f(a_{n}) \langle n|\phi\rangle |n\rangle$$
(1.32)

Man kann daraus die wichtige Beziehung herleiten: Die Exponentialfunktion von i mal einem sa. Operator ist ein unitärer Operator.

307 Sei $\mathbf{E}^{\dagger} = \mathbf{E}$. Dann ist $\mathbf{U} = e^{i\mathbf{E}}$ ein unitärer Operator.

1.2.2Mathematisch deduktiver Aufbau der QM. 308

Für das QC ist der **mathematische Aufbau der QM** entscheidend. Seine Grundzüge 309 gehen weitgrhend auf den grossen Mathematiker und Mitbegründer der Informatik, John 310 von Neumann (1903-1957) zurück. Dies braucht Ihnen abre keineswegs Angst einzujagen, 311 denn die Anwendungen im QC beruhen, zumindest in der gegenwärtigen Form, durchaus 312 auf sehr einfachen mathematischen Modellen, im wesentlichen auf endlich dimensionalen 313 Räumen. 314

Im wesentlichen können Sie im QC für Hilbertraum stets endlich dimensionalen Cartesische 315 Raum über den komplexen Zahlen setzten und für Operatoren Matrizen (Matrizes, Matrices). 316

Da ich von einer Kenntnis der theoretischen QM (z.B. Theorie 4) ausgehe und ich nicht 317 möchte, dass sie sich gleich langweilen, beginne ich unmittelbar mit dem deduktiven Auf-318 bau der sich vielleicht von dem der üblichen Vorlesung nicht in der Sache, wohl aber in 319 der Anordnung unterscheidet. Allerdings wird auch nicht die grösstmögliche Allgemeinheit 320 angestrebt, aber auf mögliche Verallgemeinerungen hinwiesen. 321

Eine der überzeugendsten Darlegungen des mathematischen Aufbaus der QP ist immer noch 322 das Originalwerk John von Neumann's von 1932!!. 323

Observable werden in der Quantenphysik durch eine Algebra selbstadjungierter 1 linearer Operatoren in einem Hilbertraum beschrieben.

Die möglichen Messwerte von Observablen sind die Eigenwerte dieser Operatoren.

Ein **Zustand** wird in der QP durch einen selbstadjungierten, positiven Operator ρ im Hilbertraum mit der Spur 1 beschrieben (s. Sect. \mathbb{P}). Dieser Operator heisst "Dichtematrix" oder "statistischer Operator".

Der **Erwartungswert** einer Observablen \mathcal{O} ist eine lineare Abbildung des Produktes von Zustand mit Observabler auf die reelen Zahlen:

324

$$\langle \mathcal{O} \rangle = \operatorname{Tr} \rho \, \mathcal{O} = \sum \langle \psi_m | \, \rho \, \mathcal{O} | \psi_m \rangle; \quad \operatorname{Tr} \rho = \sum \langle \psi_m | \rho | \psi_m \rangle = 1; \quad (1.33) \quad \text{ew}$$

wobei $\{\ldots | \psi_m \rangle \ldots \}$ ein **beliebiges** voS in \mathcal{H} ist. Ist der statistische Operator ein Projektionsoperator auf einen normierten Hilbertraum Vektor $|\phi\rangle$, $\rho = \mathbf{P}_{\phi} = |\phi\rangle\langle\phi|$, dann nennt man diesen Zustand einen reinen Zustand, der durch den Hilbertraum Vektor $|\phi\rangle$ beschrieben wird.

Anmerkungen 326

Zu 1: 327

Im Vergleich dazu: In der klassischen Physik werden Observable und Zustände werden durch 328

- (verallgemeinerte) **Funktionen** beschrieben. 329
- Natürlich müssen sowohl die Operatoren in der QP als auch die Funktionen in der klassischen 330
- Physik näher spezifiziert werden. Allgemein gilt in der klassischen Physik: (Verallgemeinerte) 331
- Funktionen auf dem Phasenraum, z.B. $E = \frac{p^2}{2m}$ für die kietische Energie. $\delta(q q_0) \, \delta(p p_0)$ für einen Massenpunkt, $\frac{1}{Z} e^{-E(p,q)/kT}$ für ein kanonisches Ensemble, 332
- 333
- In der QP gilt allgemein : Die Operatoren der QP müssen Elemente einer C^* Algebra sein. 334

Wir verzichten hier auf die grösstmögliche Allgemeinheit und wir verwenden, wie oben bereits getan: Operatoren in einem Hilbertraum. Beim QC auftretende Hilberträume sind sogar noch besonders einfach, sie sind i. A. endlich dimensional und die Operatoren sind endlich dimensionale selbstadjungierte Matrizen.

Ein wesentlicher Unterschied zwischen klassischer und Quanten-Physik besteht darin, dass die Observablen in der KP miteinander vertauschen. Ob ich erst den Impuls messe und dann den Ort ist gleichgültig, da Funktionen miteinander vertauschen: $g(x) \cdot h(x) = h(x) \cdot g(x)$. Dies gilt nicht in der QP, s. Abs. ??.

343 Zu 2:

³⁴⁴ Die im QC auftretenden Operatoren sind i. A. endlich dimensionale Matrizen.

Oft wird der statistische Operator in der QM auf Kosten der "reinen Zustände" etwas
stiefmütterlich behandelt, daher einige Anmerkungen.

³⁴⁷ Da der statistische Operator selbstadjungiert ist, gibt es ein voS $|\psi_n\rangle$ in dem er auch diagonal ³⁴⁸ ist, d.h.

$$\langle \psi_n | \mathbf{O} | \psi_m \rangle = p_n \delta_{nm} \leftrightarrow \mathbf{O} = \sum_n p_n | \psi_n \rangle \langle \psi_n |$$
 (1.34)

mit $p_n \ge 0$, $\sum_n p_n = 1$ Der Operator $\mathbf{P}_n = |psi_n\rangle\langle\psi_n|$ ist ein Projektionsoperator auf $|\psi_n\rangle$ denn

$$\mathbf{P}_{n}|\phi\rangle = \langle\psi_{n}|\phi\rangle |\psi_{n}\rangle \tag{1.35}$$

Beispiele: Beim Spin $\frac{1}{2}$ sind die reinen Zustände beschrieben durch Spinoren, etwa $\chi_{+} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ oder $\chi_{-} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$. Ein allgemeiner Zustand ist dagegen ein unpolarisiertes Gemisch von + und – Zuständen, beschrieben durch den statistischen Operator $\boldsymbol{\rho} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$. Der statistische Operator für den reinen Zustand $\chi_{-} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ ist der statistisch Operator $\boldsymbol{\rho} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, der Projektionsoperator auf den Zustand χ_{-} .

Besonders wichtig ist der statistische Operator in der Quantenstatistik. Hier wird das System aufgespalten in ein Wärmebad der Tempratur T und das untersuchte System, z. B. Gasmoleküle in einem festen Volumen). Der statistische Operator ist bei fester Temperatur T (kanonisches Ensemble) durch den Hamiltonoperator (Energie-Operator) **H** gegeben:

$$\boldsymbol{\rho} = \exp[-\mathbf{H}/(k_B T)]/Z \tag{1.36}$$

 k_B ist die Boltzmannkonstante, $Z = Tr \exp[-\mathbf{H}/(k_B T)]$, ist die "Zustandssumme".

³⁶¹ In der klassischen Mechanik entspricht dem statistischen Operator eine (ausgedehnte) Ver-³⁶² teilungsfunktion im Phasenraum, dem reinen Zustand dagegen δ -Funktionen.

³⁶³ Da besonders im QC die Zusammensetzung von Systemen (Qubits) eine grosse Rolle spielt,
 ³⁶⁴ wollen wir auch das folgende Axiom separat einfüHilberträumen:

³⁶⁵ **3** Wird ein System durch den Hilbertraum \mathcal{H}_A und ein anderes durch den Hilbertraum \mathcal{H}_B beschrieben, dann wird das Gesamtsystem durch das direkte Produkt $\mathcal{H}_A \otimes \mathcal{H}_B$ beschrieben.

Anmerkungen: Wir werden später nochmals ausfürlich auf zusammengestate Systeme eingehen, besonders im Zusammenhang mit Verschränkung (*entanglement*) und Dekohärenz.
Es weden hier nur einige vertraute Beispiele aus der QM gebracht.

Bsp: Sind wir nur an den Atomspektren interessiert, so werden nur die Elektronen quantenmechanisch beschrieben. Der Kern wird als eine klassische Grösse behandelt. Wollen wir
allerdings das ganze Atom beschreiben, müssen wir auch noch die Bestandteile des Kerns,
die Nukleonen quantenmechanisch beschreiben. Das gesamte Atom wird also in dem Pro-

- 373 duktraum $\mathcal{H}_{Nukleonen} \otimes \mathcal{H}_{Elektronen}$ beschrieben.
- ³⁷⁴ Die Behandlung zusammengesetzter Systeme in der QM ist analog zur klassischen Mechanik.
- $_{\rm 375}~$ Ein Massenpunkt wird dargestellt dort als ein Punkt im 6-dimensionalen Phasenraum R_6
- 376 (3 Orts, 3 Impulskoordinaten); für zwei Massenpunkte benötigt man den 12-dimensionalen
- 377 Phasenraum $R_{12} = R_6 \otimes R_6$.

Bei einer **Messung** der Observablen \mathcal{O} geht ein reiner Zustand $|\phi\rangle$ in einen Eigenzustand der Observablen $|\psi_n\rangle$ über d.h. $\mathcal{O}|\psi_n\rangle = O_n |\psi_n\rangle$, das Ergebniss der Messung ist dann O_n (Reduktion der Wellenfunktion). Die Wahrscheinlichkeit für diesen Übergang ist $|\langle\psi_n|\phi\rangle|^2$. Ein Dichteoperator geht in einen Projektionsoperator $P_{|\psi_n\rangle} = |\psi_n\rangle\langle\psi_n|$ über.

379 Anmerkungen:

Weitere Formulierungen und Erweiterungen des Axioms zur Messung werden, der Vollständigkeit halber, am Ende aufgeführt.

Die **zeitliche Entwicklung** (Dynamik) eines Systems von der Zeit t bis t' wird durch einen unitären Operator

382 5

378

$$\mathbf{U}(t,t') = e^{i(t'-t)\mathbf{H}/\hbar} \tag{1.37}$$

beschrieben. Der selbstadjungierte Oierator
 ${\bf H}$ heisst der Hamilton
operator (Energie
operator) des Systems.

³⁸³ Auch hierauf gehen wir im Abschnitt 1.2.3 ausführlicher ein.

Das vielleicht wichtigste physikalische Prinzip zu einer Konstruktion von Hamiltonoperatoren
 QM ist das:

Korrepondenzprinzip Man erhält quantenmechanische Observablen aus klassischen, indem man die klassischen dynamischen Variablen durch QM Operatoren ersetzt.

³⁸⁷ Die drei Orts- und drei Impulsoperatoren eines Teilchen erfüllen die Vertauschungsrelationen:

$$[\mathbf{Q}_j, \mathbf{Q}_k] = 0; \quad [\mathbf{P}_J, \mathbf{P}_k] = 0; \quad [\mathbf{P}_j, \mathbf{Q}_k] = -i\hbar\,\delta_{kl} \tag{1.38}$$
 vt

388 So ist z.B. der Hamiltonoperator für das Elektron im Wasserstoffatom:

$$\mathbf{H} = \frac{1}{2m} \,\vec{\mathbf{P}}^2 + \frac{e^2}{|\vec{\mathbf{Q}}|} \tag{1.39} \quad \texttt{HHop}$$

Wie bereits erwähnt, hat bei einem Mehrteilchenproblem jedes Teilchen "seinen eigenen
Hilbertraum" und der Hilbertraum für das Gesamte System ist das direkte Produkt der
Hilberträume.

Verallgemeinerung der mathematischen Beschreibung des Messpro-1.2.2.0.1392 Für viele realisierbaren Messungen ist das Messaxion in der Form 4 nicht erfüllt. zesses 393 Bei Messungen von Photonen überlebt das Photon den Messprozess i.A. nicht. Im Pho-394 tomultiplier werden sie z. B. dadurch nachgewiesen, dass sie absorbiert werden. Erst durch 395 die Präzisionsmessungen von Laroche (Nobelpreis 2012) konnten Photonen "zerstörungsfrei" 396 nachgewiesen werden. Der Messprozess spielt auch im QC eine wichtige Rolle, deswegen wer-397 den hier zwei weitere, etwas weitergefasste Versionen des Messaxioms 4 zitiert (s. NC, p.84ff), 398 die insbesondere auch Nachweise durch Absorption beschreiben. 399

Jedem Messwert m ist ein Messoperator \mathbf{M}_m zugeordnet. Messungen in der QM werden duch eine Ansammlung von

400 4'

Mess – Operatoren {
$$\mathbf{M}_m$$
} mit $\sum \mathbf{M}_m^{\dagger} \mathbf{M}_m = \mathbf{I}$ (1.40)

beschrieben.

⁴⁰¹ Der Messwert für einen Zustand $|\phi\rangle$ nimmt mit einen durch *m* indizierten Wert mit der ⁴⁰² Wahrscheinlichkeit

$$p(m) = \langle \phi | \mathbf{M}_m^{\dagger} \mathbf{M}_m | \phi \rangle$$
 an (1.41)

⁴⁰³ Der Zustand ist nach der Messung

$$\frac{\mathbf{M}_m |\phi\rangle}{\sqrt{\langle \phi | \mathbf{M}_m^{\dagger} \mathbf{M}_m | \phi \rangle}} \tag{1.42}$$

⁴⁰⁴ Die alternative Fassung des Mess-Axioms, 4' lässt es z.B. zu, dass der Zustand mach der ⁴⁰⁵ Messung ganz verschwunden ist, z. B. ein Photon im Photomultiplier. Die projektive Messung ⁴⁰⁶ in (3) ist demnach ein Spezialfall: Die Messoperatoren für die Observable des sa. Operators ⁴⁰⁷ **E** sind seine Eigenwerte von Eigenwert E_m :

$$\mathbf{E}|\Psi_m\rangle = e_k|\Psi_m\rangle \tag{1.43}$$

408 Wegen der Vollstänigkeit der Eigenwerte gilt:

$$\sum \mathbf{P}_m = 1 \quad \text{mit } \mathbf{P}_m = |\Psi_m\rangle \langle \Psi_m| \tag{1.44}$$

 $_{409}$ Damit sind die Messoperatoren \mathbf{M}_m gleich den Projektionsoperatoren auf die Eigenzustände.

Für die quantitative probabilistische Interpretation der Messung selbst ist nur das Produkt $\mathbf{M}_{m}^{\dagger} \mathbf{M}_{m}$ nötig, der Einzeloperator **M** nur zur Bestimmung des Endzustandes. Verzichtet man auf diese Information, so reicht das Produkt $\mathbf{M}_{m}^{\dagger} \mathbf{M}_{m}$ aus. Dies führtt zu einer weiteren Fassung, dem POVM- Mess-Axiom:

4" POVM (Positive, operatorvalued measure) Seien \mathbf{V}_m positive Operatoren mit $\sum_m \mathbf{V}_m = 1$, dies sind die "operatorwertigen Masse". Der Messwert für einen Zustand $|\phi\rangle$ nimmt einen durch *m* indizierten Wert mit der Wahrscheinlichkeit

$$p(m) = \langle \phi || \mathbf{V}_m \phi \rangle$$
 an (1.45)

⁴¹⁵ Wir können uns die Ansammlung der Projektionsoperatoren $\mathbf{P}_k = |\Psi_k\rangle\langle\psi_k|$ aus Axiom 4,

die der Messoperatoren M_m aus Axiom 4' oder die der Operatorwertigen Masse V_m von 4" als ein Spektrometer vorstellen das den zu messenden Zustand nach gewissen vorgegebenen Worten cortiert

⁴¹⁸ Werten sortiert.

414

⁴¹⁹ Diese Verallgemeinerung gilt auch, wie oben erwähnt, noch für solche Messprozesse, bei
⁴²⁰ denen der gemessene Zustand nach der Messung überhaupt nicht mehr vorhanden ist, wie
⁴²¹ dies z. B. beim Nachweis eines Photons i. A. der Fall ist.

422 Allerdings reicht, streng genommen zur Behandlung von Emission und Absorption die übliche

423 Quantenmechanik nicht aus, man muss daher diese zur Quantenfeldtheorie erweitern. Wie die

424 Quantenmechanik, insbesondere die Vertauschungsrelationen, auf der "höheren" Mechanik

aas 1.2.3 Anmerkungen zu den Axiomen der QP

⁴²⁶ Die Grundlage für das Verständnis der Quantenmechanik geht auf die statistische Inter⁴²⁷ pretaion durch Max Born ⁸ zurück, sie wird im allgemeinen die "Kopenhagener Deutung"
⁴²⁸ genannt. Bedeutend war Heisenbergs DIE PHYSIKALISCHEN PRINZIPIEN DER QUANTEN⁴²⁹ MECHANIK ⁹. Die mathematisch-axiomatische Fassung geht auf den Mathematiker John von
⁴³⁰ Neumann ¹⁰ zurück. Die kurzen Bemerkungen hier sollen die rein axiomatische Formulierung
⁴³¹ aus vorigem Absatz etwas erweitern und vertiefen.

432 1.2.3.1 Spektralsatz und Unschärfe

In der Anwendung der QM auf die Atomphysik betrachtet man meist nur isolierte Systeme
und daher reine Zustände und interessiert sich für Observable und die zeitliche Entwicklung.
Insbesondere das Spektrum der Eigenwerte und die zeitliche Entwicklung wird betrachtet.

⁴³⁶ In der Festkörperphysik ist oft die Wechselwirkung mit einem anderen System entscheidend,

437 (z.B. einem Wärmebad) und man betrachtet den statistischen Operator, der z.B. für ein

438 System im Wärmebad die Form hat: $\rho = \frac{1}{Z} e^{-\mathbf{H}/(\mathbf{kT})}, \ Z = \operatorname{Sp}\left(e^{-\mathbf{H}/(\mathbf{kT})}\right)$

⁸Max Born: Zur Quantenmechanik der Stoßvorgänge. In: ZeitscHilbertraumift für Physik. Band 37, Nr. 12, 1926, S. 863–867, doi:10.1007/BF01397477

⁹Leipzig, Hirzel 1930

¹⁰Johann v. Neumann, MATHEMATISCHE GRUNDLAGEN DER QUANTENMECHANIK, Springer 1932

Aus dem Mess-Axiom (3) folgt direkt: Der Erwartungswert von **E** ist für einen Zustand $|\phi\rangle$ gegeben durch

$$\langle \mathbf{E} \rangle = \langle \phi | \mathbf{E} | \phi \rangle. \tag{1.46}$$

⁴⁴¹ Zwei Messgrössen können nur gleichzeitig scharf gemessen werden, wenn die Operatoren der ⁴⁴² Observablen kommutieren. Eine direkte Konsequenz der grundlegenden Vertauschungsrela-⁴⁴³ tion von Impulsoperator \mathbf{P} und Ortsoperator \mathbf{Q}

$$[\mathbf{P}, \mathbf{Q}] = i\hbar \tag{1.47}$$

ist, dass Ort und Impuls prinzipiell nicht gleichzeitig scharf gemessen werden können (Hei-senbergsche Unschärferelation).

⁴⁴⁶ Die meisten in der Physik auftretenden Operatoren sind nicht beschränkt und haben i.a.

⁴⁴⁷ auch einen kontinuierlichen Bereich von Eigenwerten, das kontunuierliche Spektrum. Beim ⁴⁴⁸ H-Atom sind die gebundenen Austände (E < 0 diskret), aber für ein ungebundenes Elektron-

⁴⁴⁹ Proton-system $(E \ge 0)$ ist jeder Energiezustand möglich und messbar.

450

Glücklicherweise spielt das für die Theorie des QC keine Rolle, da hier die Oertoren endlich
dimensionale Matrizen sind.

453 1.2.3.2 Zeitliche Entwicklung

⁴⁵⁴ Die Zeitliche Etwicklung eines Systems wird nach 4' durch einen Unitären Operator $\mathbf{U}(t, t') = e^{i(t'-t)\mathbf{H}/\hbar}$ beschrieben. Die Unitarität des Operators garantiert die Erhaltung der Wahr-⁴⁵⁶ scheinlichkeit und impliziert dass **H** ein selbstadjungierter Operator ist:

$$\mathbf{U}^{*}(t,t)' \cdot \mathbf{U}(t,t) = e^{-i(t'-t)\mathbf{H}^{*}/\hbar} e^{+i(t'-t)\mathbf{H}/\hbar} = e^{-i(t'-t)(\mathbf{H}^{*}-\mathbf{H})/\hbar} = \mathbf{1}$$
(1.48)

457 woraus folgt: $\mathbf{H}^* - \mathbf{H} = 0$.

⁴⁵⁸ Wir beobachten also als die zeitabhängigkeit der Erwartungswerte von A:

$$\langle \phi | e^{-i(t'-t)\mathbf{H}/\hbar} | \mathbf{A} | e^{+i(t'-t)\mathbf{H}/\hbar} | \phi \rangle$$
 (1.49) ze

 Wir können nun die beobachtbare Zeitabhängigkeit des Erwartungswertes (^{Ze} inerm Zeitabhängigen Operator zuschreiben (Heisenbergbild)

$$\mathbf{A}_t = e^{-it\,\mathbf{H}/\hbar}\,\mathbf{A}\,e^{+it\mathbf{H}/\hbar} \tag{1.50} \end{tabular}$$

⁴⁶¹ oder auch einem zeitabhängigen Zustand zuschreiben (Schrödingerbild)

$$|\phi\rangle_t = e^{+it\,\mathbf{H}/\hbar}|\phi\rangle \tag{1.51}$$
 sch

zuschreiben. Diese Transformation vom Schrödinger zum Heisenbergbild und umgekehrt war
wichtig zur Zeit der Entdeckung der QM, scheint abre heute recht offensichtlich.

464 Aus $(\stackrel{\text{sch}}{1.51})$ folgt unmittelbar die Schrödinger Gleichung:

$$-i\hbar\partial_t |\phi\rangle_t = \mathbf{H}e^{+it\,\mathbf{H}/\hbar} |\phi\rangle = \mathbf{H} |\phi\rangle_t \tag{1.52}$$
 sch-a

465 Sowie

$$-i\hbar\partial_t \mathbf{A}_t = -i\hbar\partial_t \left(e^{-it \mathbf{H}/\hbar} \mathbf{A} e^{+it\mathbf{H}/\hbar} \right) = -\mathbf{H} \mathbf{A}_t + \mathbf{A}_t \mathbf{H} = -[\mathbf{H}, \mathbf{A}]$$
(1.53) [heis-a]

⁴⁶⁶ 1.2.3.3 Zusammengestzte Systeme und der statistische Operator

Ein isoliertes System in der Quantenmechanik ist eine Idealisierung, in der Realität wird ein System stets mit der Umwelt stets in Kontakt sein. Dies gilt besonders für makroskopische Systeme, wie z.B. eine Katze. Hier liegen die einzelnen Zustände des Systems so nahe beisammen, dass schon die kleinste Wirkun von aussen das System beeinflusst (z.B. Gravitationswellen).

Ar2 Axiom 3 hilft uns aber, auch für nicht isolierte Systeme einige relevente Aussagen über die Darstellung von Zuständen zu machen. Dazu betrachten wir 2 Systeme, A und B die zusammengefasst isoliert sein sollen, d.h. Zustände in $\mathcal{H}_{AB} = \mathcal{H}_A \otimes \mathcal{H}_B$ können als reine Zustände betrachtet werden. Im folgenden sei

 $|n_A\rangle \cdots$ ein vollständiges orthonormalsystem in \mathcal{H}_A und $|\nu_B\rangle \cdots$ ein vollständiges orthonormalsystem in \mathcal{H}_B

⁴⁷⁸ Jeder (reine) Zustand $|ps\rangle \in \mathcal{H}_{AB}$ lässt sich darstellen als

$$|\psi\rangle = \sum_{n,\nu} a_{n\mu} |n\rangle_A \otimes |\mu\rangle_B \quad \text{mit } \sum_{n,\nu} ||a_{n\mu}||^2 = 1$$
(1.54) [rz]

⁴⁷⁹ Wir wollen nun im System A die Observable \mathbf{M}_A messen, aber das System B nicht beachten.

Dann beobachten wir effektiv die Observable $\mathbf{M}_A \otimes \mathbf{I}$ Der Erwartungswert dieser Observablen ist

$$\langle \mathbf{M}_A \rangle = \langle \psi | \mathbf{M}_A \otimes \mathbf{I} | \psi \rangle$$
 (1.55)

$$= \left(\sum_{n,\nu} a_{n\nu}^* {}_A \langle n | \otimes {}_B \langle \nu | \right) \mathbf{M}_A \otimes \mathbf{I}_B \left(\sum_{m,\mu} a_{m\mu} | m \rangle_A \otimes | \mu \rangle_B \right)$$
(1.56)

$$= \sum_{m,n,\mu,\nu} a_{n\nu}^* a_{m\mu} \langle n | \mathbf{M}_A | m \rangle_A \, \delta_{\nu\mu} \tag{1.57}$$

$$= \sum_{m,n,\mu} a_{n\mu}^* a_{m\mu} \underbrace{\langle m|m \rangle_A}_{1} \langle n|\mathbf{M}_A|m \rangle_A \tag{1.58}$$

$$= \sum_{m,n} {}_{A}\langle m| \sum_{\mu} a^{*}_{n\mu} a_{m\mu} | m \rangle_{A A} \langle n| \mathbf{M}_{A} | m \rangle_{A}$$
(1.59)

$$= \operatorname{Tr}_{A}(\boldsymbol{\rho}_{A} \cdot \mathbf{M}_{A})$$
(1.60)

$$\boldsymbol{\rho}_{A} = \sum_{mn\mu} a_{m\mu} a_{n\mu}^{*} |m\rangle \langle n|_{A}$$
(1.61) [rho]

Aus der Definition von ρ_A ((??) oder (??) und aus ($\frac{rz}{1.54}$) folgen die wichtigen Eigenschaften: 482

- (A) 483
- $\begin{aligned} \boldsymbol{\rho}_{A}^{\dagger} &= \boldsymbol{\rho}_{A} \\ \forall \phi \in \mathcal{H}_{A} : \quad \langle \phi || \boldsymbol{\rho}_{a} \phi \rangle \geq 0 \\ \text{Tr} \quad \boldsymbol{\rho}_{A} = 1 \end{aligned}$ **(B)** 484
- (C) 485

Damit haben wir auch gesehen, dass die Beschreibung eines Zustandes durch den statistischen 486 Operator auch gültig ist, wenn ein System mit einem anderen (äusseren) in Verbindung steht, 487 dessen ähere Eigenschaften uns aber nicht interessieren (z.B. Wärmebad). 488

Ein Zustand wird durch einen Operator ρ_A mit den obigen Eigenschaften (A - C) beschrieben. Der Erwartungswert für eine Observable \mathbf{M} ist gegeben durch 1' 489 $\langle \mathbf{M} \rangle_A = \mathrm{Tr} \boldsymbol{\rho}_A \cdot \mathbf{M}$ (1.62)

Ist der Hamiltonoperator für die Zustände im gemeinsamen Hilbertraum $\mathcal{H}_A \otimes \mathcal{H}_B$ gegeben 490 durch $\mathbf{H}_A \otimes \mathbf{H}_B$ so ist die zeitliche Entwicklung von $\boldsymbol{\rho}$ gegeben durch, 491

$$\boldsymbol{\rho}_A(t) = e^{-i\mathbf{H}_A t} \boldsymbol{\rho}_A e^{i\mathbf{H}_A t}$$
(1.63)

Daraus folgt das Analog zur Schrödingergleichung, s. $\frac{\text{heis-a}}{1.53}$: 492

$$i\hbar\partial_t \boldsymbol{\rho}_A(t) = [\mathbf{H}_A, \boldsymbol{\rho}_A(t)]$$
 (1.64)

Die Beschreibung durch reine Zustände ist auch darin enthalten, nämlich dann wenn der 493 statistische Operator ρ ein Projektionsoperator P_n auf einen Vektor n im Hilbertraum ist: 494

$$\rho = P_n \equiv |n\rangle\langle n|$$
 (1.65) rein

Der Erwartungswert eines s.a. Operators M. 495

$$Tr(\boldsymbol{\rho}_{n} \mathbf{M}) = \sum_{i} \langle m_{i} | n \rangle \langle n | \mathbf{M} | m_{i} \rangle$$
(1.66)

Wir wählen das orthonormalsystem so, dass ein Vektor $|m_i\rangle = |n\rangle$ ist damit erhalten wir

$$Tr(\boldsymbol{\rho}_{n} \mathbf{M}) = \sum_{i} \langle m_{i} | n \rangle \langle n | \mathbf{M} | m_{i} \rangle = \langle n | \mathbf{M} | n \rangle$$
(1.67)

d.h. der Erwartungswert für einen reinen Zustand. 497

Diagonale Dichtematrix: Da der statistische Operator ρ_A selbsadjungiert ist, lässt er 498 sich seine Matrix stets diagonalisieren, mit den Eigenwerten p_n . Sei $|n\rangle$ das vonS in dem ρ 499 diagonal ist, dann gilt: 500

$$\boldsymbol{\rho}_A = \sum_n p_n \left| n \right\rangle \langle n | \tag{1.68}$$

d.h. der durch ρ_A beschriebene Zustand ist ein **Ensemble** von reinen Zuständen, die sich mit der Wahrscheinlichkeit p_n im Zustand $|n\rangle$ befinden.

Beim AC spielt der Hilbertraum, der das direkte Produkt von N 2-dimensionalen Hilberträumen (Qubits) ist, eine besondere Rolle. In ihm ist das direkte Produkt der Basisvektoren
eine viel verwendete Basis (Computatorische Basis):

$$|i_N\rangle \otimes |i_{N-1}\rangle \otimes \cdots |i_1\rangle; \quad i_k = 0,1$$
 (1.69)

schmidto

1.2.4 Die Schmidt Darstellung

- ⁵⁰⁷ Für die Informatik ist es bequem Numerierungen mit 0 und nicht mit 1 zu beginnen.
- ⁵⁰⁸ Die Schmidt Darstellung gibt ein Mass für die Verschränkung eines Zustandes.
- Seien \mathcal{H}_A und \mathcal{H}_B zwei Hilberträume. Ein Zustand $|\psi\rangle_{AB} \in \mathcal{H}_A \otimes \mathcal{H}_B$ kann durch die voS $|-n\rangle_A \in \mathcal{H}_A$ und $|\mu\rangle_B \in \mathcal{H}_B$ dargestellt werden als:

$$|\psi\rangle_{AB} = \sum_{n=0}^{N} \sum_{\mu=0}^{M} a_{n\mu} |\bar{n}\rangle_A \otimes |\mu\rangle_B = \sum_{\mu=0}^{M} a_{n\mu} |\mu\rangle_B$$
(1.70) [rz2]

Allgemein gilt für die Partialspur in \mathcal{H}_B des Projektionsoperators $|\psi\rangle_{ABBA}\langle\psi|$:

$$\sum_{\nu} {}_{B} \langle \nu | \psi \rangle_{ABBA} \langle \psi | \nu \rangle_{B} \equiv \boldsymbol{\rho}_{A} = \sum_{mn\mu,\mu',\nu} a_{r\mu} a_{s\mu}^{*} | \bar{r} \rangle_{AA} \langle \bar{s} | \delta_{\mu,\nu} \delta \mu' \nu = \sum_{mn} A_{rs} | \bar{r} \rangle_{AA} \langle \bar{s} |; \quad (1.71) \quad \text{[rz3]}$$

512 mit $A_{sr} = \sum_{\nu} a_{s\nu}^* a_{r\nu}$

⁵¹³ Die Matrix gilt: $\mathbf{A} = A_{mn}$ ist selbstadjungiert, d.h. es gibt eine unitäre Transformation U ⁵¹⁴ in \mathcal{H}_A die \mathbf{A} diagonalisiert:

$$\mathbf{U}\mathbf{A}\mathbf{U}^{\dagger} = \begin{pmatrix} p_1 & 0 & 0 & \dots \\ 0 & p_2 & 0 & \dots \\ \vdots & \vdots & & \end{pmatrix}; \quad p_k \ge 0; \tag{1.72} \quad \boxed{\text{diag}}$$

515

$$\mathbf{U}\,\mathbf{U}^{\dagger} = \mathbf{U}^{\dagger}\,\mathbf{U} = \mathbf{I}; \quad \sum_{m} U_{mr}^{*}\,U_{ms} = \delta_{rs} \tag{1.73}$$

⁵¹⁶ Die Zahl der von Null verschiedenen Eigenwerte der Matrix **A** heisst Schmidt-Zahl, N_{Sch} ; sie ⁵¹⁷ spieltfür die Berechnung der Verschränkung, wie wir noch sehen werden, eine entscheidende ⁵¹⁸ Rolle.

⁵¹⁹ Wir führen nun die neue Basis $|m\rangle_A$ ein, bezüglich derer **A** diagonal ist die wir noch so ⁵²⁰ angeordnet haben, dass für alle $m > N_{Sch}$ die Diagonalelemente $p_m = 0$.

$$|m\rangle_A = \sum_r U_{mr} |\bar{r}\rangle \tag{1.74} \quad \texttt{rtom}$$

⁵²¹ Zum Übergang in diese Basis schieben in (??) die $I = U \dagger U$ ein und erhalten:

$$\boldsymbol{\rho}_A = \sum_{mn} A_{rs} |\bar{r}\rangle_{AA} \langle \bar{s} | \tag{1.75}$$

$$= \sum_{r',s',m,n} A_{sr} U_{mr}^* U_{mr'} U_{ns} U_{ns'}^* |\bar{r}'\rangle_{AA} \langle \bar{s}'|$$
(1.76)

$$= \sum_{N} m, n, s, r U_{mr}^* U_{ns} A_{sr} |m\rangle_{AA} \langle n|$$
(1.77)

$$= \sum_{m=0}^{N_{Sch}} p_m |m\rangle_{AA} \langle m| \qquad (1.78)$$

wobei wir beim letzten Schritt ($\overset{\text{diag}}{1.72}$) benutzt und alle verschwindenden Terme ($p_k = 0$) weggelassen haben.

 $_{524}$ Wir nutzen die Umkehrung von (???), nämlich

$$|\bar{r}\rangle = \sum_{m=0}^{N_{Sch}} U_{mr}^* |m\rangle_A \tag{1.79}$$

aus und erhalten für den Ausgangszustand $|\psi\rangle_{AB}$ in der neuen (i. A. nicht vollständigen) Basis $|m\rangle_A$

$$|\psi\rangle_{AB} = \sum_{r,\mu} a_{r\mu} |\bar{r}\rangle_A \otimes |\mu\rangle_B$$
 (1.80)

$$= \sum_{\mu,r,m} a_{r\mu} U_{mr}^* |m\rangle_A \otimes |\mu\rangle_B \tag{1.81}$$

$$= |m\rangle_A \otimes |\hat{m}\rangle_B \tag{1.82}$$

⁵²⁷ wobei $|\hat{m}\rangle_B = \sum_{\mu,r} a_{r\mu} U^*_{mr} |\mu\rangle_B$. Es gilt:

$$\langle \hat{n} | \hat{m} \rangle_B = \sum_{r,\mu,r',\mu'} a_{r\mu} U^*_{mr} \, a^*_{r'\mu'} U_{nr'} \delta_{\mu'\mu} = p_m \delta_{nm} \tag{1.83}$$

⁵²⁸ wobei wieder $\begin{pmatrix} \text{diag} \\ 1.72 \end{pmatrix}$ benutzt wurde.

529 Wir normalisiern $|\hat{m}\rangle_B$:

$$|\tilde{m}\rangle_B = \frac{1}{\sqrt{p_m}} |\hat{m}\rangle_B = \frac{1}{\sqrt{p_m}} \sum_{\mu,r} a_{r\mu} U^*_{mr} |\mu\rangle_B$$
(1.84)

und erhalten damit die endgültige Form der Schmidt Darstellung für einen Zustand $|\psi\rangle_{AB} \in \mathcal{H}_A \otimes \mathcal{H}_B$:

$$|\psi\rangle_{AB} = \sum_{m=0}^{N_{Sch}} \sqrt{p_m} \,|m\rangle_A \otimes |\tilde{m}\rangle_B \tag{1.85}$$
 sche

Ein Zustand ist verschränkt, wenn die Schmidt-Zahl N_{Sch} grösser als 1 ist, d.h. wenn die Matrix **A**, $A_{sr} = \sum_{\nu} a_{s\nu}^* a_{r\nu}$, s. (I.71), mindestens 2 Eigenwerte ungleich Null hat. ⁵³⁴ Die Zustände $|m\rangle_A$, die in der Schmidt-Darstellung auftreten, sind so gewählt, dass sie au ⁵³⁵ einer diagonalen Dichtematix in \mathcal{H}_A führen:

$$\boldsymbol{\rho}_{A} = \sum_{m=0}^{N_{Sch}} p_{n} |m\rangle_{A | A} \langle m| \quad \text{with } p_{n} > 0$$
(1.86)

⁵³⁶ Wichtige Konsequenz:

Ist ein Zustand verschränkt, dann wird er durch eine Messung in einem der beiden Hilberträume irreversibel verändert.

⁵³⁹ Bew. Sei $|\psi\rangle_{AB} = \sum_{m=0}^{N_{Sch}} \sqrt{p} |m\rangle_A \otimes |\tilde{m}\rangle_B$ mit $N_{Sch} \geq 1$. Eine Messung in \mathcal{H}_A ist eine ⁵⁴⁰ Projektion auf einen Vektor $|q\rangle_A$ aus \mathcal{H}_A :

$$|\psi\rangle_{AB} \to |q\rangle_{AA} |\langle q| \otimes \mathbf{I}_B |\psi\rangle_{AB} = |q\rangle_A \otimes |\tilde{r}\rangle$$
(1.87)

mit dem Zustand $|\tilde{r}\rangle = \sum_{m=0}^{N_{Sch}} \sqrt{p_m} \langle q | m \rangle_A | \tilde{m} \rangle_B \in \mathcal{H}_B$. D.h. der usrprünglich verschrämkte Zustand wurde zu einem anderen, nicht verschränkten, irreversibel geändert.

⁵⁴³ 1.2.4.1 Beispiele

544 Spin 0 aus 2 Spin $\frac{1}{2}$ Zuständen : Zur Eingewöhnung benutzen wir auch immer die CB:

$$|0\rangle \equiv \begin{pmatrix} 1\\0 \end{pmatrix} = |+\frac{1}{2}\rangle; \quad |1\rangle \equiv \begin{pmatrix} 0\\1 \end{pmatrix} = |-\frac{1}{2}\rangle$$
(1.88)

545

$$|m n r, \cdots \rangle \equiv |m\rangle_1 \otimes |n\rangle_2 \otimes |r\rangle \otimes \cdots \quad m, n, r \in 0, 1$$
 (1.89)

$$|J=0\rangle = \frac{1}{\sqrt{2}} \left(|+\frac{1}{2}\rangle_A \otimes |-\frac{1}{2}\rangle_B - |-\frac{1}{2}\rangle_A \otimes |+\frac{1}{2}\rangle_B \right) = \frac{1}{\sqrt{2}} \left(|01\rangle - |10\rangle \right)$$
(1.90)

⁵⁴⁶ Die Matrix **A**, s. $(\stackrel{\textbf{rz3}}{1.71})$ ist für diesen Fall: $\mathbf{A} = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{pmatrix}$, d.h. hat 2 Eigenwerte, damit ist ⁵⁴⁷ der Zustand verschränkt.

⁵⁴⁸ Betrachten wir dagegen den Spin 1 Zustand mit z-Komponente +1 Spin:

$$|J = 1, J_3 = 1\rangle = |+\frac{1}{2}\rangle_A \otimes |+\frac{1}{2}\rangle_B = |00\rangle$$
 (1.91)

so hat die Darstellung von vornherein nur einen Summanden $(N_{Sch} = 0)$, er ist also nicht verschränkt.

⁵⁵¹ Ist man am Verhalten zweier Spins in Rahmen der Drehimpulsphysik interessiert ist es sinnvol

⁵⁵² die Drehimpuls Basis zu wählen:

$$|J = 0, J_z = 0\rangle = \frac{1}{\sqrt{2}} \left(|+\frac{1}{2}\rangle_A \otimes |-\frac{1}{2}\rangle_B - |-\frac{1}{2}\rangle_A \otimes |+\frac{1}{2}\rangle_B \right) = \frac{1}{\sqrt{2}} \left(|01\rangle - |10\rangle \right)$$

$$|J = 1, J_z = +1\rangle = |+\frac{1}{2}\rangle_A \otimes |+\frac{1}{2}\rangle_B = \frac{1}{\sqrt{2}} \left(|00\rangle \right)$$

$$|J = 1, J_z = 0\rangle = \frac{1}{\sqrt{2}} \left(|+\frac{1}{2}\rangle_A \otimes |-\frac{1}{2}\rangle_B + |-\frac{1}{2}\rangle_A \otimes |+\frac{1}{2}\rangle_B \right) = \frac{1}{\sqrt{2}} \left(|01\rangle + |10\rangle \right)$$

$$|J = 1, J_z = -1\rangle = |-\frac{1}{2}\rangle_A \otimes |-\frac{1}{2}\rangle_B = \frac{1}{\sqrt{2}} \left(|11\rangle \right)$$

⁵⁵³ FUr die Informatik ist oft die sog. Bell-Basis, die aus 4 verschränkten Zustaänden besteht, ⁵⁵⁴ angemessener.

$$\frac{1}{\sqrt{2}}\left(|+\frac{1}{2}\rangle_A \otimes |-\frac{1}{2}\rangle_B - |-\frac{1}{2}\rangle_A \otimes |+\frac{1}{2}\rangle_B\right) = \frac{1}{\sqrt{2}}\left(|01\rangle - |10\rangle\right) \tag{1.92}$$

$$\frac{1}{\sqrt{2}}\left(|+\frac{1}{2}\rangle_A \otimes |-\frac{1}{2}\rangle_B + |-\frac{1}{2}\rangle_A \otimes |+\frac{1}{2}\rangle_B\right) = \frac{1}{\sqrt{2}}\left(|01\rangle + |10\rangle\right) \tag{1.93}$$

$$\frac{1}{\sqrt{2}}\left(|+\frac{1}{2}\rangle_A \otimes |+\frac{1}{2}\rangle_B - |-\frac{1}{2}\rangle_A \otimes |-\frac{1}{2}\rangle_B\right) = \frac{1}{\sqrt{2}}\left(|00\rangle - |11\rangle\right) \tag{1.94}$$

$$\frac{1}{\sqrt{2}}\left(|+\frac{1}{2}\rangle_A \otimes |+\frac{1}{2}\rangle_B + |-\frac{1}{2}\rangle_A \otimes |-\frac{1}{2}\rangle_B\right) = \frac{1}{\sqrt{2}}\left(|00\rangle + |11\rangle\right) \tag{1.95}$$

⁵⁵⁵ Man rechnet leicht nach, dass all diese Zustände zur Matrix $\mathbf{A} = \begin{pmatrix} \frac{1}{2} & 0\\ 0 & \frac{1}{2} \end{pmatrix}$ führen

- Beim Zustand $|\psi\rangle = \frac{1}{2}(|00\rangle + |01\rangle + |10\rangle + |11\rangle)$ sieht man sofort dass er als $|\psi\rangle = \frac{1}{2}(|0\rangle + |1\rangle) \otimes$ ($|0\rangle + |1\rangle$) dargestellt werden kann, also nicht verschränkt ist. Man kann auch die Matrix **A** (s. $\binom{|\mathbf{r}\mathbf{z}\mathbf{3}|}{|\mathbf{I}.71\rangle}$) brechnen: $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$. Die Eigenwerte sind die Lösungen von $(1-x)^2 - 1 = 0$, d.h. es gibt nur einen von 0 verschiedenen Eigenwert, also $N_{Sch} = 0$, $|\psi\rangle$ ist nicht verschränkt. Das Konzept lässt successive sich auch auf **mehr als zwei Hilberträume** ausdehnen. Ist $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_3 \otimes \mathcal{H}_3$ kann man zuerst $(\mathcal{H}_1 \otimes \mathcal{H}_2) \otimes \mathcal{H}_3$ analysieren
- Oft sind gerade die Terme mit vielen Summanden nicht verschränkt. Z.B. ist der Zustand $\frac{1}{\sqrt{8}} \left(|0\,0\,0\rangle + |0\,0\,1\rangle + |0\,1\,0\rangle + |0\,1\,1\rangle + |1\,0\,0\rangle + |1\,0\,1\rangle + |1\,1\,0\rangle + |1\,1\,1\rangle \right)$ nicht verschränkt.

Er hat zwar viele Summanden, aber man überzeugt sich, dass er als ein Term, nämlich als $|m\rangle \otimes |m\rangle \otimes |m\rangle \otimes |m\rangle$ geschrieben werden kann.

entropier 1.2.5 Entropie in der QP

Grob gesprochen ist die Entropie ausserhalb der reinen Thermodynamik ein quantitatives
 Mass für unsre Unkenntnis über die Mikrozutände einee Gesamtzustandes. Je ausgedehnter

⁵⁷⁰ ein System im Phasenraum ist, z.B. je grössr das Volumen einer bestimmten Gassmenge ist,
⁵⁷¹ desto grösser ist unsere Unkenntnis z. B über die Lage eines einzelnen Atoms. Das ist die
⁵⁷² Grundlage für die statistische Definition der Entropie durch Boltzmann:

$$S = k_B \log \Omega \tag{1.96}$$

573 wobei Ω das Volumen des erreichbaren Phasenraums ist.

Hierbei ist angenommen dass das System gleichverteilt über den Phasenraum ist. Die Wahrscheinlichkeit ein System in einem bestimmten Bereich aufzufinden ist also $w = 1/\Omega$. Eine eine erweiterte Formulierung bei allgemeiner Wahrscheinlichkeitsverteilung über den Phasenraum, $w(\Omega)$, ist ist das Integral der über diese AufenthaltsWahrscheinlichkeit:

$$S = -k_B \int w(\Omega) \log w(\Omega) \, d\Omega \tag{1.97}$$

⁵⁷⁸ Dies führtt zur Q-Entropie (v. Neumann):

$$S_Q = -\langle \boldsymbol{\rho} \rangle \equiv -\operatorname{Tr}[\boldsymbol{\rho} \log \boldsymbol{\rho}] = -\sum_n p_n \log p_n \tag{1.98}$$

⁵⁷⁹ die letzte Gleichung folgt aus der stets möglichen Wahl eines voS, in dem ρ diagonal ist.

Ein reiner Zustand hat in als statistischen Operator einen Projektionsoperator $(1.18) \mathbf{P}_{|\rangle}$, der in die folgende Matrixform gebracht werden kann:

$$\boldsymbol{\rho} = \mathbf{P}_{|1\rangle} = \begin{pmatrix} 1 & 0 & \cdots \\ 0 & 0 & \cdots \\ 0 & 0 & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}$$
(1.99)

582 d.h. diesem Falle ist $S_Q = \log 1 = 0$.

Ein maximal unbestimmter Zustand in einem d dimensionalen Raum ist ein statistischer Operator mit gleichem Gewicht für alle Zustände:

$$\boldsymbol{\rho} = \sum_{n=1}^{d} \frac{1}{d} \mathbf{P}_{|d\rangle} = \begin{pmatrix} \frac{1}{d} & 0 & \cdots \\ 0 & \frac{1}{d} & \cdots \\ 0 & 0 & \cdots \\ \cdots & \cdots & \cdots \end{pmatrix}$$
(1.100) maxent

585 d.h. $S_Q = \log d$

⁵⁸⁶ 1.2.6 Das Korrespondenzprinzip und die "höhere Mechanik"

Es wurde bereits erwähnt dass das Korrespndenzprinzip das vielleicht wichtigste Prinzip der QP ist. Es gibt einem die Vorschriften für die Konstruktion des Hamiltonoperators aus den bewährten Ausdrücken der klassischen Physik. Es erklärt auch, warum man in vielen Fällen denken konnte, dass die klassiche Physik das letzte Wort sei: Betrachtet man nur die ⁵⁹¹ Erwartungswerte, so erhält man aus der QP und dem Korrespondenzprinzip das Resultat, ⁵⁹² dass sich die Erwartungswerte so verhalten, wie man nach der klassischen Physik berechnet.

Hier soll noch ein Aspekt des Korrepondenzprinzips erwähnt werden, der vielleicht am wenigsten verstanden ist. Wie in (6) erwähnt, erfüllen Orts- und Impulsoperatoren die Vertauschungsrelationen:

$$[\mathbf{Q}_j, \mathbf{Q}_k] = 0; \quad [\mathbf{P}_J, \mathbf{P}_k] = 0; \quad [\mathbf{P}_j, \mathbf{Q}_k] = -i\hbar\,\delta_{kl} \tag{1.101}$$

Ort und Impuls sind in der klassischen Mechanik harmonisch konjugierte Variable die in den
 Hamilton-Jakobischen Gleichungen auftreten:

$$\partial_t q_i = \frac{\partial H}{\partial p_i} \quad \partial_t p_i = -\frac{\partial H}{\partial q_i} \tag{1.102}$$

⁵⁹⁸ .Eine besondere Rolle spielen die "kanonischen Transformationen", d.h. solche Transfor-⁵⁹⁹ mationen, bei denen die Bewegungsgleichungen die gleiche Form haben. Invarianten unter ⁶⁰⁰ kanonischen Trasformationen sind u.a. die **Poisson Klammern**

$$\{u, v\} \equiv \sum_{k} \left(\frac{\partial u}{\partial q_k} \frac{\partial v}{\partial p_k} - \frac{\partial u}{\partial p_k} \frac{\partial v}{\partial q_k} \right)$$
(1.103)

u, v sind beliebige Funktionen der kanonischen Variablen.

602 Setzt man $u = q_m$, $v = p_n$ so erhält man:

$$\{q_m, p_n\} = \sum_k (\delta_{mk} \,\delta_{nk}) = \delta_{mn} \tag{1.104}$$

603 und genauso: $\{q_m, q_n\} = \{p_m, p_n\} = 0$

 $_{604}\,$ Der senior research student P A M Dirac (geb. 1902) schlug vor, die Poisson-Klammern $_{605}\,$ durch Kommutatoren zu ersetzen $^{11}\,$

$$\{\cdots,\cdots\} \to \frac{-i}{\hbar}[\cdots,\cdots]$$
 (1.105) [HL]

⁶⁰⁶ Dass dies mehr ist als eine mathematische Spielerei ist, erkennt man, wenn man die Liouville ⁶⁰⁷ Gleichung für die zeitliche Entwicklung einer Dichteverteilung ρ in der klassischen statisti-⁶⁰⁸ schen Mechanik betrachtet. Sie lautet

$$\partial_t \rho = \{H, \rho\} \tag{1.106}$$

 $_{609}$ wobei H die Hamiltonfunktion der klassischen Mechanik ist.

¹¹(Proc. Royal Soc. A 109, 642 (1925)): In a recent paper Heisenberg puts forward a new theory, which suggests that it is not the equations of classical mechanics that are in any way at fault, but that the mathematical operations by which physical results are deduced from them require modification. All the information supplied by the classical theory can thus be made use of in the new theory... We make the fundamental assumption that difference between the Heisenberg products of two quantum quantities is equal to $i\hbar$ times their Poisson bracket expression.

⁶¹⁰ Machen wir die Ersetzung ($\overset{\text{HL}}{\text{II.105}}$) an dieser Liouville Gleichung, und ersetzen ρ durch den ⁶¹¹ QP statistischen Operator und die Hamiltonfunktion H durch den Hamiltonoperator **H** so ⁶¹² erhalten wir

$$\partial_t \rho = \frac{-i}{\hbar} [\mathbf{H}, \rho] \tag{1.107}$$

 $_{613}$ d.h. genau die von der QP geforderte zeitliche Entwicklung (1.53).

Noch wichtiger ist diese kanonische Quantisierung in der Feldtheorie. Sie erlaubt hier den ⁶¹⁴ Übergang von einer klassischen zu einer **Quanten-Feldtheorie**. Hier entspricht dem q das ⁶¹⁶ Feld und dem p der kanonische Feldimpulls nach Euler Lagrange.

In der Elektrodynamik entspricht das Potential A_{μ} der Variablen q und dem p der "kanonische adjungierte Feldimpuls" der klassischen Feldtheorie, $\Pi_j = \partial_j A_0 - \partial_0 A_j$ und so erhält man für die Quantelektrodynamik die Quantisierungsbedingung:

$$[\mathbf{A}_{\mu}(t,\vec{x}),\Pi_{j}(t,\vec{y})] = -\boldsymbol{i}\hbar\delta_{\mu j}\delta(\vec{x}-\vec{y})$$
(1.108)

⁶²⁰ 1.2.7 Erweiterungen der Axiome der QP

1.2.7.0.1 C^* Algebren Die Formulierung der Axiome der Quantenmechanik in der Sprache der C^* - Algebren ist keine neue Quantisierungsmethode, aber eine recht abstrakt mathematische Formulierung, die vesucht ohne nichtbeobachtbare Grössen auszukommen (Daher auch der Name Observablen-Algebra).

Dieser Zugang geht davon aus, dass die Beobachtungen sich auf zwei wesentliche Komponeneten reduzieren lassen:

1) Die Mehode mit der wir messen, die die **Observablen** bestimmt (z.B Energie, Spin,....) und

- ⁶²⁹ 2) der **Zustand**, für den wir ein Messergebnis, d.h. eine reele Zahl, erhalten.
- ⁶³⁰ Die Observablen, die in der üblichen Formulierung selbstadjungierte Operatoren im Hilber-
- traum sind, werden verallgemeinert zu Elementen einer Algebra mit gewissen Rechenregeln, den sogenannten C^* -Algebren.
- Ein **Zustand** Φ einer C^* -Algebra ist eine lineare Abbildung der Elemente der Observablenalgebra auf die positiven reelen Zahlen, $\Phi(\mathcal{A}) \to \mathbb{C}_+$ mit $\Phi(\mathbf{1}) = 1$.
- Ein Zustand heißt rein, wenn er sich nicht als Linearkombination zweiert verschiedener Zustände $\lambda \Phi_1 + (1 - \lambda) \Phi_0$ zerlegen lässt.
- $_{637}$ Die Formulierung der QM durch Dichteoperatoren kommt der durch C^* Algebren sehr na-
- he. Die Observablen sind selbstadjungierte Operatoren im Hilbertraum, ein Zustand ist die
 Spurbildung mit dem statistischen Operator. Rin reiner Zustand ist eine Projektion auf einen
- eindimensionalen Hilbertraum.

641 1.2.7.0.2 Rein probabilistische Interpretation der QM. Eine Rein probabilistische
642 Inerprotation der QM schlägt C. Wetterich vor. Dabei wird wesentlich Gebrauch von der
643 bedingten Wahrscheinlichkeit (Bayes'sche Statistik) gemacht. Lit:

644

www.thphys.uni-heidelberg.de/~wetterich/Vorlesungen/Foundations%20of%20quantum%20mechanics%202021/Foundations_of_Quantum_Mechanics.pdf} inspirehep.net/literature/1828609}

645

⁶⁴⁶ 1.2.8 Frühe Kritik an der QM

In fast allen ausfürlicheren Abhandlungen über QC wird das EPR Paradoxon und Schrödingers Katzte erwähnt, sie sind auch instruktiv über die Besonderheiten der QM. Deshalb seien
sie hier kurz vorgestellt.

650 **1.2.8.1** EPR

Beim Messprozess (Axiom 3) wurde und wird bemäkelt, dass für die Messung selbst nicht die durch Axiom 4 beschriebene zeitliche Entwicklung gilt. Auch die inhärent statistische Natur der Quantenmechanik wurde von vielen nicht "als der letzte Jakob" anerkannt. Der prominenteste Verter Berühmt ist Albert Einstein. Er schrieb 1926, kurz nach dem Erscheinen der wesentlichen Arbeit von Born, Heisenberg und Jordan, an seinen Freund Max Born, der ja die statistische Interpretation vorschlug:

⁶⁵⁷ Die Quantenmechanik ist sehr achtunggebietend. Aber eine innere Stimme sagt ⁶⁵⁸ mir, dass das doch nicht der wahre Jakob ist. Die Theorie liefert viel, aber dem ⁶⁵⁹ Geheimnis des Alten bringt sie uns kaum näher. Jedenfalls bich ich überzeugt, ⁶⁶⁰ dass der nicht würfelt. (Brief vom 4.12.1926)

⁶⁶¹ Was das QC angeht ist Born's spätere Antwort auf Einsteins Kritik an der QM prophetisch:

"If God has made the world a perfect mechanism, He has at least conceded so much to our
imperfect intellect that in order to predict little parts of it, we need not solve innumerable
differential equations, but can use dice with fair success." (Max Born Einstein's Statistical
Theoriesïn Albert Einstein : Philosopher-Scientist (1951) edited by Paul Arthur Schilpp, p.
176)

Etwa 10 Jahre nach seiem Brief am Born glaubte Einstein, einen Beweis für seine Vermutung 667 gefunden zu haben, dass die QM nicht vollständig sein kann. Er veröffentlichte ihn mit zwei 668 Mitarbeitern, er enhält das berühmte EPR Pradoxon, das auch in jeder Abhandlung über 669 QC erwähnt wird, Im Grunde ist es sehr einfachs. Abb. I.T. Nehmen wir einen ruhenden 670 radioaktiven Kern der in zwei Teile zerfällt: $K \to K' + T$. Wegen der Impulserhaltung gilt: 671 $\vec{p}_{K'} = -\vec{p}_T$. Messen wir also den Impuls von K', so kennen wir auch den von T. Also haben 672 sowohl K als auch T beide einen wohldefinierten (scharfen) Impulswert. EPR schlossen 673 nun: Wenn wir Ort und Impuls kennen können, dann muss er auch dem Teilchen ungeteilt 674 zukommen. Die populärste Theroie (Bohm) war die der verborgenen Parameter: Es gibt 675 neben Ort und Impuls noch weitere Parameter, zur Bestimmung eines Teilchens, die wir 676 aber nicht kennen, und die Unschärfe ist nur eine Konsequenz unsrer Unkenntnis über diese 677

 $\vec{p}_{K'} = -\vec{p}_T$

epr Abbildung 1.1: The EPR paradox, Einstein, A; B Podolsky; N Rosen ; Can Quantum-Mechanical Description of Physical Reality be Considered Complete?. Physical Review. 47 (10): 777–780.

⁶⁷³ "Verborgenen Parameter" (*hidden variables.*) Das Problem wurde später von Bohm auf ein
⁶⁷⁹ 2-Spin System übertragen und gab Anlass zu den berühmten Bell'schen Ungleichungen, auf
⁶⁸⁰ die wir später eingehen werden und deren Verletzung man als den endgültigen Triumph Max
⁶⁸¹ Born's betrachten kann.

Die zeitgenössischen Reaktionen auf Einsteins Kritik an der QM waren sehr geteilt. Die meisten der jüngeren Physiker nahmen sie nicht sonderlich ernst, Niels Bohr hingegen ging auf sie sehr detailliert ein. Hier ist ein von Bohr entworfenes Modell für den Nachweis, dass die Heisenberg'sche Unschärfe auch im Falle der Gravitation gilt (Schilp, aaO p. 227).

686

Zur Vermeidung von Abmahnungen ausgelassene Abbildung

687 1.2.8.2 Schrödingers Katze

Das Axiom über zusammengestetzte Systeme, Nr. 5, klingt zunächst harmlos und einleuch tend, hat aber, in Verbindung mit dem Superpositionsprinzip (Axiom 1) weitreichende Kon sequenzen.

Der Satz: "Ist $|\psi\rangle_A$ im System A und $|\phi\rangle_B$ im System B präpariert, dann wird der Zustand 691 im gemeinsamen System durch $|\psi\rangle_A \otimes |\phi\rangle_B$ beschrieben" ist in der Tat einleuchtend, aber 692 in Verbindung mit der Forderung dass auch . $|\psi_1\rangle_A \otimes |\phi_1\rangle_B + |\psi_2\rangle_A \otimes |\phi_2\rangle_B$ ein physikali-693 sches System beschreibt führtt er zu weitreichenden Konsequenzen. Dieses Phänomen wird 694 als Verschränkung (entanglement) bezeichnet und ist in der Mikrophysik sehr wichtig und 695 bestens bestätigt. In der Makrophysik allerdings führtt es zu "burlesken Fällen". Besonders 696 bekannt ist die "Schrödingersche Katze", die eine Superposition von einer lebendigen und 697 einer toten Katze ist. 698

Hier ist das Originalzitat von Schrödinger aus der Arbeit, in der die Bedeutung der Verschränkung erkannt wurde (Die Naturwissenschaften, 48, p. 807ff (1935) DIE GEGENWÄRTIGE SITUATION IN DER QUANTENMECHANIK.

699

......Man kann auch ganz burleske Fälle konstruieren. Eine Katze wird in eine 703 Stahlkammer gesperrt, zusammen mit folgender Höllenmaschine (die man gegen 704 den direkten Zugriff der Katze sichern muß): in einem Geigerschen ZählroHil-705 bertraum befindet sich eine winzige Menge radioaktiver Substanz, so wenig, daß 706 im Laufe einer Stunde vielleicht eines von den Atomen zerfällt, ebenso waHilber-707 traumscheinlich aber auch keines; geschieht es, so spricht das ZählroHilbertraum 708 an und betätigt über ein Relais ein Hämmerchen, das ein Kölbchen mit Blausäure 709 zertrümmert. Hat man dieses ganze System eine Stunde lang sich selbst überlas-710 sen, so wird man sich sagen, daß die Katze noch lebt, wenn inzwischen kein Atom 711 zerfallen ist. Der erste Atomzerfall würde sie vergiftet haben. Die Psi-Funktion 712 des ganzen Systems würde das so zum Ausdruck bringen, daß in iHilbertraum 713 die lebende und die tote Katze (s.v.v.) zu gleichen Teilen gemischt oder ver-714 schmiert sind. Das Typische an solchen Fällen ist, daß eine ursprünglich auf den 715 Atombereich beschränkte Unbestimmtheit sich in grobsinnliche Unbestimmtheit 716 umsetzt, die sich dann durch direkte Beobachtung entscheiden läßt. Das hindert 717 uns, in so naiver Weise ein "verwaschenes Modell" als Abbild der Wirklichkeit 718 gelten zu lassen. 719

Das Problem, dass makroskopische Überlagerungen (wie tote und lebendige Katze) absurd
erscheinen werden aber durch das Phänomen der Dekohärenz ¹² erklärt. Ein makkroskopischer Körper wird so stark von der Umgebung beeinflusst, dass dadurch die Verschränkung,
die auf festen Phasenbeziehungen basiert, extrem schnell (quasi-instantan) zerstört wird.

Aber auch die sehr gut bestätigten Verschränkungen in der Mikrophysik haben viele Physiker
 gestört, vor allem auch wieder Einstein, da sie auf eine seiner Meinung nach unmögliche

¹²H. Dieter Zeh, "On the Interpretation of Measurement in Quantum Theory", Foundations of Physics, vol. 1, pp. 69–76, (1970)

 $_{\rm 726}~$ instantane Fernwirkung hinausliefen $^{13}.$ Allerdings wurde das Hauptargument von Einstein,

Podolsky und Rosen durch Experimente wiederlegt, wir kommen darauf im Zusammenhang
 mit den Bell'schen Ungleichungen zurück.

QC, und vor allem seine Vorteile gegenüber dem klassischen Computer, beruhen gerade
ganz wesentlich auf den umstrittenen Prinzipien der QM, während die Dekohärenz, die den
Übergang zur klassischen Physik erklärt, die Möglichkeiten zur Konstruktion von Quantencomputern gewaltig einschränkt.

⁷³³ 1.2.9 Verborgene Variable (Hidden variables)

⁷³⁴ Einstein versuchte schon früh, sein Missbehagen an der QM konstruktiv zu untermauern,
⁷³⁵ auf einer Akademiesitzung machte er 1927 einen Vorschlag, dessen Veröffentlichung er aber
⁷³⁶ zurückzog.

⁷³⁷ Auf der Solvay-Konferenz 1927, wo die meisten dr massgeblichen Physiker anwesend waren,

machte de Broglie den Vorschlag, in einer Teilchentheorie ein Führungsfeld einzuführen, dass
wir nicht beobachten können, aber z.B. zu den Interferenzerscheinungen beim Doppelspalt

⁷⁴⁰ führ. Er fand wenig Anklang (J. Bell: "he was laughed out of court")

⁷⁴¹ David Bohm entwickelte diese Theorie genau in der Weise, dass sie alle Phänomene genau
⁷⁴² wie die QM beschreibt. Allerdings nur für nichtrelativistische QM, keinerlei Hinweis (und
⁷⁴³ Versuch?) die Quantenfeldtheorie (z.B. Teilchen Erzeugun und Vernichtung) zu erklären.

⁷⁴⁴ Da sie konstruiert wurde, um die QM genau zu rekonstuieren, keinerlei Bedeutung für QC.

⁷⁴⁵ Historischer Hinweis: Newton, der das Licht als Teilchenstrahl auffasste, musste zur Er⁷⁴⁶ klärung der Newton'schen Ringe "verborgene Variable" einführen (Opticks, Book 2, Part
⁷⁴⁷ III, 1704): Er schrieb den Teichenstrahlen gewisse Eigenschaften (fits) zu, die entscheiden,
⁷⁴⁸ ob der Strahl an einer Grenzfläche eindringt oder reflektiert wird.

⁷⁴⁹ 1.3 Alternative Quantisierungs-Methoden

Der Vollständigkeit halber, und da man ja nie weiss, wie sich ein Gebiet entwickelt, seien
hier zwei recht verschiedene andere Beziehungen zwischen klassischer und Quantenphysik
erwähnt.

753 1.3.1 Pfadintegral, stark vereinfacht

Bei der oben angegebenen axiomatischen Darstellung de QM ist der Grundbegriff der Zustand, und das macht diese Formulierung, besonders in der ursprünglichen Matrix-Formulierung
auch zu einem sehr guten Ausgangspunkt für das QC.

¹³A. Einstein, B. Podolsky, N. Rosen: Can quantum-mechanical description of physical reality be considered complete?, Phys. Rev. 47 (1935), S. 777–780 doi:10.1103/PhysRev.47.777

Es gibt aber auch noch einen weiteren Zugang zur QM, der besonders in Computersimulationen zur QFT eine grosse Rolle spielt, nämlich der durch Pfadintegrale. Er geht zurück auf eine Idee von Dirac, wurde aber von R. Feynman erstmals ausgeführt. Bei ihm steht nicht der Zustand, sondern der Prozess im Mittelpunkt. Für den gegenwärtigen Zugang zum QC scheint er wenig zu bringen, aber als alternativer Zugang zur QM ist er dennoch erwähneneswert, zumal er den Übergang von der QM zur klassischen Physik viel deutlicher zeigt.

Wenn ich den Ort und Impuls eines Teichens zu einer betsimmteh Zeit, t_0 kenne, so kann ich in der klassischen Physik seine Bahnkurve mithilfe der Bewegungsgleichungen eindeutig berechnen. Dies geht mit Hilfe bereits der Euler-Lagrange'schen Gleichungen.

⁷⁶⁷ Sei $\mathcal{L}(q, \dot{q})$ die Lagrangefunktion eines Systems (kinetische minus potentielle Energie); Hierbei ⁷⁶⁸ ist q der Ort und \dot{q} die Geschwindigkeit. Die klassische Bewegungskurve q(t) macht die ⁷⁶⁹ Wirkung $S = \int dt \mathcal{L}[q, \dot{q}] d.h. \frac{\delta S}{\delta q} = 0$ was zu den Bewegungsgleichunen führt.

$$\frac{\delta S}{\delta q} = 0 \quad \rightarrow \quad \partial_t \underbrace{\frac{\partial \mathcal{L}(q, \dot{q})}{\partial \dot{q}}}_{p} = \frac{\mathcal{L}(q, \dot{q})}{\partial q} \tag{1.109}$$

770 Der klassische Pfad ist also der, bei dem die Wirkung minimal (stationär) ist.

In der QM sind alle Pfade möglich und die Wahrscheinlichkeitsamplitude des Übergangs z.B. eines Massenpunktes der zur Zeit t_0 an der Stelle q(0) ist zu der Stelle q_1 ist das Integral über alle Pfade, wobei jeder Pfad die exponentialfunktion der Wirkung als Gewicht bekommt: $e^{iS/\hbar} = e^{\frac{i}{\hbar} \int dt \mathcal{L}[q(t),\dot{q}(t)]/\hbar}$ bekommt:

$$G(q_0, t_0, q_1, t_1) = \int_{\substack{q(t_0) = q_0; \\ q(t_1) = q_1}} [\mathcal{D}q(t)] e^{\frac{i}{\hbar} \int_{t_0}^{t_1} dt \, \mathcal{L}[q(t), \dot{q}(t)]}$$
(1.110)

⁷⁷⁵ Vom Blickwinkel der QM aus, betrachtet man in der klassischen Physik nur die **wahr**-⁷⁷⁶ scheinlichste aller möglichen Bahnkurven bei der die Wirkung minimal ist. Wenn immer ⁷⁷⁷ die Effekte der Abweichung viel grössr als $\hbar = 6.6260701510^{-34}$ J s sind, ist dies sehr gut ge-⁷⁷⁸ rechtfertigt. Die nichtklassischen Bahnen "oszillieren sich weg", da der imaginäre Exponent ⁷⁷⁹ sehr gross ist.

780

⁷⁸¹ Wie erwähnt ist dieser Zugang zur Quantenphysik in der Quantenfeldtheorie sehr wichtig. ⁷⁸² Allerdings sind die oscilierenden Integrale im Exponenten nicht nur numerisch, sondern auch ⁷⁸³ mathematisch schwer zu fassen und man behandelt die Ausdrücke in einer Euklidischen ⁷⁸⁴ Formulierung, bei der die Zeit *t* durch die "Euklidische Zeit" $i\tau$ ersetzt wird. Dann geht das ⁷⁸⁵ oscillierende Integral $e^{\frac{i}{\hbar}\int_{t_0}^{t_1} dt \mathcal{L}[q(t),\dot{q}(t)]}$ in das exponentiell gedämpfte $e^{\frac{-1}{\hbar}\int_{\tau_0}^{\tau_1} d\tau \mathcal{L}[q(\tau),\dot{q}(\tau)]}$ über, ⁷⁸⁶ das sowohl numerisch als auch analytisch sehr viel gutartiger ist.

Ein gebundener Zustand, der in der Minkowski-Welt osziliert wie $e^{\frac{i}{\hbar}t E_b}$, ist in der Euklidischen Welt mit $\tau = it$ exponentiell gedämpft, $e^{\frac{-1}{\hbar}\tau E_b}$ und kann so auch in der Euklidischen

⁷⁸⁸ schen Welt mit $\tau = it$ expor ⁷⁸⁹ Welt identifiziert werden.

Wir sind deshalb auf diese "stochastische Interpretation" der QM eingegangen weil das Rechnen mit klassischen Computern und einem Zufallsgenerator für gewisse Probleme effizienter sein kann (s. Vorl. XXX) und es durchaus Meinungen gibt dass manche Probleme, die nach heutiger Vorstellung nur auf einem QC efficient behandelt werden können, mit Hilfe stochastischer Methoden auch auf einem klassischen Computer sehr viel effizienter als mit streng deterministischen Methoden gelöst werden können. Vielleicht könnte da die Pfadintegral Methode ein Wegweiser sein.

⁷⁹⁷ 1.3.2 Holographische Quantisierung, AdS/CFT ; noch stärker ver ⁷⁹⁸ einfacht

⁷⁹⁹ Einer klassichen Gravitationstheorie in 5 Raum-Zeit Dimensionen entspricht einer Quan ⁸⁰⁰ tenfeldtheorie in 4 Raum-Zeit Dimensionen.

⁸⁰¹ Etwas spezifischer:

⁸⁰² Klassische 5-dimensionale Theorie:

⁸⁰³
$$ds^2 = \frac{1}{x_5^2} (-dx_1^2 - dx_2^2 - dx_3^2 + dx_4^2 + dx_5^2)$$
 (Anti-de-Sitter Metrik)

- \uparrow
- Quantisierte 4-dimensionale Theorie: $ds^2 = -dx_1^2 dx_2^2 dx_3^2 + dx_4^2$, übliche Minkowski Metrik, noch viele zusätzliche Symmetrien (super-conforme Theorie).

Kapitel 2

Qubits in der Quantenmechanik

810 2.1 Ein Qubit

2.1.1 Informationsgehalt eines Qubits

⁸¹² Der einfachste nicht-triviale Hilbertraum ist zwei-dimensional, er hat also 2 Baisivektoren, ⁸¹³ $\begin{pmatrix} 1\\0 \end{pmatrix}$ und $\begin{pmatrix} 0\\1 \end{pmatrix}$, seine Elemente heissen Qubits. In der Quanten-Informatik benutzt man ⁸¹⁴ meist die computatorische Basis (CB) mit den Vektoren

$$|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix} \text{ entspricht dem 0-bit in der klassischen Informatik} (2.1)$$
$$|1\rangle = \begin{pmatrix} 0\\1 \end{pmatrix} \text{ entspricht dem 1-bit in der klassischen Informatik} (2.2)$$

Ein Qubit $|\psi\rangle$ ist als Element eines 2-dimensionalen Raumes Summe von 2 Basisvektoren:

$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle \equiv \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \quad \text{mit } |\alpha|^2 + |\beta|^2 = 1$$
 (2.3)

^{\$16} Es kann in die Form gebracht werden:

$$|\psi\rangle = e^{i\gamma} \left(\cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle\right) \quad 0 \le \theta, \, \phi \le 2\pi \tag{2.4}$$
 bloch

Bei der Beobachtung eines Zustands spielt die gemeinsame Phase γ keine Rolle, da wir nur Erwartungswerte $\langle \psi || O \psi \rangle$ messen, zu denen γ nicht beiträgt. Damit ist ein Qubit durch die 2 Winkel θ und ϕ bestimmt, die als Polar und Azimutalwinkel eines Punktes auf einer Einheitskugel betrachtet werden können. Diese Kugel wird als *Bloch-Kugel* bezeichnet. s. Abb.

Man benutzt $\theta/2$ damit für beide Winkel der volle Bereich 0 bis 2π eindeutig ausgefüllt wird. Ohne den Faktor $\frac{1}{2}$ wäre θ, ϕ, γ

der gleiche Zustand wie $\theta + \pi, \phi, \gamma + \pi$, dies hat sogar einen tieferen mathematischen Grund

824

Was ist der Informationsgehalt eines Qubits? Zur vollständigen Bestimmung eines Qubits
dienen die Oberflächenpunkte der Bloch-Kugel, 2.4, also liegen die möglichen Parameter in
dem ganzen Kontinuum der Kugeloberfläche. Bei Messungen der Komponenten der CB, d.h.
mit dem Observablen Operatoren

$$\mathcal{P}_{|0\rangle} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \quad \text{bzw.} \quad cP_{|1\rangle} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$
(2.5)

ergibt sich allerdings immer nur das er entweder im Zustand $|0\rangle$ oder $|1\rangle$ ist, und zwar mit der Wahrscheinlichkeit $|\cos^2 \frac{\theta}{2}|^2$ bzw $|\sin^2 \frac{\theta}{2}|^2$, also im Grunde auch nicht mehr Information als bei einem klassischen bit mit Zufallesgenerator. Wir hatten ja auch als einfachste Anwendumg eines QC den Zufallgenerator kennengelernt (Vorl. 3)

Aber dennoch gibt es grosse Unterschiede: Die information über die Phase ϕ in $\begin{pmatrix} \text{bloch} \\ 2.4 \end{pmatrix}$ geht zwar bei der Einzelmessung verloren, aber für die zeitliche Entwicklung sind alle Parameter wesentlich. Zwei Zustände mit verschiedener Phase ϕ sind zwei verschiedene Hilbertraum zustände ynd können z.B. ganz verschiedene zeitliche Entwicklungen haben. Ein vielleicht noch wichtigerer Unterschied tritt bei Zustaänden mit 2 oder mehr Qubits auf, die in der Einleitung kurz besprochene Verschränkung. Darauf kommen wir im folgenden noch oft zurück.

⁸⁴⁰ Der reiche Informationsinhalt eines Qubits, aber sehr die beschränkte Zugänglichkeit zu
⁸⁴¹ diesem macht sich bei einem System aus mehreren Qubits noch stärker bemerkbar, da im
⁸⁴² Endeffekt immer nur eine reelle Zahl gemessen wird. Das Ziel eines Algorithmus muss also
⁸⁴³ sein, dass ein Zustand, und natürlich der jeweils interessanteste, mit sehr hoher Wahrschein⁸⁴⁴ lichkeit gemessen wird. Wie wir später sehen ist dies auch der leitende Gedanke bei zwei
⁸⁴⁵ sehr wichtigen Quantenalgorithmen, dem von Deutsch und dem von Shore.

⁸⁴⁶ Die minimale Entropie eines Qibits ist, wie für alle reinen Zustäde in der QM $S_Q = 0$, die ⁸⁴⁷ maximale Entropie ist, da d = 2 in (1.100) $S_Q = log2$.

⁸⁴⁸ 2.1.2 Pauli'sche σ Matrizen

In der QM spielen selbstadjungierte Operatoren, $\mathbf{A}^{\dagger} = \mathbf{A}$ als mögliche Observable eine grosse Rolle. Aus diesen lassen sich durch Exponentierung selbstadtungierte konstruieren:

$$\left(e^{i\mathbf{A}}\right)^{\dagger} = e^{i\mathbf{A}^{\dagger}} = e^{-i\mathbf{A}} = \left(e^{i\mathbf{A}}\right)^{-1}$$
 (2.6)

⁸⁵¹ darstellen.

Die allgemeinst Form eines sa. Operators A in 2 Dimensionen ist:

$$A = \begin{pmatrix} a & \beta^* \\ \beta & d \end{pmatrix} \text{ mit } a, b \in \mathbb{R} \ \beta \in \mathbb{C}$$

A lässt sich durch eine Linearkombination der drei sogenannten Pauli Matrizen ($\vec{\sigma}$) und der Einheitsmatrix I darstellen, wobei

$$\boldsymbol{\sigma}_{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \boldsymbol{\sigma}_{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \boldsymbol{\sigma}_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad (2.7) \quad \underline{\text{sim}}$$

854

$$A = \frac{1}{2}(a+d)\mathbf{1} + \operatorname{Re}\beta\,\boldsymbol{\sigma}_1 + \operatorname{Im}\beta\,\boldsymbol{\sigma}_2 + \frac{1}{2}(a-d)\,\boldsymbol{\sigma}_3$$
(2.8)

Wie man leicht nachrechnet sind die 3 σ Matrizen selbstadjungierte Matrizen und erfüllen die Vertauschungsrelationen

$$[\boldsymbol{\sigma}_k, \boldsymbol{\sigma}_n] \equiv \boldsymbol{\sigma}_k \boldsymbol{\sigma}_n - \boldsymbol{\sigma}_k \boldsymbol{\sigma}_n = 2i \ \epsilon_{knm} \boldsymbol{\sigma}_m. \tag{2.9}$$

⁸⁵⁷ Sie erfüllen auch die Äntivertauschungsrelationen":

$$\{\boldsymbol{\sigma}_k, \boldsymbol{\sigma}_n\}_+ = \boldsymbol{\sigma}_k \, \boldsymbol{\sigma}_n + \boldsymbol{\sigma}_k \, \boldsymbol{\sigma}_n = 2 \, \delta_{ik} \, \mathbf{1} \tag{2.10} \quad \texttt{avr}$$

⁸⁵⁸ Au diesen Relationen und der Selbstadjungiertheit folgen Beziehungen, die einen immer ⁸⁵⁹ wieder überraschen. z.B.

$$\begin{aligned} (\alpha \boldsymbol{\sigma}_{k} + \beta \boldsymbol{\sigma}_{n})^{\dagger} (\alpha \boldsymbol{\sigma}_{k} + \beta \boldsymbol{\sigma}_{n}) &= (\alpha^{*} \boldsymbol{\sigma}_{k} + \beta^{*} \boldsymbol{\sigma}_{n}) (\alpha \boldsymbol{\sigma}_{k} + \beta \boldsymbol{\sigma}_{n}) \\ &= (|\alpha|^{2} + |\beta|^{2}) \mathbf{I} + \alpha^{*} \beta \left(\frac{1}{2} \{ \boldsymbol{\sigma}_{k}, \boldsymbol{\sigma}_{n} \}_{+} \frac{1}{2} [\boldsymbol{\sigma}_{k}, \boldsymbol{\sigma}_{n}] \right) + \alpha \beta^{*} \left(\frac{1}{2} \{ \boldsymbol{\sigma}_{n}, \boldsymbol{\sigma}_{k} \}_{+} \frac{1}{2} [\boldsymbol{\sigma}_{n}, \boldsymbol{\sigma}_{k}] \right) \\ &= (|\alpha|^{2} + |\beta|^{2} + \operatorname{Re}(\alpha^{*} \beta) \delta_{kn}) \mathbf{I} - \operatorname{Im}(\alpha^{*} \beta) \epsilon_{kn\ell} \boldsymbol{\sigma}_{\ell} \end{aligned}$$

d.h. füer $a, b \in \mathbb{R}$ ist $\frac{1}{\sqrt{a^2+b^2}}(a \, \boldsymbol{\sigma}_k + b \, \boldsymbol{\sigma}_n)$ nicht nur selbstadjungiert, sondern auch **unitär**.

⁸⁶¹ 2.1.3 Bahndrehimpuls und Spin

Dies ist eine ganz kurze Wiederholung aus der allgemeinen QM. I. A. sind die Einheiten $\hbar = 1$.

⁸⁶⁴ Der Drehimpulsoperator in der QM ist nach dem Korrespondnezprinip

$$\vec{\mathbf{L}} = [\vec{\mathbf{Q}} \times \mathbf{P}]; \quad \mathbf{L}_k = \sum_{rs} \epsilon_{krs} \mathbf{Q}_r \mathbf{P}_s$$
(2.11)

865 Daraus berechnet man mit Hilfe von

866 [AB, CD] = A[B, C]D + [A, C]BD + [C, A]BD + C[A, D]B

$$[\mathbf{L}_k, \mathbf{L}_m] = \mathbf{i} \epsilon_{kmn} \mathbf{L}_n \tag{2.12}$$

⁸⁶⁷ Aus den Vertauschungsrelationen folgt, dass der Operator

$$\vec{\mathbf{L}}^2 = \mathbf{L}_1^2 + \mathbf{L}_2^2 + \mathbf{L}_3^2 \tag{2.13}$$

mit allen \mathbf{L}_i vertauscht. Seine ganzzahligen Eigenwerte $\ell \cdot (\ell + 1)$ bestimmen den Gesamtdrehimpuls $\ell \geq 0$. Die Eigenwerte des Operators \mathbf{L}_k können dann die ganzzahligen Werte $-\ell \leq m \leq \ell$ annehmen.

⁸⁷¹ Der Matrix-operatoren $\frac{1}{2}\sigma_i$ haben die gleichen Vertauschungsregeln wie die Drehimpulsope-⁸⁷² ratoren.

⁸⁷³ Da $\frac{1}{4}\sum_{k} \sigma_{k}^{2} = \frac{1}{2} \cdot \frac{3}{2}$ ist, kann man sagen die $\frac{1}{2}\sigma$ Matrizen sind Spin (auf alt-deutsch Eigen-⁸⁷⁴ drehimpuls) Operatoren für ein Spin $\frac{1}{2}$ Teilchen

$$\mathbf{J}_{k}^{(s)} = \frac{1}{2}\boldsymbol{\sigma}_{k} \quad \text{with} \quad [\mathbf{J}_{k}^{(s)}, \mathbf{J}_{n}^{(s)}] = i\,\epsilon_{knm}\mathbf{J}_{m}^{(s)} \tag{2.14}$$

⁸⁷⁵ Der Gesamtdrehimpuls ist allgemein die Summe aus dem Bahndrehimpuls und dem Spin:

$$\vec{\mathbf{J}} = \vec{\mathbf{L}} + \vec{\mathbf{J}}^{(s)} \tag{2.15}$$

⁸⁷⁶ Die Darstellung ($\stackrel{\text{sim}}{2.7}$), bei der die Matrix $\boldsymbol{\sigma}_3$ diagonal ist, hat die Basisvektoren

$$|\uparrow_{3}\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}; \quad |\downarrow_{3}\rangle = \begin{pmatrix} 0\\1 \end{pmatrix}$$
 (2.16) mu-si

- Hierbei bedeudet $|\uparrow_3\rangle$ dass der Spin in +3-Richtung zeigt, und entsprechend $|\downarrow_3\rangle$ in -3-Richtung.
- ⁸⁷⁹ Man kann sich ein Qubit durch ein Spin 1/2 Teilchen (Elektron oder z.B. Ag-Atom) vorstel-
- len, bei dem der CB Vektor $|0\rangle$ einem $|\uparrow_3\rangle$ und der CN Vektor $|1\rangle$ einem $|\downarrow_3\rangle$ entspricht.
- Man rechnet leicht nach, dass die Eigenzustände des Spin- $\frac{1}{2}$ -Operators

$$\mathbf{J}_{1}^{(S)} = \frac{1}{2}\boldsymbol{\sigma}_{1} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$
(2.17)

882 sind

$$|\uparrow_1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}; \quad \frac{1}{2}\boldsymbol{\sigma}_1 |\uparrow_1\rangle = +\frac{1}{2} |\uparrow_1\rangle$$
 (2.18)

$$|\downarrow_1\rangle = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\ -1 \end{pmatrix}; \quad \frac{1}{2}\boldsymbol{\sigma}_1 |\downarrow_1\rangle = -\frac{1}{2} |\downarrow_1\rangle$$
 (2.19)

Ganz allgemein sind die Drehimpulsoperatoren die "Generatoren" der Drehoperatoren in einem Hilbertraum. Einer Drehung um die Achse \hat{n} mit dem Drehwinkel θ ist im Qubit-Raum ist die unitäre Transformation

$$\mathbf{U}(\hat{n},\theta) = \exp[-i\theta\hat{n}\cdot\vec{\mathbf{J}}]$$
(2.20)

⁸⁸⁶ zugeordnet im 2-dimensionalen Hilbertraum also

$$\mathbf{U}(\hat{n},\theta) = \exp\left[-i\frac{\theta}{2}\hat{n}\cdot\vec{\boldsymbol{\sigma}}\right] = \mathbf{1}\,\cos\frac{\theta}{2} - i\,\hat{n}\cdot\vec{\boldsymbol{\sigma}}\,\sin\frac{\theta}{2} \tag{2.21}$$

⁸⁸⁷ Für den letzten Ausdruck wurde die Exponentialfunktion entwickelt und die Anti-vertauschung ⁸⁸⁸ in (2.9) dabei ausgenutzt.

⁸⁸⁹ Wir behandeln im Abschn. $\overset{[st-g]}{2.2}$ das Verhalten von Teilchen mit Spin im Magnetfeld.

$\overline{g_{\mathfrak{gq}}}$ 2.1.4 Quantengatter quantum gates

⁸⁹¹ Quantengatter (*quantum gates*) sind eine Übertragung der klassischen Gatter, die auf Bits ⁸⁹² wirken, in die Quantenwelt. Da die Quantendynamik wahrscheinlichkeitserhaltend und rever-

wirken, in die Quantenwelt. Da die Quantendynamik wahrscheinlichkeitserhaltend und reversibel ist, m""ussen auch die Quanten-Gatter wahrscheinlichkeitserhaltend sein, d.h. unitär.

⁸⁹⁴ Für den klassischen Computer gibt es nur ein Gatter, das auf einen einzigen Bit wirkt, das

895 NOT gate:

$$NOT\{0\} = \{1\}; NOT\{1\} = \{0\}$$
(2.22)

⁸⁹⁶ Dem NOT gate entspricht beim Qubit das X-gate:

$$\mathbf{X}\begin{pmatrix} \alpha\\ \beta \end{pmatrix} = \begin{pmatrix} \beta\\ \alpha \end{pmatrix} \quad \text{d.h. } \mathbf{X} = \begin{pmatrix} 0 & 1\\ 1 & 0 \end{pmatrix}$$
(2.23) xgate

Es ist identisch mit der Pauli-Matrix σ_1 . Ein weiteres wichtiges 1-Qubit gate istdas Z gate

$$\mathbf{Z}\begin{pmatrix} \alpha\\ \beta \end{pmatrix} = \begin{pmatrix} \alpha\\ -\beta \end{pmatrix} \quad \text{d.h. } \mathbf{Z} = \begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}$$
(2.24) zgate

⁸⁹⁸ Das Hadamard gate **H** ist eine Summe der beiden:

$$\mathbf{H} = \frac{1}{\sqrt{2}} \left(\mathbf{X} + \mathbf{Z} \right) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \left(\boldsymbol{\sigma}_1 + \boldsymbol{\sigma}_3 \right)$$
(2.25) Instead

⁸⁹⁹ Sie wirken auf die CB wie folgt:

 $_{900}$ Das X gate vertauscht die beiden Basisvektoren:

$$\mathbf{X}|0\rangle = |1\rangle; \ \mathbf{X}|1\rangle = |0\rangle \tag{2.26}$$

⁹⁰¹ Das Z gate dreht die Phase des $|1\rangle$

$$\mathbf{Z}|0\rangle = |0\rangle; \ \mathbf{Z}|1\rangle = -|1\rangle$$
 (2.27)

⁹⁰² Das **H** gate macht die Überlagerung:

$$\mathbf{H}|0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle); \ \mathbf{H}|1\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle);$$
(2.28) [hgate2]

⁹⁰³ 2.1.5 Zeitliche Entwicklung eines Qubits

Die zeitliche Entwicklung eines reinen Zustandes $|\psi, t\rangle$ (Schrödingerbild) ist allgemein gegeben durch (s. Axiom XXX).

$$|\psi,t\rangle = e^{i\mathbf{H}t}|\psi\rangle \tag{2.29}$$

Die allgemeinste Form eines (Raum- und Zeit-unabhängigen) Hamiltonoperators im 2-dimensionalen
 (Qubit) Raum ist

$$\mathbf{H} = \begin{pmatrix} a & c \, e^{\mathbf{i}\psi} \\ c \cdot e^{-\mathbf{i}\psi} & b \end{pmatrix}; \quad a, b, c, \psi \in \mathcal{R}$$
(2.30)

908 Ist $|\psi_E\rangle$ ein Eigenwert von **H**, d.h

$$\mathbf{H}|\psi_E\rangle = E|\psi_E\rangle \tag{2.31}$$

909 dann gilt:

$$|\psi_E, t\rangle = e^{iEt} |\psi_E\rangle \tag{2.32}$$

⁹¹⁰ Schreiben wir die Eigenwertgleichung (hier 2 lineare Gleichungen) als

$$(\mathbf{H} - E\mathbf{I})|\psi_E\rangle = 0 \tag{2.33}$$

⁹¹¹ sehen wir sofort, dass für eine nichttriviale Lösung gelten muss:

$$\det(\mathbf{H} - E\mathbf{I}) = || \begin{pmatrix} a - E & c e^{i\psi} \\ c \cdot e^{-i\psi} & b - E \end{pmatrix} || = 0$$
(2.34) [sec

 $_{912}$ Aus $(\stackrel{\text{sec}}{2.34})$ bestimmen wir die Die Eigenwerte von **H** zu:

$$\mathbf{H}|\pm\rangle = E_{\pm}|\pm\rangle; \quad E_{\pm} = \frac{a+b}{2} \pm \sqrt{\frac{(a-b)^2}{4} + c^2}$$
 (2.35)

⁹¹³ die Eigenzustände sind:

$$|+\rangle = \begin{pmatrix} C_+\\ S_+ \end{pmatrix}, \quad \text{with } C_+ = \cos\phi_+, \ S_+ = e^{-i\psi}\sin\phi_+; \quad \tan\phi_+ = \frac{E_+ - a}{c} \quad (2.36)$$
$$|-\rangle = \begin{pmatrix} S_-\\ C_- \end{pmatrix}, \quad \text{with } C_- = \cos\phi_-, \ S_- = e^{+i\psi}\sin\phi_-; \quad \tan\phi_- = \frac{E_- - b}{c} \quad (2.37)$$

⁹¹⁴ mit der Zeitabhängigkeit:

$$e^{iHt/\hbar} \left(\alpha_{+} \left| + \right\rangle + \alpha_{-} \left| - \right\rangle \right) = \alpha_{+} e^{iE_{+}t/\hbar} \left| + \right\rangle + \alpha_{-} e^{iE_{-}t/\hbar} \left| - \right\rangle$$
(2.38)

wobei α_+, α_- aus den Anfangsbedingunen folgen: $\alpha_{\pm} = \langle \pm | \psi \rangle$.

Besonders informativ ist die Situation für den Fall a = b.

⁹¹⁷ Dann gilt:
$$E_{\pm} = a \pm |c|$$
 und $\phi_{\pm} = \pm \pi/4$
⁹¹⁸ $|+\rangle = \begin{pmatrix} \cos \frac{\pi}{4} \\ e^{-i\psi} \sin \frac{\pi}{4} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ e^{-i\psi} \end{pmatrix} \equiv \frac{1}{\sqrt{2}} (|0\rangle + e^{-i\psi}|1\rangle)$
⁹¹⁹ $|-\rangle = \begin{pmatrix} e^{i\psi} \sin \left(-\frac{\pi}{4}\right) \\ \cos \frac{\pi}{4} \end{pmatrix} = \frac{-1}{\sqrt{2}} \begin{pmatrix} e^{i\psi} \\ -1 \end{pmatrix} \equiv \frac{-1}{\sqrt{2}} (e^{i\psi}|0\rangle - |1\rangle$

Betrachten wir den Ausgangszustand $|0\rangle \equiv \begin{pmatrix} 1\\ 0 \end{pmatrix}$ Dann ist $\alpha_{+} = \frac{1}{\sqrt{2}}, \ \alpha_{-} = -\frac{e^{-i\psi}}{\sqrt{2}}$

$$\begin{aligned} |\psi,t\rangle &= \frac{1}{\sqrt{2}} e^{i(a+|c|)t/\hbar} \alpha_{+}|+\rangle + \frac{1}{\sqrt{2}} e^{i(a-|c|)t/\hbar} \alpha_{-}|-\rangle \\ &= \frac{1}{2} (e^{i(a+|c|)t/\hbar}|+\rangle + e^{i(a-|c|)t/\hbar} e^{-i\psi}|-\rangle) \\ &= \frac{1}{2} e^{iat/\hbar} \left(|0\rangle (e^{i|c|t/\hbar} + e^{-i|c|t/\hbar}) + |1\rangle e^{-i\psi} (e^{i|c|t/\hbar} - e^{-i|c|t/\hbar})\right) \\ &= e^{iat/\hbar} \left(\cos\frac{|c|t}{\hbar}|0\rangle + \sin\frac{|c|t}{\hbar} e^{-i\psi}|1\rangle\right) \end{aligned}$$

Die gemeinsame Phase $e^{iat/\hbar}$ ist ohne weiteren Belang. Interessant ist, dass der Zustand nach der Zeit $\frac{|c|t_{\perp}}{\hbar} = \frac{\pi}{2}$, d.h. nach $t_{\perp} = \frac{\pi\hbar}{2|c|} = \frac{\pi\hbar}{E_{+}-E_{-}}$ vom Zustand $|0\rangle = \begin{pmatrix} 1\\0 \end{pmatrix}$ zum orthogonalen Zustand $ie^{-i\psi}|1\rangle = \begin{pmatrix} 0\\ie^{-i\psi} \end{pmatrix}$ übergeht.

Ganz allgemein sieht man direkt: Haben wir zwei Zustände $|0\rangle$ und $|2E\rangle$ mit der Energie respective 0 und 2E, so geht der Zustand $|\psi(0)\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |2E\rangle)$ nach der Zeit $t = \frac{\pi\hbar}{2E}$ in den orthogonalen Zustand $|\psi(0)\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |2E\rangle)$ über. Dies wird in arXiv:quant-ph/9710043v2 zur Basis von überlegungen zur Maximalgeschwindigkeit dynamischer Entwicklungen gemacht (Vorsicht: die Autoren benutzen sowohl \hbar als auch $h = \hbar/(2\pi)$)

Man beachte dass durch die zeitliche Entwicklung die Relative Phase vom Zustand zur Zeit t = 0 zu allen Zuständen einer späteren Zeit festgelegt ist.

⁹³¹ Um einigermassen stabile Zustände zu erreichen, muss man den Anfangszustand so wählen, ⁹³² dass er in einem Grundzustand (in obigem Falle also $|-\rangle$ ist oder in einem angeregten ato-⁹³³ maren Zustatnd, der aufgrund der Quantenzahlen metastabil ist, z.B. in einem ³P₂ Zustand ⁹³⁴ über einem ¹S₀ – Zustand. Den angeregten metastabilen Zustand kann man durch otisches ⁹³⁵ Pumpen, z.B. über einen noch höheren Zustand bevölkern.

2.2 Der Stern Gerlach Vesuch als Prototyp einer Mes-⁹³⁷ sung

⁹³⁸ 2.2.1 Drehimpuls und magnetisches Moment

Ein wichtiges physikalisches System, das in einem 2-dimensionalen Hilbertraum beschrieben wird und das Physikern besonders vertraut ist, ist ein Teilchen mit Spin 1/2. Wir wollen hier nicht die ganze Drehimpulsgymnastik vorführen, die auf der Darstellungstheorie der Drehgruppe basiert, sondern beschränken uns auf die Ergebnisse. Besonderes Augenmerk richten wir dbei auf den Messprozess, der sich hier in vielen seinen Facetten sehr anschaulich darstellen lässt.

Nach den Gesetzen der klassischen Elektrodynamik und dem Korrespondenprinzips leitet man für die Wechselwirkungsenergie eines auf einer geschlossenen Bahn sich bewegenden geladenen Teilchens mit dem Drehimpuls $\vec{\mathbf{L}}$ und einem Magnetfeld \vec{B} die Wechselwirkungsenergie

$$H_W = \mu(\vec{\mathbf{L}} \cdot \vec{B}), \tag{2.39}$$

wobei $\mu = \frac{e\hbar}{2m}$ mit *e* der Ladung und *m* der Masse des Teilchens ist.

Für Ladung und Masse eines Elektrons hat μ den Wert

 $\mu_B = -9.27 \dots \text{ J/T}$ (Joule durch Tesla).

⁹⁵⁰ (Das – Zeichen kommt von der negativen Ladung des Elektrons)

⁹⁵¹ Für ein Elektron ist die Beziehung zwischen Energie im Magnetfeld und Gesamtdrehimpuls:

$$H_W = -\mu_B (\vec{\mathbf{L}} + \mu_{an} \frac{1}{2} \vec{\boldsymbol{\sigma}}) \cdot \vec{B} \quad \mu_{an} \approx 2 \tag{2.40} \quad \texttt{muH}$$

⁹⁵² Die Geschichte des Spins, des Drehimpulses und der magnetischen Momente ist ein *high-Tech* ⁹⁵³ und ein *High-Math*-Krimi mit den hauptsächlichen Helden Pauli¹, Dirac, Weil und Stern.

⁹⁵³ und ein *High-Math*-Krimi mit den hauptsächlichen Helden Pauli¹, Dirac, Weil und Ste ⁹⁵⁴ Er gab der Entwicklung der modernen Physik (und Technik) wesentliche Impulse.

⁹⁵⁵ Das magnetische Moment erlaubt eine einfache Messung des Spins $\mathbf{J}_3^{(S)}$ eines Teilchens.

Ein inhomogenes Magnetfeld übt auf einen Dipol eine Kraft aus, sie ist in der klassischen
 E-dynamik

$$F = \vec{\partial}(\mu \cdot B) \tag{2.41}$$

Ist kann man die Ortsabhängigkeit von μ vernachlässigen, so erhält man:

959

⁹⁶⁰ Haben wir ein starkes Magnetfeld in 3 Richtung mit einer geringen Inhomogenität $\partial_3 B_3 > 0$ ⁹⁶¹ so wird eine Komponente $(\vec{\mu} \cdot \vec{F}) > 0$ nach oben und die andere $(\vec{\mu} \cdot \vec{F}) < 0$ nach unten ⁹⁶² abgelenkt.

⁹⁶² Das magnetische Moment eines Elektrons is, s. $(\underline{\underline{D}},\underline{40})$ ist $-\mu_{an}\mu_B \underbrace{\mathbf{J}_3^{(S)}}_{\frac{1}{2}\sigma_3}$ und deswegen werden

die beiden möglichen Spin-Einstellungen $\pm \frac{1}{2}$ in verschiedene Richtungen abgelenkt.

Man betrachtet einen Strahl von Spin $\frac{1}{2}$ Teilchen, z.B. neutrale Silberatome, bei denen nur der Spin des Aussenelektrons ($\mathbf{L} = 0$) beiträgt.

⁹⁶⁷ Dass Stern und Gerlach diese Aufspaltung 1922 tatsächlich nachweisen konnten, war ganz
⁹⁶⁸ emtscheidend für die Akzeptanz der QM, (d.h. der alten QM von Planck, Einstein, Bohr

¹Eine zusätzliche Pointe: Der Spin als Eigendrehimpuls $\frac{1}{2}$ wurde 1925 von den jungen Physikern Goudsmit und Uhlenbeck vorgeschlagen. Sie bekamen nach der Einreichung der Arbeit kalte Füsse und wollten sie zurückziehen. Aber der Herausgeber Ehrenfest, meinte: "Sie sind beide jung genug, um sich eine Dummheit leisten zu können"

Abbildung 2.1: Tafel zur Erinnerung an das Stern-Gerlach Experiment in Frankfurt, Abb. der Aufspaltung aus der Originalarbeit

und Sommerfeld). Pauli an Gerlach: "Jetzt wird wohl auch der ungläubige Stern von der
Richtungsquantelung überzeugt sein." Die Zweifel Stern's waren zu dieser Zeit mehr als
berechtigt: 1922 gab es noch keine Quantentheorie sondern nur zusätzliche Vorschriften zur
klassischen Physik.

⁹⁷³ 2.2.2 Der Stern Gerlach Versuch als Realisierung eines Messpro ⁹⁷⁴ zesses

⁹⁷⁵ Der Stern-Gerlach Versuch ist also eine Realisierung für den Messprozess der Drehimpulskon-⁹⁷⁶ ponente ($\vec{e}_H \cdot \vec{J}$). Ist die (Haupt-)Richtung des Magnetfelds die z-Achse, so ist die Observable ⁹⁷⁷ $\mathbf{J}_3 = \frac{1}{2}\boldsymbol{\sigma}_3$ und die beiden Messoperatoren sind die Projektionen

$$\mathbf{P}_{\uparrow 3} = |\uparrow_3\rangle\langle\uparrow_3| = \begin{pmatrix} 1\\0 \end{pmatrix} \otimes \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix} 1&0\\0&0 \end{pmatrix}$$
(2.43)

$$\mathbf{P}_{\downarrow 3} = |\downarrow_3\rangle\langle\downarrow_3| = \begin{pmatrix} 0\\1 \end{pmatrix} \otimes \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix} 0&0\\0&1 \end{pmatrix}$$
(2.44)

⁹⁷⁸ Ein Zustand $|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$, mit $|\alpha|^2 + |\beta|^2 = 1$ wird also nach dem quantenmechanischem ⁹⁷⁹ Messprozess (Axiom 3) sich mit der Wahrscheinlichkeit

980
$$||\mathbf{P}_{\uparrow 3}|\psi\rangle||^{2} = |\alpha|^{2} \text{ im Zustand } \begin{pmatrix} 1\\0 \end{pmatrix} = |\uparrow_{3}\rangle$$

981 befinden und mit der Wahrscheinlichkeit
982 $||\mathbf{P}_{\downarrow 3}|\psi\rangle||^{2} = |\beta|^{2} \text{ im Zustand } \begin{pmatrix} 0\\1 \end{pmatrix} = |\downarrow_{3}\rangle.$

Schicken wir einen Strahl von Teilchen in diesem Zustand $|\psi\rangle$ durch einen in z Richtung inhomogenen Magneten (Abb. 2.2) so wird die $|\uparrow\rangle$ Komponente in Richtung des abnehmenden Magnetfelds abgelenkt, und ensprechend, die $|\downarrow\rangle$ in die entgegengestzte Richtung. Die Intensität des einen abgelenkten Strahles ist also $|\alpha|^2$, die des anderen $|\beta|^2$.

Schicken wir den einen Strahl, der sich nach der Ablenkung im Zustand $\mathbf{P}_{\uparrow 3} |\psi\rangle durch einen zweiten Stern Gerlach in z Richtung, wird dieser nicht mehr aufgespalten (Abb. 2.2.$

⁹⁸⁹ Wird der Magnet so gedreht, dass die Hauptrichtung des Feldes in die *x*-Achse zeigt, so ist ⁹⁹⁰ die Observable $\mathbf{J}_1 = \frac{1}{2}\boldsymbol{\sigma}_1$ und die beiden Messoperatoren sind die Projektionen

$$\mathbf{P}_{\uparrow 1} = |\downarrow_1\rangle\langle\downarrow_1| = \frac{1}{2} \begin{pmatrix} 1\\1 \end{pmatrix} \otimes \begin{pmatrix} 1\\1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1&1\\1&1 \end{pmatrix}$$
(2.45)

$$\mathbf{P}_{\downarrow 1} = |\downarrow_1\rangle\langle\downarrow_1| = \frac{1}{2} \begin{pmatrix} 1\\-1 \end{pmatrix} \otimes \begin{pmatrix} 1\\-1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1&-1\\-1&1 \end{pmatrix}$$
(2.46)

⁹⁹¹ Der gleiche Zustand $\psi = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ wird also nach der Messung sich mit der Wahrscheinlichkeit

⁹⁹² Wird der Magnet so gedreht, dass die Hauptrichtung des Feldes in die *x*-Achse zeigt, so ist ⁹⁹³ die Observable $\mathbf{J}_1 = \frac{1}{2}\boldsymbol{\sigma}_1$ und die beiden Messoperatoren sind die Projektionen

$$\mathbf{P}_{\uparrow 1} = |\downarrow_1\rangle\langle\downarrow_1| = \frac{1}{2} \begin{pmatrix} 1\\1 \end{pmatrix} \otimes \begin{pmatrix} 1\\1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1&1\\1&1 \end{pmatrix}$$
(2.47)

$$\mathbf{P}_{\downarrow 1} = |\downarrow_1\rangle\langle\downarrow_1| = \frac{1}{2} \begin{pmatrix} 1\\-1 \end{pmatrix} \otimes \begin{pmatrix} 1\\-1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1&-1\\-1&1 \end{pmatrix}$$
(2.48)

⁹⁹⁴ Der gleiche Zustand $\psi = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ wird also nach der Messung sich mit der Wahrscheinlichkeit

⁹⁹⁵ $||\mathbf{P}_{\uparrow 1}|\psi\rangle||^{2} = |\alpha + \beta|^{2}$ sich im Zustand $\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\1 \end{pmatrix} = |\rightarrow_{1}\rangle$ befinden und mit $||\mathbf{P}_{\downarrow 1}|\psi\rangle||^{2} =$ ⁹⁹⁶ $|\alpha - \beta|^{2}$ sich im Zustand $\frac{1}{\sqrt{2}}\begin{pmatrix} 1\\-1 \end{pmatrix} = |\downarrow_{1}\rangle.$

⁹⁹⁷ Die Intensität des einen abgelenkten Strahles ist also $\frac{1}{4}|\alpha + \beta|^2$, die des anderen $\frac{1}{4}|\alpha - \beta|^2$. ⁹⁹⁸ Schicken wir den einen Strahl im Zustand $\mathbf{P}_{\uparrow 1}|\psi\rangle$ durch einen zweiten Stern Gerlach in x⁹⁹⁹ Richtung, wird dieser nicht mehr aufgespalten, da gilt $\mathbf{P}_{\uparrow 1}\mathbf{P}_{\uparrow 1}|\psi\rangle = \mathbf{P}_{\uparrow 1}|\psi\rangle$

Der grösste Widerspruch zur klassischen Erwartung entsteht, wenn wir erst an einen Strahl der nur aus $|\uparrow_3\rangle$ besteht durch einen nach \mathbf{J}_1 sortierenden Stern-Gerlach schicken und an dem den Teill mit den $|\rightarrow_1\rangle$ noch eimal \mathbf{J}_3 misst. ¹⁰⁰³ Da der Strahl beim ersten Stern-Gerlach schon nach dem Spin in +z-Richtung sortiert wurde, ¹⁰⁰⁴ erwartet man nach den Prinzipien der klassischen Physik dass er nun nicht mehr aufspaltet, ¹⁰⁰⁵ da ja im 1. Versuch nur $|\uparrow_3\rangle$ ausgewählt wurden.

Die QM liefert aber ein anderes Resultat. Nach dem Durchgang durch durch den 1. Stern Gerlach befindet sich $|\psi\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$ im Zustand $\mathbf{P}_{\uparrow 3} |\psi\rangle = \begin{pmatrix} \alpha \\ 0 \end{pmatrix}$. Nachdem durchgang durch den 2. Stern-Gerlach, der nach \mathbf{J}_1 sortiert, ist der Teil, dessen Spin in +x Richtung zeigt nach dem Messaxiom im Zustand

$$\mathbf{P}_{\uparrow 1} \cdot \mathbf{P}_{\uparrow 3} |\psi\rangle = \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ 0 \end{pmatrix} = \frac{1}{2} \alpha \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
(2.49)

¹⁰¹⁰ enthält also wieder eine $|\downarrow_3\rangle$ Komponente und zwar mit der gleichen Intensität wie die $|\uparrow_3\rangle$ ¹⁰¹¹ Komponente, Siehe Abb. 2.3.

¹⁰¹² Dass der Zustand nach der 2. Messung eine kleine $|\downarrow_3\rangle$ Komponente enthält, könnte man ¹⁰¹³ klassisch ja noch als Verunreinigung durch die 2. Messung verstehen, aber beobachtet ist ¹⁰¹⁴ genau die quantenmechanische Vorhersage.

Abbildung 2.2: stern-a

Dieses Ergebnis, inclusive der Intensität, wird von der QM voehergasagt und ist in vielen
Fällen bestätigt. Dennoch ist es keine direkte Widerlegung der klassischen Vorstellung, denn
man kann sich ja immer noch vorstellen, dass bei der Messung durch eine noch unbekannten
Parameter die Aufspaltung beeinflusst wird. Dies wird in der Bohm'schen Formulierung der
QM versucht.

Stern-Gerlach als Prototyp einer Präparation oder eines Gatters Ein 2.2.2.0.11020 einzelnes Teilchen, das durch einen Stern-Gerlach in z Richtung in +z Richtung abgelenkt 1021 $\begin{pmatrix} 1\\ 0 \end{pmatrix}$). Wird dieses Teilchen um die y Achse um 90 Grad wurde, ist sicher im Zustand 1022 gedreht, z.b. in dem man es durch einen x-gerichteten Stern-Gerlach schickt und idas +x1023 Richtung abgelenkte selektiert, befindet es sich sicher im Zustand $\frac{1}{\sqrt{2}}$ Drehen wir 1024 diesen Spinor, beispielsweise um die y-Achse um den Winkel θ , so ist er, danach im Zustand, 1025 s.(2.21)1026

$$\mathbf{U}\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix} = \begin{pmatrix}\cos\frac{\theta}{2} & -\boldsymbol{i}\sin\frac{\theta}{2}\\\boldsymbol{i}\sin\frac{\theta}{2} & \cos\frac{\theta}{2}\end{pmatrix}\frac{1}{\sqrt{2}}\begin{pmatrix}1\\1\end{pmatrix} = \frac{1}{\sqrt{2}}\begin{pmatrix}e^{-\boldsymbol{i}\frac{\theta}{2}}\\e^{\boldsymbol{i}\frac{\theta}{2}}\end{pmatrix} = \frac{e^{-\boldsymbol{i}\frac{\theta}{2}}}{\sqrt{2}}\begin{pmatrix}1\\e^{\boldsymbol{i}\theta}\end{pmatrix} \quad (2.50)$$

1027 2.2.2.1 Polarisierte Photonen

Mögliche wichtige Realisierungen von Qubits sind Photonen, die Quanten des em Feldes. 1028 Sie haben zwar den Gesamtspin 1, aber da die Felder einer elektromagnetischen Welle steht 1029 senkrecht zur Ausbreitungsrichtung stehen, gibt es nur zwei linear unabhängige Polarisa-1030 tionsrichtungen. Daher haben die Photonen 2 Polarisationszustände senkrecht zu IHilber-1031 träumer Ausbreitungsrichtung. Sie sind deswegen auch mögliche Realisierungen eines Qubits. 1032 Im folgenden sei die Ausbreitungsrichtung die 3-Richtung, die z-Achse, dann zeigen die Pola-1033 risationen in die 1 oder 2-Richtung, die x und die y Achse. Wir wollen diese beiden Zustände 1034 mit $|x\rangle$ und $|y\rangle$ bezeichnen, die wir wider durch Spinoren darstellen können 1035

$$|x\rangle \equiv \begin{pmatrix} 1\\0 \end{pmatrix}; \qquad |y\rangle \equiv \begin{pmatrix} 0\\1 \end{pmatrix}$$
 (2.51)

1036

¹⁰³⁷ Bei einer Drehung um die Ausbreitungs (z) Richtung gilt":

$$|x\rangle \rightarrow \cos\theta |x\rangle + \mathbf{i}\sin\theta |y\rangle$$
 (2.52)

$$|y\rangle \rightarrow -\mathbf{i}\sin\theta|x\rangle + \cos\theta|y\rangle$$
 (2.53)

1038 Die unitäre Darstellung dieser Drehung ist also

$$\mathbf{U}(\theta) = \begin{pmatrix} \cos\theta & \boldsymbol{i}\sin\theta \\ -\boldsymbol{i}\sin\theta & \cos\theta \end{pmatrix}$$
(2.54)

¹⁰³⁹ Die bei einem Emissionsprozess erzeugten Photonen sind i. A. Eigenzustände dieser Matrix,
¹⁰⁴⁰ die sog. rechts und links-polarisierten Photonen:

$$|R\rangle = \sqrt{\frac{1}{2}} \begin{pmatrix} 1\\i \end{pmatrix}; \quad |L\rangle = \sqrt{\frac{1}{2}} \begin{pmatrix} i\\1 \end{pmatrix}$$
(2.55)

1041 mit

$$\mathbf{U}(\theta)|R\rangle = e^{i\theta}|R\rangle; \ \mathbf{U}(\theta)|L\rangle = e^{-i\theta}|L\rangle$$
(2.56)

¹⁰⁴² $|R\rangle$, $|L\rangle$ sind Eigenvektoren zu dem Generator der Rotation um die z-Achse: $\mathbf{J} = \boldsymbol{\sigma}_2$ mit den ¹⁰⁴³ Eigenwerten ±1.

2044

2.3 2 und mehr Qubits

1045 **2.3.1** Notation

1046 Wir wählen für Qubits generell die Notation:

$$|0\rangle \equiv \begin{pmatrix} 1\\0 \end{pmatrix} = |+\frac{1}{2}\rangle; \quad |1\rangle \equiv \begin{pmatrix} 0\\1 \end{pmatrix} = |-\frac{1}{2}\rangle$$
(2.57)

1047 und für mehrere Qubits:

$$|m n r, \dots \rangle \equiv |m\rangle \otimes |n\rangle \otimes |r\rangle \otimes \dots \quad m, n, r \in 0, 1$$
 (2.58)

Wollen wir die Basisvektoren abzählen, hilft das Dualsystem. Jede Zahl j kann eindeutig als Dualzahl dargestellt werden $j = \sum_k m_k 2^k$. Für den ℓ -Qubit Zustand $|m_\ell m_{\ell-1} \cdots m_0\rangle$ können wir abgekürzt schreiben:

$$|m_{\ell} m_{\ell-1} \cdots m_0\rangle = |j\rangle_d$$
 wobei $j = m_{\ell} \cdot 2^{\ell} + m_{\ell-1} \cdot 2^{\ell-1} + \cdots + m_0 \cdot 2^0$

¹⁰⁴⁸ Das Subskript d wird von den an das Dualsystem gewöhnten Informatikern oft weggelassen, ¹⁰⁴⁹ wenn eine Zahl grösser als 1 im $|\rangle$ oder \langle steht, wird diese als Dualzahl interpretiert. z.B.

$$|1\rangle_A \otimes |0\rangle_B \otimes |1\rangle_C \equiv |1\,0\,1\rangle \equiv |5\rangle_d \quad \text{in Cartesischer Basis} \equiv \begin{pmatrix} 0\\0\\0\\0\\1\\0\\0 \end{pmatrix}$$

1050 2.3.2 Quantenteleportation

¹⁰⁵¹ Der Zustand aus 2 Spins mit dem Gesamtspin 0 hat die Form:

$$\frac{1}{\sqrt{2}} \left(|\uparrow_3\rangle_A \otimes |\downarrow_3\rangle_B - |\downarrow_3\rangle_A \otimes |\uparrow_3\rangle_B \right) \equiv \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) \tag{2.59}$$

1052

d.h.
$$\vec{\mathbf{J}}_{AB}^2 \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) = 0; \text{ mit } \vec{\mathbf{J}}_{AB}^2 = (\frac{1}{4} (\vec{\boldsymbol{\sigma}}_A \otimes \mathbf{I}_B + \mathbf{I}_A \otimes \vec{\boldsymbol{\sigma}}_B)^2$$
 (2.60)

¹⁰⁵³ Informatiker lassen zwar meist die Indices $_{A,B}$ weg, sprechen aber gern vom ersten Hil-¹⁰⁵⁴ bertraum mit der Beobachterin Alice und vom zweiten mit dem Beobachter Bob. In einer ¹⁰⁵⁵ Vorlesung über QC ist es sinnvoll, sich dieser Konvention anzuschliessen.

Angenommen, Alice und Bob bbefinden auf zwei Raumstationen die weit auseinander liegen. In der Mitte zerfällt ein Zustand mit dem Gesamtspin 0 in zwei Spin $\frac{1}{2}$ Teilchen. Der Zustand ist also:

$$|\psi(t)\rangle = A(y_1,t) B(y_2,t)(|\uparrow_3\rangle_A \otimes |\downarrow_3\rangle_B - |\downarrow_3\rangle_A \otimes |\uparrow_3\rangle_B) \equiv A(y_1,t) B(y_2,t)(|01\rangle - |10\rangle)$$

Die Wellenpakete A(y,t) B(y,t) überlappen zur Zeit t = 0, $\phi_A(y,t)$ fliegt nach links zu Alice, $\psi_B(y,t)$ nach rechts zu Bob, zu einem späteren Zeitpunkt haben A und B weit entfernte Träger. ¹⁰⁵⁹ Auf beiden Raumstationen sind Stern Gerlachs installiert, die beide streng parallel in z ¹⁰⁶⁰ Richting ausgerichtet sind. Allice und Bob messen also beide die Observable $\mathbf{J}_3 = \frac{1}{2}\boldsymbol{\sigma}_3$.

¹⁰⁶¹ Wenn Alice zur Zeit τ bei der Messung einen nach oben abgelenkten Zustand findet (d.h. ¹⁰⁶² $|\uparrow_3\rangle$), so ist der Zustand zu $B(y,\tau)(|\uparrow_3\rangle_A \otimes |\downarrow_3\rangle_B)$ kollabiert:

$$|\psi(\tau)\rangle \rightarrow \int dy_1 Z_A(y_1) A(\tau, y_1) B(\tau, y_2))$$
 (2.61)

$$\left(|\uparrow_{3}\rangle_{AA}\langle\uparrow_{3}|\otimes\mathbf{I}_{B}\right)\left(|\uparrow_{3}\rangle_{A}\otimes|\downarrow_{3}\rangle_{B}-|\downarrow_{3}\rangle_{A}\otimes|\uparrow_{3}\rangle_{B}\right)|\downarrow_{3}\rangle_{B}\right) \quad (2.62)$$

$$= B(\tau, y^{(2)}) |\downarrow_3\rangle_B \tag{2.63}$$

und sie weiss in dem Augenblick der Mewssung, dass Bob, wenn er die Messung auch zum
gleichem Augenbklick durchführt, den Spin seines Teilchens nach unten gerichtet messen
muss. Allerdings wird damit keine Information und keine Materie transportiert!

Etwas realistischer ist das analoge Gedankenexperiment mit links und rechtspolarisiertenPhotonen.

1068

1069 I

Obwohl die Änderung (Kollaps) der Wellenfunktion instantan ist, lassen sich damit keine
Signale mit Überlichtgeschwindigkeit übermitteln, da ja Bob nicht das Ergebnis der Messung
von Alice kennt.

¹⁰⁷³ 2.3.3 Zeitliche Entwicklung in einem Produktraum

¹⁰⁷⁴ Seien \mathcal{H}_A und \mathcal{H}_B zwei isomorphe Hilberträume (gleiche Dimension). Wir wollen zeigen, dass ¹⁰⁷⁵ es keine zeitliche Entwicklung (oder allgemein keine unitäre Entwicklung) gibt, die beliebigen ¹⁰⁷⁶ einen Zustand von \mathcal{H}_A nach \mathcal{H}_B kopiert.

1077 NB: $(\mathbf{A}|\lambda\rangle)^{\dagger} = \langle \lambda | \mathbf{A}^{\dagger} |$; U unitär: $\mathbf{U}^{\dagger}\mathbf{U} = \mathbf{I}$; z. B. $\mathbf{U} = e^{i\mathbf{H}t}$;

¹⁰⁷⁸ Seien $|\psi\rangle$, $|\phi\rangle$, $|\eta\rangle$ drei Quantenzustände (d.h. normierte Vektoren) aus \mathcal{H}_A oder \mathcal{H}_B . Die ¹⁰⁷⁹ unitäre Transformation U in $\mathcal{H}_A \otimes \mathcal{H}_b$ soll Zustände von \mathcal{H}_A nach \mathcal{H}_B "kopieren", dh. es soll ¹⁰⁸⁰ gelten:

$$\mathbf{U}(|\psi\rangle \otimes |\eta\rangle) = (|\psi\rangle \otimes |\psi\rangle); \qquad \mathbf{U}(|\phi\rangle \otimes |\eta\rangle) = (|\phi\rangle \otimes |\phi\rangle)$$
(2.64) hyp

1081 Daraus $(\overset{hyp}{2.64})$ folgt:

 $\langle (\langle \psi | \otimes \langle \eta |) \mathbf{U}^{\dagger} | \mathbf{U} (|\phi\rangle \otimes |\eta\rangle) \rangle = \langle (\langle \psi | \otimes \langle \psi |) | (|\phi\rangle \otimes |\phi\rangle) \rangle = \langle \psi | \phi\rangle \langle \psi | \phi\rangle$ (2.65) hyp2

1082 aus der Unitarität folgt:

$$\langle (\langle \psi | \otimes \langle \eta |) \mathbf{U}^{\dagger} | \mathbf{U} (|\phi\rangle \otimes |\eta\rangle) \rangle = \langle (\langle \psi | \otimes \langle \eta |) | (|\phi\rangle \otimes |\eta\rangle) \rangle = \langle \psi | \phi \rangle \langle \eta | \eta \rangle$$

$$(2.66) \quad \text{hyp3}$$

1083

d.h. aus
$$(\stackrel{\text{hyp2}}{2.65})$$
 und $(\stackrel{\text{hyp3}}{2.66})$ folgt $\langle \psi | \phi \rangle^2 = \langle \psi | \phi \rangle$ (2.67)

¹⁰⁸⁴ Daraus folgt, dass entweder $\langle \psi | \phi \rangle = 1$ oder $\langle \psi | \phi \rangle = 0$ sein muss. Die Transformation (2.64) ¹⁰⁸⁵ gilt also nichtrivial nur, wenn $|\psi\rangle \perp \text{auf } |ph\rangle$ steht. Damit ist gezeigt, dass es keine allgemeine ¹⁰⁸⁶ unitäre "Kopiertransformation" für Quantenzustände gibt.

1087 William Wootters und Wojciech Zurek (1982)

1088 2.3.4 Die Bellschen Ungleichungen

Grob gesagt: Die Bell'schen Ungleichungen gälten, wenn die Physik so realistisch wäre, wie
Einstein es sich vorstellte. Ihre Verletzung besagt: Selbst wenn man neben den beobachtbaren Grössen noch verborgene Paramter einführt, so müssen diese die selben spukhaften,
d.h. nichtlokalen Eigenschaften haben, die Einstein (und viele andere) an der QM kritisierten. Schon sehr bald wurden Experimente durchgeführt, die die Verletzung der Bell'schen
Ungleichungen belegen.

Wenn wir das Experiment von Alice und Bob nach Einstein interpretieren, dann ist die Tatsache, dass der Zustand bei Bob **sicher** nach unten abgelenkt wird, wenn er bei Alice nach oben abgelenkt wird, ein Zeichen dafür, dass diese Ablenkung des Spins nach unten auf eine feste physikalische Eigenschaft zurückgef'ührt werden kann. Sie kommt ihm zu, egal was Alice an ihrem Stern-Gerlach macht. Die Unsicherheit, dass er nämlich manchmal nach oben, manchmal nach unten abgelenkt wird, muss an verborgenen Parametern liegen, die wir noch nicht kennen.

Wenn wir die Ergebnisse der QM nicht infrage stellen, so ist es ziemlich egal, ob die oben
angeführtten Axiome endgültig sind, oder ob es noch irgendwelche verborgene Parameter
gibt. Von daher gesehen, sind die Bell'schen Ungleichungen für das Quantenrechnen nicht

von grosser Bedeutung. Da aber in der Literatur oft ein verschiedener Standpunkt vertreten
wird, sein diese Ungleichungen hier kurz behandelt, zumal sie wesentlich zum Verständnis
der Besonderheiten der QM beitragen.

Bei vorher dem beschriebenen Experimenten sind die Stern-Gerlachs stets in die selbe Richtung \vec{a} ausgerichtet. Beim Experiment misst Alice den (doppelten) Spin in diese Richtung \vec{a} , d.h. manchmal +1 manchmal -1, der resultierende Erwartungswert ist 0: $\langle \vec{\sigma} \cdot \vec{a} \rangle = 0$, genauso ist es bei Bob. Wenn aber beide den gleichen Zustand mit Gesamtspin 0 untersuchen, dann ist das Ergebnis stets -1:

$$\langle \mathbf{J}_{AB} = 0 | ((\vec{\boldsymbol{\sigma}}_A \cdot \vec{a}) \otimes (\vec{\boldsymbol{\sigma}}_B \cdot \vec{a}) | \mathbf{J}_{AB} = 0 \rangle = -1, \qquad (2.68)$$

denn wenn Alice +1 misst dann Bob -1 und umgekehrt. Bells originelle Idee war, die Stern Gerlachs von A und B in verschiedene Richtungen zeigen zu lassen, d.h. den quantenmechanischen Erwartungswert von $((\vec{\sigma}_A \cdot \vec{a}) \otimes (\vec{\sigma}_B \cdot \vec{b})$ messen zu lassen, der sich leicht berechnen lässt.

$$P_{QM}(\vec{a}, \vec{b}) = \langle \mathbf{J}_{AB} = 0 | ((\vec{\sigma}_A \cdot \vec{a}) \otimes (\vec{\sigma}_B \cdot \vec{b}) | \mathbf{J}_{AB} = 0 \rangle$$

$$= \frac{1}{2} \langle (\langle 10| - \langle 01|) (\vec{\sigma}_A \cdot \vec{a}) \otimes (\vec{\sigma}_B \cdot \vec{b}) (|10\rangle - |01\rangle) \rangle$$

$$= \frac{1}{2} \Big(\langle 1|\vec{\sigma}_A \cdot \vec{a}|1\rangle \langle 0|\vec{\sigma}_B \cdot \vec{b}|0\rangle - \langle 1|\vec{\sigma}_A \cdot \vec{a}|0\rangle \langle 0|\vec{\sigma}_B \cdot \vec{b}|1\rangle \right)$$

$$\langle 0|\vec{\sigma}_A \cdot \vec{a}|1\rangle \langle 1|\vec{\sigma}_B \cdot \vec{b}|0\rangle - \langle 0|\vec{\sigma}_A \cdot \vec{a}|1\rangle \langle 0|\vec{\sigma}_B \cdot \vec{b}|1\rangle \Big)$$

$$= \frac{1}{2} \Big(-a_3 b_3 - (a_1 + ib_y)(a_1 - ib_y) - a_3 b_3 \Big)$$

$$= -\vec{a} \cdot \vec{b}$$

¹¹¹⁷ wobei wir benutzt haben:

$$\langle 0|\vec{\boldsymbol{\sigma}}\cdot\vec{a}|0\rangle = a_3; \ \langle 1|\vec{\boldsymbol{\sigma}}\cdot\vec{a}|1\rangle = -a_3; \ \langle 0|\vec{\boldsymbol{\sigma}}\cdot\vec{a}|1\rangle = a_1 + \boldsymbol{i}a_y; \ \langle 1|\vec{\boldsymbol{\sigma}}\cdot\vec{a}|0\rangle = a_1 - \boldsymbol{i}a_y \qquad (2.69)$$

also erhalten wir das quantenmechanische Resultat

$$P_{QM}(\vec{a}, \vec{b}) = -\vec{a} \cdot \vec{b} = \cos \theta_{\vec{a}\vec{b}}.$$
(2.70) bell-qm

Im Sinne von EPR können die Eigenschaften der von A und B gemessenen Zustände noch von einem verborgenen Parametern λ abhängen, der zur Beschreibung notwendig ist, der aber inhärent den beiden Zuständen ist, also unabhängig von der Einstellung der Stern-Gerlach Richtungen \vec{a} und \vec{b} . Das Resultat der Messung von $\vec{\sigma} \cdot \vec{a}$ und $\vec{\sigma} \cdot \vec{b}$ sei $A(\vec{a}, \lambda)$ und $B(\vec{b}, \lambda)$, resp.

¹¹²⁴ Die entscheidende Annahme in der EPR Argumentation ist, dass Resultat der Messung ¹¹²⁵ von der Messung von Bob, $B(\vec{b}, \lambda)$ nicht von der Einstellung von Alice, \vec{a} abhängt, es kann ¹¹²⁶ aber sehr wohl noch von einem (oder auch mehreren) verborgenen Parametern abhängen. ¹¹²⁷ Das Ergebnis vieler Messungen ist dann gegeben durch das Integral über die Verteilung ¹¹²⁸ der Parameter $\rho(\lambda)$, mit $\int d\lambda \rho(\lambda) = 1$. Der klassische Erwartungswert der Messung von ¹¹²⁹ $\vec{\sigma}_A \cdot \vec{a} \quad \vec{\sigma}_B \cdot \vec{b}$ ist dann

$$\langle \vec{\boldsymbol{\sigma}}_A \cdot \vec{a} \quad \vec{\boldsymbol{\sigma}}_B \cdot \vec{b} \rangle_{\text{class}} = P_{\text{class}}(\vec{a}, \vec{b}) = \int d\lambda \rho(\lambda) A(\vec{a}, \lambda) B(\vec{b}, \lambda)$$
(2.71)

¹¹³⁰ Nun berücksichtigen wir, dass bei jedem Versuch, bei dem die Magnete in die gleich Richtung ¹¹³¹ eingestellt sind (d.h. $\vec{a} = \vec{b}$) die Strhlen in jeweils entgegengesetzt Richtung abgelenkt werden, ¹¹³² also

$$A(\vec{a},\lambda) = -B(\vec{a},\lambda) \tag{2.72} \quad \texttt{ab}$$

1133 Es spielt ja keine Rolle, welche Richtung wir die z-Richtung nennen.

¹¹³⁴ Ferner gilt: Bei jeder Einzel-Messung, gleichgültig in welche Richtung, wird der Strahl nach
¹¹³⁵ oben oder unten abgelenkt, d.h

$$A(\vec{a},\lambda) = \pm 1; \quad B(\vec{b},\lambda) = \pm 1 \tag{2.73}$$
 sab

1136 Damit erhalten wir

$$P_{\text{class}}(\vec{a}, \vec{b}) - P_{\text{class}}(\vec{a}, \vec{c}) = \int d\lambda \rho(\lambda) (A(\vec{a}, \lambda) B(\vec{b}, \lambda) - A(\vec{a}, \lambda) B(\vec{c}, \lambda))$$

$$= -\int d\lambda \rho(\lambda) [A(\vec{a}, \lambda) A(\vec{b}, \lambda) - A(\vec{a}, \lambda) A(\vec{c}, \lambda)]$$

$$= -\int d\lambda \rho(\lambda) A(\vec{a}, \lambda) A(\vec{b}, \lambda) [1 - A(\vec{b}, \lambda) A(\vec{c}, \lambda)]$$

since $A(\vec{b}, \lambda)^2 = 1$, see $(\stackrel{\text{sab}}{2.73})$ Using the triangle inequality we obtain:

$$\begin{aligned} |P_{\text{class}}(\vec{a}, \vec{b}) - P_{\text{class}}(\vec{a}, \vec{c})| &\leq \int d\lambda \rho(\lambda) |A(\vec{a}, \lambda) A(\vec{b}, \lambda)[1 + A(\vec{b}, \lambda) B(\vec{c}, \lambda)] \\ &\leq \int d\lambda \rho(\lambda)[1 + A(\vec{b}, \lambda) B(\vec{c}, \lambda)] = 1 + P_{\text{class}}(\vec{b}, \vec{c}) \boxed{\texttt{bell-cl}} \end{aligned}$$

where we have used $(\stackrel{ab}{2.72})$, $(\stackrel{sab}{2.73})$ und $\rho(\lambda) \ge 0$. Die Ungleichung

$$|P_{\text{class}}(\vec{a},\vec{b}) - P_{\text{class}}(\vec{a},\vec{c})| \le \int d\lambda \rho(\lambda) [1 + A(\vec{b},\lambda) B(\vec{c},\lambda)] = 1 + P_{\text{class}}(\vec{b},\vec{c})$$
(2.74) bell-u

ist eine Form der Bell'schen Ungleichungen, die aus der klassische Wahrscheinlichkeitsver-teilungen der verborgenen Parameter folgt.

¹¹⁴² Diese Ungleichung ($\begin{array}{c} 2.74 \\ pell-u \\ pell-frig \\ 2.4 \\ sieht: Setzt man in der aus klassischen Überlegungen gewonnene$ $¹¹⁴³ ungleichung (<math>\begin{array}{c} 2.74 \\ pell-d \\ 2.70 \\ pell-d \\ man \\ mann, dass es nahe \\ \theta = 0 \\ und \\ \theta = 2\pi \\ Bereiche gibt, in dene die Ungleichung verletzt$ ¹¹⁴⁵ ist.

¹¹⁴⁷ Die wichtigsten Schritte der Ableitung der Ungleichung und ihre Verletzung durch die QM ¹¹⁴⁸ sind in Abb. 2.5 zusammengefasst.

Es hat nur sehr wenige Physiker verwundert, dass die Experimente zeigten, dass die Bellschen
Ungleichungen verletzt sind. John Bell antwortete auf die Frage, ob er erwartet habe, dass
seine Ungleichungen erfüllt seien:

You must distinguish between "expected" and "hoped for".

$$|P_{\text{class}}(\vec{a}, \vec{b}) - P_{\text{class}}(\vec{a}, \vec{c})| \leq 1 + P_{\text{class}}(\vec{b}, \vec{c}) \qquad \vec{a}$$

$$P_{\text{QM}} = -\vec{a} \cdot \vec{b} = -\cos \theta_{ab}$$

$$|\cos 2\theta - \cos \theta| > 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| > 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

$$|cos 2\theta - \cos \theta| = 1 - \cos \theta$$

bell-fig Abbildung 2.4: Unvereinbarkeit der Bell'schen Ungleichung ($\begin{array}{c} bell-u\\ 2,74 \end{array}$, das aud klassischen überlegungen nach EPR basiert, mit dem Ergebnis der QM, ($\begin{array}{c} 2.70 \end{array}$, das experimentell bestätigt ist. Setzt man ($\begin{array}{c} 2.70 \end{array}$) in die Ungleichung ($\begin{array}{c} 2.74 \end{array}$) ein, so sieht man dass es nahe $\theta = 0$ und $\theta = 2\pi$ Bereiche gibt, in dene die Ungleichung ($\begin{array}{c} 2.74 \end{array}$) verletzt ist. \vec{a} , \vec{b} vecc sind drei Vektoren in einer Ebene mit $\theta_{\vec{a}\vec{c}} = \theta_{\vec{c}\vec{b}} = \theta$; $\theta_{\vec{a}\vec{b}} = 2\theta$

¹¹⁵³ Der Mathematiker Yu.I.Manin hat eine recht originelle Interpretation:

With hindsight, one recognizes in Bell's setup the first example of the game-like situation where quantum players can behave demonstrably more efficiently than the classical ones.

1157 2.3.5 Fouriertransformation mit Qubits*

¹¹⁵⁸ wird am 8.6. behandelt.

ern-bell Abbildung 2.5: Die wichtigsten Schritte der Ableitung der Bellschen Ungleichung in einer Einstein-realistischen" Theorie und ihre Verletzung durch die QM

1159 Kapitel 3

Grundsätzliches

3.1 Superposition und Gemisch

Für das QC ist der reiche Informationsgehalt der Qubits entscheidend, deshalb ist die Superposition verschiedener (reiner) Zustände, die wieder zu einem (reinen) Zustand führtt, so wichtig. Deshalb ist es nötig zwischen Superposition (Überlagerung) und Mischung streng zu unterscheiden. Der Zustand, der durch einen Spinor

$$\frac{1}{\sqrt{2}}\left(|\uparrow_{3}\rangle+|\downarrow_{3}\rangle\right) = \frac{1}{\sqrt{2}}\left(\left(\begin{array}{c}1\\0\end{array}\right)+\left(\begin{array}{c}0\\1\end{array}\right)\right) = \frac{1}{\sqrt{2}}\left(\begin{array}{c}1\\1\end{array}\right) = |\uparrow_{1}\rangle$$

beschrieben wird, ist wieder ein reiner Zustand, nämlich ein in +x Richtung polarisierter Zustand. Auf die Phase zwischen den beiden Summanden kommt es entscheidend an: Der Zustand, der durch einen Spinor

$$\frac{1}{\sqrt{2}}\left(|\uparrow_{3}\rangle-|\downarrow_{3}\rangle\right) = \frac{1}{\sqrt{2}}\left(\left(\begin{array}{c}1\\0\end{array}\right)-\left(\begin{array}{c}0\\1\end{array}\right)\right) = \frac{1}{\sqrt{2}}\left(\begin{array}{c}1\\-1\end{array}\right) = |\downarrow_{1}\rangle$$

¹¹⁶² beschrieben wird, ist zwar auch wieder ein reiner Zustand, aber, wie man leicht nacHilber-¹¹⁶³ träumechnet, in ein in -x Richtung polarisierter.

Hat man einen Strahl von Teilchen mit Spin $\frac{1}{2}$, bei dem die keine Phasenbeziehung zwischen den einzelnen Zustäne besteht, so spricht man von einem Gemisch. Nehmen wir an wir haben einen Strahl von Teilchen, der zu gleichen Teilen aus solchen mit Spin $+\frac{1}{2}$ und $-\frac{1}{2}$ besteht, so heisst dieses unpolarisiertes Gemisch Es wird durch die Dichtematrix

$$\rho = \frac{1}{2} \left(\begin{array}{cc} 1 & 0\\ 0 & 1 \end{array} \right), \tag{3.1}$$

¹¹⁶⁸ beschrieben . Bei einem teilpolarisierten Strahl hat die Dichtematrix die Form

$$\rho = \begin{pmatrix} a & \alpha^* \\ \alpha & 1-a \end{pmatrix} = \frac{1}{2}(1 + \vec{P} \cdot \vec{\sigma}).$$
(3.2)

1169 wobei \vec{P} die (Teil-) Polarisationsrichtung ist.

gemisch Abbildung 3.1: Die kohärente Überlagerung von $\frac{1}{\sqrt{2}}(|\uparrow_3\rangle + |\downarrow_3\rangle) = \frac{1}{\sqrt{2}}|\uparrow_1\rangle$ spaltet im nach z sortierenden Stern-Gerlach A) in zwei gleichstarke Teilchenstrahlen auf, genauso wie das durch die Dichtematrix $\rho = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ beschriebene Gemsch (unpolarisierter Strahl). Im nach der x Richtung sortierenden Stern-Gerlach B) spaltet die kohärente Überlagerung nicht auf, wohl aber ein unpolarisierter Strahl.

Ein unpolarisierter Strahl ($\vec{P} = 0$) wird in einem Stern-Gerlach Versuch immer in 2 gleich starke Strahlen aufspalten, gleichgültig, nach welcher Richtung der Magnet gerichtet is s. Abb. 3.1.

1173 3.1.1 Dekohärenz

Ein Hauptproblem bei der Konstruktion von QCn besteht darin, die Kohärenz einer Superposition zu erhalten. Durch Wechselwirkung mit der Umwelt (das sind effektiv Messungen)
werden gehen die Phasenbeziehungen zwischen den Komponenten einer Überlagerung verloren und wir landen nach einer gewissen Zeit bei einem Gemisch, s. Abb. 3.2 uns ??.

1178 Dieser Effekt der "Dekohärenz", (H.D. Zeh) führtt zu einer Zunahme der Entropie eines 1179 Systems (s. Abschn. ??)

dekoAbbildung 3.2: Durch die Wechselwirkung mit der Umgebung kann die Kohärenz einer Über-
lagerung verloren gehen, sie wird i. A. zu einem Gemisch. Bei makroskopischen Körpern reicht
schon die Wechselwirkung mit der kosmischen Hintergrundstrahlung aus, um Dekohärenz in
kürzester Zeit zu bewirken

Abbildung 3.3: **Dekohä**renz eines N-Qubit Zustandes

Bei makroskopischen Körpern ist die Wechselwirkung mit der Umgebung so stark, dass die
"Kohärenzzeit" im Sub-Nanosekunden Bereich liegt. Deshalb hat noch niemand die (kohärente) Überlagerung einer wachen und schlafenden Katze beobachtet.

1183 3.1.1.1 Kohärenz und Dekohärenz in der Optik

Da unsre Vorstellung von rein elektromagnetischen Vorgängen durch die klassische E-dynamik
geprägt ist, entspricht hier die Kohärenz sehr viel eher unsrer Vorstellung, als das Gemisch.
Haben wir zwei Strahlungsquellen, bei denen die eine Licht, das in x-Richtung polarisiert ist,
ausstrahlt, die andere Licht, das in y-Richtung polarisiert ist, dann ist die Lösung für das
Gesamtsystem eine Überlagerung der beiden Lösungen, da die Maxwell-Gleichungen linear

Nicht überlappend: Gemisch, Unpolarisiert

Abbildung 3.4: Überlagerung und Gemisch in der Optik. Nur wenn zwei Photonen eine feste Phasenbeziehung haben, bilden sie eine Überlagerung. Dies ist z.B. beim Laser der Fall. Bei einem gewöhnlichen Leuchtmittel (z.B. LED) werden die Photonen unkorreliert ausgesandt, sie bilden ein Gemisch.

¹¹⁸⁹ in den Feldern sind. Daher erhalten wir eine in x - y Richtung polarisierte Welle. So wie es ¹¹⁹⁰ ungewohnt ist in der Punktmechanik die Superposition zu verstehen, so schwer ist es in der ¹¹⁹¹ E-Dynamik zu verstehen, warum Licht i. A. unpolarsiert ist.

¹¹⁹² Der Grund für die Mischung liegt darin, dass normalerweise Lichtquanten in atomaren Pro-¹¹⁹³ zessen entstehen und deswegen der klassische Wellenzug, dem ein Photon entspricht, nur eine ¹¹⁹⁴ endliche Länge hat $(c \times \tau)$. Unpolariesertes Licht ist also in der klassischen E-dynamik eine

endliche Länge hat $(c \times \tau)$. Unpolariesertes Licht ist also in der klassischen E-dynamik eine Mischung von nicht überlappenden Wellenzügen mit verschiedenen Polarisationsrichtungen.

¹¹⁹⁶ Die Situation ist beim Laser verschieden, da hier die Wellenzüge kohäerent sind und sehr ¹¹⁹⁷ lang sein können.

¹¹⁹⁸ Kapitel 4

¹¹⁹⁹ Die "Quanten" Fourier ¹²⁰⁰ Transformation

¹²⁰¹ 4.1 Fourier Transformation und Fourier Reihe

Die Fourier-Transformation ist eine harmonische Analysis, d.h. eine Darstellung einer Funktion durch —Überlagerung periodische Funktionen. Sie ist daher z. B. in der Akustik bedeutend. Unser Ohr führt eine Art Fourieranalyse des Schalldrucks durch und sie spielt bei
Sprachanalyse, bei der akustischer Kompression (MP3), und auch der Signalübermittlung
allgemein (G5) eine wichtige Rolle. Algorithmen zur schnellen Durchführung der Fourieranalyse waren daher schon im klassische Computing wichtig (FFA fast Fourier analysis, s.
nächste Vorlesung Marquard).

Auch in der QM ist die Fourier Transformation sehr bedeutend. Sie erlaubt den Übergang zwischen der Ortsdarstellung, in dem die Observable Ort eine Multiplikation und der Impuls eine Ableitung ist, d.h. Ortsoperator ist \mathbf{Q}_i und Impulsoperator $P_i = \frac{\hbar}{i} \partial_{Q_i}$ und der Impulsdarstellung in dem die Observable Impuls eine Multiplikation und die Observable Ort eine Ableitung ist. Der Übergang von der "Ortsdarstellung" f(q) zur Impulsdarstellung $\tilde{f}(p)$ ist:

$$\tilde{f}(p) = \frac{1}{\mathcal{N}} \int dq \, e^{ipq} \, f(q) \tag{4.1}$$

¹²¹⁴ In numerischen Anwendumgen muss das Integral durch eine Summe ersetzt werden. Im ¹²¹⁵ Hinblick auf Anwendungen im QC wählen wir als Integrationsgrenzen 0 und 2π und wählen ¹²¹⁶ 2^N Stützpunkte:

$$\tilde{f}_{k} = \frac{1}{\sqrt{2^{N}}} \sum_{\ell=0}^{2^{N}-1} e^{(i2\pi \, k \, \ell)/2^{N}} f_{\ell}, \quad \text{mit} \quad \tilde{f}_{k} = \tilde{f}(\frac{k}{2^{N}}), \quad f_{\ell} = f(\frac{\ell}{2^{N}})$$
(4.2) [fdis]

¹²¹⁷ d.h. die diskrete FT is eine Matrix, die die Vektoren $\{f_0, f_1, \cdots, f_{2^N-1}\}$ in die Vektoren ¹²¹⁸ $\{\tilde{f}_0, \tilde{f}_1, \cdots, \tilde{f}_{2^N-1}\}$ abbildet.

$$\tilde{f}_{k} = \sum_{\ell=0}^{M-1} F_{k\ell} f_{\ell}; \quad \text{mit} \quad F_{k\ell} = \frac{1}{\sqrt{M}} e^{(i2\pi \, k \, \ell)/M} \tag{4.3}$$

1219 Die Matrix \mathbf{F} ist unitär:

$$(\mathbf{F}^{\prime \dagger} \mathbf{F})_{k\ell} = \frac{1}{M} \sum_{k'=0}^{M-1} (e^{(-i2\pi \, k' \, k)/M} e^{(i2\pi \, k' \, \ell)/M} \\ = \frac{1}{M} \sum_{k'=0}^{M-1} (e^{i2\pi \, k' \, (\ell-k)/M} = \delta_{k\ell})$$

1220 Die letzte Gleichheit basiert auf der Gleichung

$$\sum_{k'=0}^{M-1} (e^{i2\pi \, k' \, (\ell-k)/M} = M \, \delta_{k\ell}, \quad M = 2^N \tag{4.4}$$

¹²²¹ Diese wichtige Relation basiert auf den periodischen Eigenschaften der *e*-Funktion, z. B. ¹²²² $e^{i\pi 2n} = 1$; $e^{i\pi (2n+1)} = -1$

I223 Zum Beweis von $(\stackrel{|zaub}{4.4})$ zeigt man, dass in der Summe $a = \sum_{k'=0}^{M-1} (e^{i2\pi k' (\ell-k)/M} \text{ mit } 0 < |\ell-k| \le M-1$ für jedes $e^{i2\pi k' (\ell-k)/M}$ ein Term $b = e^{i2\pi k' + (M*s/2)(\ell-k)/M} = \text{mit ungeradem}$ I225 s auftritt. d.h. a = -b.

¹²²⁶ Die QFT ist nichts anderes als eine Übertragung der diskreten FT ($\frac{\text{fdis}}{4.2}$) auf Qubits unter ganz ¹²²⁷ wesentlicher Ausnutzung der CB. Es ist daher nochmals wichtig, sich die etwas ungewohnte ¹²²⁸ Form der CB und ihre Darstellung durch Zahlen im Dualsystem zu verinnerlichen.

1229 4.2 Wiederholung: computatorische Basis

 $_{1230}$ Dieser Abschnitt ist eine Erweiterung von Sect. $\overset{|2q}{2.3}$.

Seien $|q\rangle_k$ computatorische Qubit Basen von *n* Hilbert-räumen,

$$|0\rangle_k = \begin{pmatrix} 1\\0 \end{pmatrix}; |1\rangle_k = \begin{pmatrix} 0\\1 \end{pmatrix};$$

1231 Dann besteht die computatorische Basis im N-Qubit Raum: aus den 2^N orthonormalen 1232 Vektoren

$$|q_1\rangle_1 \otimes |q_2\rangle_2 \cdots \otimes |q_N\rangle_N \equiv |q_1 q_2, \cdots q_N\rangle; \quad q_k = 0, \ 1 \tag{4.5}$$

Ein bra-vektor ist

$$\langle p_1 \, p_2, \cdots p_N | \equiv \langle p_1 |_1 \otimes \langle p_2 |_2 \cdots \otimes \langle p_N |_N$$

1233 d.h. wir haben

$$\langle p_1 p_2, \cdots p_n | q_1 q_2, \cdots q_N \rangle = \prod_{k=1}^N \langle p_k | q_k \rangle$$
 (4.6)

1234 Da jede ganze Zahl q eindeutig im Dualsystem dargestellt werden kann

$$q = q_1 \cdot 2^{N-1} + q_2 \cdot 2^{N-2} + \dots + q_N \cdot 2^0$$
(4.7) dubas

1235 können wir jeden Vektor $|q_1 q_2 \cdots q_N\rangle$ eindeutig bezeichnen als

$$|q_1 q_2 \cdots q_N\rangle \equiv |q_d\rangle \tag{4.8} \quad |\text{dual}$$

wobei der Index d andeuted, dass hier die Dualstellen von q stehen.

Wegen der Eindeutigkeit der Dualzerlegung gilt:

$$\langle p_d | q_d \rangle = \delta_{pq}$$

¹²³⁷ Es muss q_d stets als *N*-stellige Dualzahl geschrieben werden, also gegebenenfalls müssen links ¹²³⁸ Nullen aufgefüllt werde Haben wir etwa 3 Qubit-Räume, so ist $|1_d\rangle \equiv |001\rangle$

1239 Der allgemeine N-Qubit Zustand ist

$$\begin{pmatrix} \alpha_{0,1}|0\rangle_N + \alpha_{1,1}|1\rangle_1 \end{pmatrix} \otimes \begin{pmatrix} \alpha_{0,2}|0\rangle_2 + \alpha_{1,2}|1\rangle_2 \end{pmatrix} \otimes \cdots \otimes \begin{pmatrix} \alpha_{0,N}|0\rangle_N + \alpha_{1,N}|1\rangle_N \end{pmatrix} = (4.9)$$

$$= \begin{pmatrix} \alpha_{0,1} \\ \alpha_{1,1} \end{pmatrix} \otimes \begin{pmatrix} \alpha_{0,2} \\ \alpha_{1,2} \end{pmatrix} \otimes \cdots \otimes \begin{pmatrix} \alpha_{0,N} \\ \alpha_{1,N} \end{pmatrix}$$

$$= \sum_{\{q_k=0,1\}} \prod_{k=1}^N \alpha_{q_k,k} \cdots \alpha_{q_N,N} |q_1, q_2, \cdots q_N \rangle$$

$$= \sum_{\{q_k=0,1\}} \prod_{k=1}^N \alpha_{q_k,k} \cdots \alpha_{q_N,N} |q_d\rangle \text{ mit } q = q_1 \cdot 2^{N-1} + q_2 \cdot 2^{N-2} + \cdots + q_N \cdot 2^0 (4.11)$$

wobei die Summe über alle die 2^N möglichen Anordnungen von Nullen und Einsen in einem N-tupel geht.

¹²⁴² Wird ein Hadamard Gate $\mathbf{H} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, d.h. $\mathbf{H}|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$ auf jedes der N¹²⁴³ Qubits des Zustandes $|0_d\rangle$ angewandt, so erhalten wir

$$\mathbf{H}^{\otimes N}|0,0,\ldots 0\rangle = 2^{-N/2} (|0\rangle + |1\rangle) \otimes (|0\rangle + |1\rangle) \otimes \cdots (|0\rangle + |1\rangle)$$

$$(4.12)$$

$$= 2^{-N/2} (|00\cdots0\rangle + |10\cdots0\rangle + \dots + |101\cdots0\rangle + |111\cdots1\rangle) (4.13)$$

= $2^{-N/2} (|0_d\rangle + |1_d\rangle + \dots + |2^N - 1_d\rangle) (4.14)$

1244 4.2.1 Definition der FT in der CB

Die Quanten-Fouriertransformation ist analog $(\stackrel{\text{fdis}}{4.2})$ definiert, doch erfordert sie etwas Umdenken, da wir hier die Zahlen $f_{\ell}, \tilde{f}_{\ell}$ in $(\stackrel{\text{fdis}}{4.2})$ die als Elemente der CB in einem N-Qubit Raum auffassen.

Wir führen im N-Qubit Raum 2 Basissysteme ein: $|\tilde{p_d}\rangle$, $p = 0, 1, \dots 2^N - 1$ und $|q_d\rangle$, $p = 0, 1, \dots 2^N - 1$ 0, 1, ... $2^N - 1$

1250 Sie sind durch die Matrix der FT, $(\frac{\text{!fdismat}}{4.3})$ verknüpft:

$$|q_d\rangle \to \mathcal{F}(|q_d\rangle) = |\tilde{p_d}\rangle = \frac{1}{2^{N/2}} \sum_{q=0}^{2^{N-1}} e^{2\pi i q p/2^N} |q_d\rangle$$

$$(4.15) \quad \text{defqft}$$

1251 Haben wir einen Zustand

$$|\phi\rangle = \sum_{q=1}^{2^{N}-1} \phi_q |q_d\rangle \tag{4.16}$$

¹²⁵² wird dieser durch die FT linear abgebildet:

$$|\phi\rangle \to \mathcal{F}(|\phi\rangle) = |\tilde{\phi}\rangle = \sum \tilde{\phi}_p |\tilde{p}\rangle = \frac{1}{2^{N/2}} \sum_{q=0}^{2^{N-1}} \phi_q \, e^{2\pi i \, q \, p/2^N} |q_d\rangle \tag{4.17}$$

1253 d.h. die Fourier transformierte von ϕ_q ist:

$$\phi_q \to \tilde{\phi}_p = \frac{1}{2^{N/2}} \sum_{q=0}^{2^N - 1} e^{2\pi i \, q \, p/2^N} \phi_q \tag{4.18}$$

¹²⁵⁴ Wenn wir also ein Verfahren hätten, um eine Funktion $\phi(q)$ leicht in eine Summe von CB-¹²⁵⁵ Vektoren $|\phi\rangle = \sum_{q=1}^{2^{N-1}} \phi_q |q_d\rangle$ zu bringen, so könnten wir den Fouriertransformierten Zustand ¹²⁵⁶ leicht erzeugen. Leider ist offenbar ein generelles Verfahren für eine solche reversible Zuord-¹²⁵⁷ nung für periodisch Funktionen unmöglich. Wir betrachten z. B. die Zuordnung

$$\mathbf{A} : |q_d\rangle \to \phi(q) |\phi(q)_d\rangle. \tag{4.19}$$

¹²⁵⁸ Wenn die Funktion nicht umkehrbar eindeutig ist, wie z.B eine periodische Funktion mit ¹²⁵⁹ $\phi(q) = \phi(q + T)$, dann könnten die Urbilder vom Zustand $\phi(q_0)|\phi(q_0)_d\rangle$ alle die Vektoren ¹²⁶⁰ $|q_{0d}\rangle$, $|q_0 + T_d\rangle$, $|q_0 + 2T_d\rangle$,... sein, d.h. die Zuordnung ist nicht reversibel.

Erweitern wir den Hilbertraum \mathcal{H} zu einem Produkt $\mathcal{H} \otimes \mathcal{H}$, dann können wir eine reversible (unitäre) Abbildung leicht konstruieren:

$$\mathbf{\Phi}: |q_d\rangle \otimes |0_d\rangle \to |q_d\rangle \otimes |\phi(q)_d\rangle, \tag{4.20}$$
 ph

da hier die direkte Information über den Wert von q im Abbild, nämlich im ersten Faktor des Produktraumes, enthalten ist. Die Situation ist ähnlich wie beim CNOT gate.

Die Fouriertransformation eines einzelnen Basisvektors (^{defgft}/4.15) ist als unitäre Transformation durch Quantengatter zu erreichen. Bevor wir zu einer klassischen Anwendung der FT schreiten, nämlich der Frequenzanalyse, wollen wir diese Realisierung der Fourieranalyse, die der Architektur eines Quanten Computers besonders angebracht ist, behandeln.

¹²⁶⁹ 4.2.2 Auf Qubits adaptierte Form der Fourier-Transformierten

Wir gehen zurück zur Definition des CBasisvektor $|q_d\rangle$ als direktes Produkt der Basisvektoren eines Qubits, $|0\rangle$, $|1\rangle$

$$|q_d\rangle \equiv \bigotimes_{k=1}^N |q_k\rangle_k$$
 sowie $q = q_1 \cdot 2^{N-1} + \cdots + q_N \cdot 2^0$

1270 Damit schreiben wir die rechte Seite von $\begin{pmatrix} \frac{defgft}{4.15} \end{pmatrix}$ um

$$\mathcal{F}(|q\rangle) = |\tilde{p_d}\rangle = \frac{1}{2^{N/2}} \sum_{q=0}^{2^{N-1}} e^{2\pi i q p/2^N} |q_d\rangle =$$
(4.21)

$$= \frac{1}{2^{N/2}} \sum_{q_1=0}^{1} \cdots \sum_{q_N=0}^{1} e^{\frac{2\pi i p}{2^N} (q_1 \cdot 2^{N-1} + \cdots + q_k \cdot 2^{-k} + \cdot q_N \cdot 2^0)} \bigotimes_{k=1}^{N} |q_k\rangle_k$$
(4.22)

$$= \frac{1}{2^{N/2}} \bigotimes_{k=1}^{N} \sum_{q_k=0}^{1} e^{2\pi i p q_k \cdot 2^{-k}} |q_k\rangle_k$$
(4.23)

$$= \frac{1}{2^{N/2}} \bigotimes_{k=1}^{N} \left(|0\rangle + e^{2\pi i p \cdot 2^{-k}} |1\rangle \right)_{k}$$
(4.24)

wir setzen ein $p = \sum_{\ell=1}^{N} p_{\ell} \cdot 2^{N-\ell}$

$$|\tilde{p_d}\rangle = \frac{1}{2^{N/2}} \bigotimes_{k=1}^N \left(|0\rangle + e^{2\pi i \left(\sum_{l=1}^N p_l \cdot 2^{N-l-k}\right)} |1\rangle \right)_k$$
(4.25)

wir können vereinfachen, da $e^{2\pi \boldsymbol{i}(N-l-k)}=1$ für $l+k\leq N$

$$= \frac{1}{2^{N/2}} \bigotimes_{k=1}^{N} \left(|0\rangle + e^{2\pi i \left(\sum_{l=N-k+1}^{N} p_l \cdot 2^{N-l-k}\right)} |1\rangle \right)_k$$
(4.26)

$$= \frac{1}{2^{N/2}} \bigotimes_{k=1}^{N} \left(|0\rangle + e^{2\pi i \left(\sum_{r=1}^{k} p_{N-r-k} \cdot 2^{-r} \right)} |1\rangle \right)_{k}$$
(4.27)

1271 Es ist üblich, die folgende Dualbruch-Notation einzuführen:

$$0.p_N \equiv p_N \cdot 2^{-1} \tag{4.28}$$

$$0.p_{N-1}p_N \equiv p_{N-1}2^{-1} + p_N \cdot 2^{-2} \tag{4.29}$$

$$0.p_{N-k}p_{N-k+1}\cdots p_N \equiv p_{N-k}\cdot 2^{-1} + p_{N-k+1}\cdot 2^{-2} + \dots + p_N\cdot 2^{-k}$$
(4.30)

1272 Die Indizes $1 \cdots N$ indizieren die Qubits.

1273 Damit erhalten wir schliesslich:

$$\tilde{|p_d\rangle} = \frac{1}{2^{N/2}} \left[\left(|0\rangle + e^{2\pi i \, 0.p_N} |1\rangle \right)_1 \otimes \left(|0\rangle + e^{2\pi i \, 0.p_{N-1}p_N} |1\rangle \right)_2 \otimes \cdots \otimes \left(|0\rangle + e^{2\pi i \, 0.p_1p_2\dots p_N} |1\rangle \right)_N \right]$$

$$(4.31)$$

 1274 Diese Form der QFT ist für QC sehr bequem, da sie zeigt wie jedes der N Qubits des Rechneres durch ein unitäres Matrix-Gatter der Form

$$\left(\begin{array}{cc}
1 & 0\\
0 & e^{2\pi i\alpha}
\end{array}\right)$$
(4.32)

¹²⁷⁶ with $\alpha = .p_{N-k} p_{N-k+1} \cdots p_N$ transformiert wird.

Ein Beispiel: Sei N = 3 und p = 3. Die Dualdarstellung ist $3 = 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$, \dot{a}_{1278} d.h. $|\tilde{3}_d\rangle = |\tilde{0}11\rangle$; oder $p_1 = 0$, $p_2 = 1$, $p_3 = 1$ und damit $0.p3 = 2^{-1}$, $0.p_2p_3 = 2^{-1} + 1^{-2}$ 2^{-2} , $0.p_1p_2p_3 = 0 \cdot 2^{-1} + 2^{-2} + 2^{-3}$ und damit erhalten wir:

$$|\tilde{\mathbf{3}}_d\rangle = (|0\rangle + e^{\boldsymbol{i}\,\pi}) \otimes (|0\rangle + e^{\boldsymbol{i}\,\pi\cdot\mathbf{3}/2}) \otimes (|0\rangle + e^{\boldsymbol{i}\,\pi\cdot\mathbf{3}/4}) \tag{4.33}$$

4.3 Anwendung: Periodenbestimmung durch QFT

Eine wichtige Anwendung der üblichen FT ist die Frequenzbestimmung einer periodischen Funktion. Sei $\phi(q)$ eine Funktion mit ganzzahligen Argumenten und ganzzahligen Werten, $\mathbb{Z} \to \mathbb{Z}$ mit der Periode T d.h.

$$\phi(q) = \phi(q+nT), \ n \in \mathbb{Z} \tag{4.34} \text{ ph1}$$

¹²⁸⁴ Da wir schon die Schwierigkeiten mit der Zuordnung $|q_d\rangle \rightarrow \phi(k)|\phi(q)_d\rangle$ gesehen hatten, ¹²⁸⁵ gehen wir gleich zu einer Darstellung der Funktion im Produktraum.

- Die allgemeine Sprachregelung ist: Ein Zustand in einem direkten Produkt zweier Qubit-Hilberträume $\mathcal{H}_1 \otimes \mathcal{H}_2$, mit jeweils den Dimensionen 2^M bzw. 2^N , heisst Quantenregister. Der Faktor aus \mathcal{H}_1 heisst Quantenregister QR1, der aus aus \mathcal{H}_2 heisst Quantenregister QR2
- Im nun betrachteten Falle sei QR1 der Zustand $\frac{1}{2^{M/2}}(|0_d\rangle + |1_d\rangle + \cdots + |(2^M 1)_d\rangle)^{-1}$, QR2 sei
- der Basisvektor $|0_d\rangle$ d.h. unser Zustand im Quantenregister ist:

$$|A\rangle \equiv \frac{1}{2^{M/2}} \underbrace{\left(\sum_{q=0}^{2^{M}-1} |q_d\rangle\right)}_{QR1} \otimes \underbrace{|0_d\rangle}_{QR2}$$
(4.35)

- ¹²⁹¹ Die Schmidtzahl N_{Sch} dieses Zustands is 1.
- ^{pn} Nun benutzen wir die reversible Zuordnung $(\overset{pn}{4.20})$:

$$\Phi\left(\left|q_{d}\right\rangle\otimes\left|0_{d}\right\rangle\right)=\left|q_{d}\right\rangle\otimes\left|\phi(q)_{d}\right\rangle\tag{4.36}$$

¹²⁹³ Dieses Zuordung wenden wir auf unser ganzes QR an und erhalten den Zustand:

$$|Z\rangle \equiv \frac{1}{2^{M/2}} \sum_{q=1}^{2^{M-1}} |q_d\rangle \otimes |\phi(q)_d\rangle \tag{4.37}$$

Hier ist die Schmidtzahl $N_{Sch} = T$.

Jetzt berücksichtigen wir die Periodizität der Funktion $\phi(q) = \phi(q + nT)$, aus der folgt:

 $^{1^{1}}$ Ein solcher Zustand läst sich durch das Hadamard Gatter, $(4.12)^{1}$ aus einem "leeren" Basisvektor
 $|0_{d}\rangle$ erzeugen

¹²⁹⁶ Jedem Basisvektor $|q_d\rangle$ der Summe in QR1, der die Form $|q_d\rangle = |(mT + q')_d\rangle$ hat ist der ¹²⁹⁷ gleiche Basisvektor aus QR2, nämlich $|\phi(q')_d\rangle$ zugeordnet. Damit faktorisiert $|Z\rangle$ (4.37):

$$|Z\rangle = \frac{1}{2^{M/2}} \sum_{q'=0}^{T-1} \left(\sum_{m=0}^{A} |(mT+q')_d\rangle \right) \otimes |\phi(q')_d\rangle + R$$
(4.38) [pf2]

wobei $(A+1)T - 1 \le 2^M - 1 < (A+2)T$ und $\frac{1}{\sqrt{2^M}} \sum_{q=A(T+1)}^{2^M - 1} |q_d\rangle \otimes |\phi(q)_d\rangle$

Der Einfachheit halber vernachlässigen wir den Rest R von der Ordnung $O\left(\frac{1}{2^{M/2}}\right)$ oder nehmen, um Fallunterscheidungen zu vermeiden an, dass $2^M/T \in \mathbb{Z}$, d.h. dass garkein Rest auftritt.

Als nächstes messen wir im \mathcal{H}_2 . Dabei wird die kohärente Summe in $\mathcal{H}_1 \otimes \mathcal{H}_2$ auf einen Summanden $q' = q_0$, $0 \leq q_0 \leq T - 1$, kollabieren. Sei der resultierende Zustand (das Resultat der Messung):

$$|B\rangle \equiv \left(\sum_{m=0}^{A} |(mT+q_0)_d\rangle\right) \otimes |\phi(q_0)_d\rangle \tag{4.39}$$

¹³⁰⁵ Der Wert von $q_0 \in \mathbb{Z}$ spielt im folgenden keine Rolle, d.h. es genügt eine Messung.

1306 Um die Periode T, die in der Summe der Basiszustände

$$|\Psi\rangle = \sum_{m=0}^{A} |(r_m)_d\rangle \quad \text{mit} \ |(r_m)_d\rangle = |(mT + q_0)_d\rangle \tag{4.40}$$

1307 enthalten ist, bestimmen wir die Fourierzerlegung von $|\Psi\rangle$.

¹³⁰⁸ Die Fourierreihe für einen einzelnen Basisvektor $|(r_m)_d\rangle$ ist:

$$|(\tilde{r_m})_d\rangle = \frac{1}{2^{N/2}} \sum_{p=0}^{2^{M-1}} e^{2\pi i r_m p/2^M} |p_d\rangle$$
(4.41)

1309 Die Fourierreihe für den Zustand $\frac{1}{\sqrt{A}}|\Psi\rangle$ ist damit:

$$\frac{1}{\sqrt{A}} |\tilde{\Psi}\rangle = \frac{1}{\sqrt{A \, 2^M}} \sum_{m=0}^{A} \sum_{p=0}^{2^{M-1}} e^{2\pi i \, (m \, T + q_0) \, p/2^M} |p_d\rangle$$

$$= \frac{1}{\sqrt{A \, 2^M}} \sum_{p=0}^{2^{M-1}} \underbrace{e^{2\pi i \, q_0 \, p/2^M}}_{m=0} \sum_{m=0}^{A} e^{2\pi i \, m \, T \, p/2^M} |p_d\rangle$$
(4.42)

¹³¹⁰ Führen wir in der Fourier-Darstellung von $|\Psi\rangle$ eine Messung durch, in der der Zustand als ¹³¹¹ Überlagerung von Basisvektoren $|p_d\rangle$ dargestellt ist und projizieren durch eine Messung auf ¹³¹² einen solchen Vektor, so ist die Wahrscheinlichkeit Prob (p_0) , dass wir auf den den speziellen ¹³¹³ ket $|p_0\rangle$ projezieren, d.h. das Resultat unsrer Messung, gegeben durch das Betragsquadrat ¹³¹⁴ des Koeffizienten von $|\tilde{p_{0d}}\rangle$, also $|\alpha(p)|^2$.

$$\operatorname{Prob}(\mathbf{p}_{0}) = \frac{1}{A \, 2^{M}} |e^{2\pi i \, q_{0} \, p_{0}/2^{M}}|^{2} |\sum_{m=0}^{A} e^{2\pi i \, m \, T \, p_{0}/2^{M}}|^{2}$$
(4.43)

Die Terme der Summe $\sum_{m=0}^{m} Ae^{2\pi i mTp_0/N}$ heben sich wegen der Oszillationen der *e*-Funktion weitgehend auf, nur wenn $p_0 = p_R$ mit

$$\frac{p_R T}{2^M} \in \mathbb{Z} \tag{4.44} \quad \texttt{resfin}$$

ist, addieren sie sich alle und nur der Term mit $|p_{Rd}\rangle$ hat einen grossen Koeffizienten. Bei einer Messung an $\frac{1}{\sqrt{A}}|\tilde{\Psi}\rangle$ wird also mit sehr grosser Wahrscheinlichkeit auf den Zustand $|(p_R)_d\rangle$ projiziert. Damit haben wir P_R bestimmt, und aus (4.44) folgt, dass die Periode Tein ganzzahliges Vielfaches von $\frac{2^M}{p_R}$ ist.

¹³²¹ Möglicherweise ist allerdings $\frac{2^M}{p_R}$ keine ganze Zahl und mit mehreren Tests muss eine ganze ¹³²² Zahle in der Nähe von $n \cdot \frac{2^M}{p_R}$ ein ganzzahliges Vielfaches gesucht werden.

¹³²³ Wichtig bei dem ganzen Vorgehen ist, dass man sehr leicht prüfen kann (in von der Zahl 2^N ¹³²⁴ unabhängigen Schritten), ob T tatsächlich die gesuchte Periode ist, d.h. ob $\phi(q) = \phi(q+T)$ ¹³²⁵ ist.

1326 4.3.1 Zusammenfassung

¹³²⁷ Wir fassen die Schritte zusammen, besonders im Hinblick auf die durch die QM relevanten
 ¹³²⁸ Punkte, s. auch Abb. 4.1

Der erste Schritt ist die Herstellung eines Quantenregisters $\in \mathcal{H}_1 \otimes \mathcal{H}_2$. Es ist der Zustandsvektor $|A\rangle$, s. ($\ddot{\mathcal{H}}.35$). Dieser (reine) ist das Produkt zweier Zustandsvektoren aus \mathcal{H}_1 bzw. \mathcal{H}_2 , die Schmidtzahl ist also $N_{Sch} = 1$, es liegt keinerlei Verschränkung vor. Eine Messung in einem der beiden Räume hat also keinerlei Konsequenzen für den Zustand im anderen.

Beim beim 2. Schritt wird durch die reversible Transformation Φ der Zustand $|A\rangle$ in $|\Psi\rangle$ ¹³³³ überführt s. (4.37). Durch Ausnuzung der Periodizität der Funktion $\phi(q)$ (s. (4.34)) lässt ¹³³⁵ sich $|\Psi\rangle$ in eine Schmidt-Darstellung bringen: (4.38); die Schmidtzahl hat für $|\Psi\rangle$ den Wert ¹³³⁶ $N_{Sch} = T$. Hier liegt nun Verschränkung vor: der Zustand $|\phi(q_0)_d\rangle \mathcal{H}_2$ ist verschränkt mit ¹³³⁷ dem Zustand $\sum_m |(q_0 + mT)_d\rangle$ und eine Messung in \mathcal{H}_2 führt zu einer Projektion auf den ¹³³⁸ Verschränkten Partner in \mathcal{H}_1 .

¹³³⁹ Im dritten Schritt wird eine solce Messung in \mathcal{H}_2 durchgeführt, und wir haben in \mathcal{H}_1 den ¹³⁴⁰ Verschränkungspartner des gemessenen Zustands in \mathcal{H}_2 .

¹³⁴¹ Im vierten Schritt wird eine Fouriertransformation in cH_1 durchgeführt, sie ist ein Übergang ¹³⁴² von den Basisvektoren $|q_d\rangle$ zu $|\tilde{p_d}\rangle$, s. $(\overline{4.42})$.

Abbildung 4.1: Bich Sinder itte bei der Periodenbestimmung

mfourier 4.3.2 Numerisches Beispiel

¹³⁴³ Im 5. Schritt wird dann eine Messung als Projektion auf die Basisvektoren $|\tilde{p}_d\rangle$ durchgeführt. ¹³⁴⁴ Diese Messung reultiert mit grosser Wahrscheinlichkeit mit einem Basisvektor $|\tilde{p}_{Rd}\rangle$, und die ¹³⁴⁵ gesuchte Periode ist ein ganzzahliges Vielfaches von p_R .

¹³⁴⁶ Wir sehen, dass bei jedem Schritt die kohärente Überlagerung von Zuständen wesentlich ist,
¹³⁴⁷ die Verschränkung spielt im 3. Schritt die entscheidende Rolle.

¹³⁴⁸ Wir betrachten die Funktion $\phi(q) = \text{mod}(7^q, 247)$, die uns später bei der Priemzahlzerlegung ¹³⁴⁹ nochmals begegnen wird.

Abbildung 4.2: Izien Betragsquadrate der Koeffizienten von $|y_d\rangle$

1351 Für \mathcal{H}_2 muss N so gross sein, dass $2^N \ge 229$, d.h. N = 8

¹³⁵² Messung in in \mathcal{H}_2 durchgeführt. Haben wir etwa als Resultat von der Messung im \mathcal{H}_2 die ¹³⁵³ auf den Basisvektor $|49_d\rangle$ projiziert erhalten, ist der resultierende Zustand:

$$\frac{1}{\sqrt{8}} \left(|2_d\rangle + |14_d\rangle + |26_d\rangle + |38_d\rangle + |50_d\rangle + |62_d\rangle + |74_d\rangle + |86_d\rangle \right) \otimes |49_d\rangle = \left(\frac{1}{\sqrt{8}} \sum_{n=0}^7 |(2+12n)_d\rangle \right) \otimes |49_d\rangle$$
(4.45)

¹³⁵⁴ Wir fouriertransformieren den Teil aus $\mathcal{H}_1 \frac{1}{\sqrt{8}} \sum_{n=0}^7 |(2+12n)_d\rangle$ z. B. mit 5 Qubits: Q =¹³⁵⁵ $2^5 = 32$

$$\frac{1}{\sqrt{8}}\sum_{n=0}^{7} |2+12\,n_d\rangle = \frac{1}{\sqrt{8\cdot32}}\sum_{y=0}^{31}\sum_{n=0}^{7} e^{2\pi i \, y \, (2+12\,n)/32} |y_d\rangle$$

¹³⁵⁷ Die Betragsquadrate der Koeffizienten von $|y_d\rangle$ sind in Abb. $\overline{4.2}^{\text{num}}$ aufgetragen. Daraus sehen ¹³⁵⁸ wir, dass wir mit einer grossen Wahrscheinlichkeit die Werte $y = 8, 16, \cdots$ messen.

1359 Also wissen wir dass $T \cdot y/2^5 = T \cdot 8/32 \in \mathbb{Z}$ oder $T = n \cdot \frac{32}{y} = n \cdot \frac{32}{8} = n \cdot 4$

also ist $T = 4, 8, 12, 16 \cdots$ in übereinstimmung mit der tatsächlichen Periode T = 12.

1361 Kapitel 5

Basis des Shore'schen Algorithmus.

¹³⁶³ Es ist noch nicht klar, in wievielen Bereichen ein QC einem klassischen PC wesentlich über¹³⁶⁴ legen ist. Wir hatten ja in der letzten Stunde von Herrn Marquard gehört, wie wenig die
¹³⁶⁵ Quanten-Komplexitätstheorie entwickelt ist.

¹³⁶⁶ Die teilweise recht reisserischen Aussagen über die eminente Uberlegenheit eines Quanten¹³⁶⁷ computers über einen klassischen sind meist mit der Übersetzungsvorschrift zu lesen:

A typical example is $\dots \Rightarrow$ The best example I can think of

¹³⁶⁹ So wäre z.B. der folgende Satz korrekt:

Mit Hilfe eines Quantencomputers ist es möglich innerhalb von Millisekunden Vorgänge darzustellen, die auch der schnellste Supercomputer niemals generieren könnte.

¹³⁷³ Es handelt sich dabei um eine Reihe von echten Zufallsevents, die Herr Marquard öfters
¹³⁷⁴ erwähnt hat und die mit dem inhärent stochstischem Charakter der QM zusammenhängen.

Eines der wenigen Beispiele für die drastische Überlegenheit eines Quantencomputers über
einen klassischen ist die Zerlegung einer (riesig grossen) Zahl in Primzahlen mit Hilfe des
Shore'schen Algorithmus. Sie ist nach gegenwärtigem Stand auf einem klassischen Computer
nur mit exponentiell ansteigendem Aufwand durchfürbar, während sie über die Quanten FT
mit polynomial anwachsendem Aufwand lösbar ist.

Die bei der gesamten Digitalisierung gegenwärtig eminent wichtige asymmetrische Verschlüsselung hängt ganz stark an der "praktischen Unlösbearkeit" der Primzahlzerlegung sehr grosser
Zahlen ab. Daher die mögliche Entschlüsselung der bisher als sicher eingestufter Verschlüsselungen das QC im Augenblick besonders aktuell.

Das Schema der Ver- und Entschlüsselung nach Rivest, Shamir, and Adleman (RSA) ist in
 Abb. 5.1 dargestellt.

Asymmetrische Verschlüsselung

Abbildung 5.1: A konstruiert aus dem Produkt zweier Primzahlen $n = p \cdot q$ das Schloss a, das er, zusammen mit der Zahl n der Öffentlichkeit mitteilt. Dadurch wird eine Botschaft M verschlüsselt, als $c = M^a \mod n$. Mithilfe des Schlüssels b, der geheim bleibt, kann A die von B verschlüsselte Nachricht leicht entschlüsseln, nämlich $M = c^b \mod n$. Der Schlüssel b ist das inverse Element des Schlosses, des Elements $[a]_{(p-1)\cdot(q-1)}$ der primen Restklasse, $(Z/Z_{(p-1)\cdot(q-1)})^*$. Durch Auffinden der Faktoren p und q der Zahl n mit Hilfe der Quanten Fourier-Transformation kann ein Hacker aus a, p und q den Schlüssel b mit polynomialen Aufwand finden.

g-versch

Wie aus der Erklärung der Figur ^{fig-versch} 5.1 deutlich erkennbar, spielt bei der Verschlüsselung die 1386 Zahlentheorie, der scheinbar esoteristschste Zweig der Mathematik, die entscheidende Rolle. 1387 Daher beschäftigt sich der erste Abschnitt etwas ausführlicher mit den relevanten Aspekten 1388

der Zahlentheorie. 1389

Für Verschlüsselung und Entschlüsselung wichtige 5.11390 Elemente der Zahlentheorie 1391

Notation und Begriffe 5.1.11392

Allgemein gebräuchlichem Begriffe wie Primzahl, Primzahlzerlegung etc werden vorausge-1393 Nichtnegative ganze Zahlen: $\{0, 1, 2 \cdots\}$ \mathbb{N}

 $\{1, 2 \cdots \} \\ \{\cdots - 2, -1, 0, 1, 2 \cdots \}$ stezt. Positive ganze Zahlen: \mathbb{N}^* 1394 ganze Zahlen: \mathbb{Z}

- natürliche Zahlen: Notation etwas uneinheitlich, entweder \mathbb{N} oder \mathbb{N}^* 1395
- Wenn nicht anders angegeben: römische Buchstaben; (mindestens) ganze Zahlen. 1396

- 1397 Zwei ganze Zahlen a, b heissen **coprim** oder relativ prim:
- ihr grösster gemeinsamer Teiler (gcd) ist 1: a, b coprim \Leftrightarrow gcd(a, b) = 1
- 1399 Kongruenz
- ¹⁴⁰⁰ a kongruent b modulo $n: a \equiv b \mod n \Leftrightarrow a b$ teilbar durch n d.h. $b = a + k \cdot n, k \in \mathbb{Z}$
- ¹⁴⁰¹ Äquivalenzklasse Alle Zahlen $b \equiv a \mod n$ bilden eine Äquivalenzklasse $[\mathbf{a}]_{\mathbf{n}}$. D.h. $[a]_n =$ ¹⁴⁰² $[b_n] \Leftrightarrow a \equiv b \mod n$.

I. A dient die kleinste nichtnegative Zahl der Äquivalenzklasse als Repräsentant dieser Klasse.

- 1405 Restklassenring Z/nZ
- 1406 Die Äquivalenzklasen $[r]_n$, $0 \le r < n$ bilden den Restklassenring $\mathbb{Z}/n\mathbb{Z}$. Jedes Element der 1407 Restklasse : $a \in [r]_n$ hat damit die Zerlegung $a = r + k \cdot n$
- ¹⁴⁰⁸ Man rechnet leicht nach dass in ihm Addition und Multiplikation definiert sind:

•Addition und Subtraktion:
$$[a]_n \pm [b]_n = [a \pm b]_n$$

•Multiplikation: $[a]_n \cdot [b]_n = [a \cdot b]_n$ (5.1) add-mult

- 1409 Bew. für Multiplikation:
- $a \in [a]_n, \ b \in [b]_n \ \Rightarrow (a+k \cdot n)(b+k' \cdot n) = a \cdot b + n \cdot (a \cdot k' + b \cdot k + k \cdot k' \cdot n) = a \cdot b + n \cdot k''$ $a \cdot b \in [a \cdot b]_n$
- ¹⁴¹² Division i. A. nicht definiert
- ¹⁴¹³ **Prime Restklassen** oder Einheitsgruppe des Restklassenrings
- ¹⁴¹⁴ Die Äquivalenzklassen $[a]_n$ aus $\mathcal{Z}/n\mathcal{Z}$ bei denen a und n coprim sind.

$$(\mathcal{Z}/n\mathcal{Z})^* \ni \{[a]_n, \gcd(a, n) = 1\}$$

$$(5.2) | prk$$

¹⁴¹⁵ In primen Restklassen ist ein Inverses definiert; wie unten gezeigt. Für den Beweis brauchen
¹⁴¹⁶ wir allerdings den "Urahn aller Algorithmen", das ist der

1417 Euklidischer Algorithmus:

¹⁴¹⁸ Da coprime Zahlenpaare und prime Äquivalenzklassen in der Verschlüsselung eine grosse
¹⁴¹⁹ Rolle spielen, sei der Euklidische Algorithmus, mit denen man den gcd findet, hier kurz
¹⁴²⁰ beschriebenbeschrieben. Er ist einer der ältesten Algorithmen ¹ und ein wesentliches Element
¹⁴²¹ des vielleicht aktuellsten Algorithmus, nämlich des Shore'schen.

¹⁴²² Sei a > b; beim Euklidische Algorithmus werden erst a und b ganzzahlig geteilt und dann

¹Elemente,VII, 1 und 2; 1. Teil: Nimmt man bei Vorliegen zweier ungleicher Zahlen immer die kleinere von der grösseren weg, so müssen, wenn niemals ein Rest die vorhergehende Zahl genau misst, bis die Einheit übrig bleibt, die ursprüngliche Zahlen gegeneinander prim sein. 3. Jh. v. Chr. Der Algorithmus ist wahrscheinlich älter (Schule des Pythagoras)
1423 fortlaufend die nichtnegativen Reste:

$$\begin{array}{rcrcrcrc} a - q_1 \cdot b &=& r_1; & r_1 < b \\ b - q_2 \cdot r_1 &=& r_2; & r_2 < r_1 \\ r_1 - q_3 \cdot r_2 &=& r_3; & r_3 < r_2 \\ &\vdots & \\ r_{k-3} - q_{k-1} \cdot r_{k-2} &=& r_{k-1}; & r_{k-1} < r_{k-2} \\ r_{k-2} - q_k \cdot r_{k-1} &=& r_k; & r_k = 0 \end{array}$$

¹⁴²⁴ Das Verfahren ist beendet, wenn $r_k = 0$ ist.

Dann gilt: r_{k-1} teilt alle vorigen r_{k-i} , $i \ge 2$ und damit auch a und b; r_{k-2} teilt aber schon nicht mehr r_{k-3} . Damit ist r_{k-1} der grösste gemeinsame Teiler von a, b

$$\mathbf{r_{k-1}} = \mathbf{gcd}(\mathbf{a}, \mathbf{b})$$

¹⁴²⁵ Durch Rückeinsetzen der Werte von r_i erhält man, dass der $gcd(a, b) = r_{k-1}$ eine ganzzahlige ¹⁴²⁶ Linearkombination von a und b ist $r_{k-1} = r_{k-3} - q_{k-3} \cdot r_{k-2}$; $r_{k-2} = \dots$

$$gcd(a,b) = r_{k-1} = q \cdot a + q' \cdot b, \quad q, q' \in \mathbb{Z}$$
(5.3) [cop

¹⁴²⁷ Der Euklidischen Logarithmus ist mit dem algebraischen Programm Maxima (LISP-basiert,
¹⁴²⁸ public domain) schon auf einem gewöhnlichem PC sehr schnell.

1429 5.1.2 Theoreme

1430 5.1.2.1 Inversee Restklasse:

¹⁴³¹ Zu jeder primen Äquivalenzklasse $[a]_n, (5.2)$, gibt es eine inverses Äquivalenzklasse $[b]_n, d.h.$

$$\forall a \in (\mathcal{Z}/n\mathcal{Z})^* \exists b \text{ mit} \quad a \cdot b \equiv 1 \mod n \tag{5.4}$$
 inv

¹⁴³² Für dieses wichtige Resultat ist der Beweis sehr einfach: $[a]_n$ ist prim, d.h. a and n sind ¹⁴³³ coprim oder gcd(a, n) = 1. Es gilt daher nach (5.3)

$$gcd(a,n) = 1 = q \cdot a + q' \cdot n \tag{5.5} \quad |cop3|$$

1434 d.h

$$q \cdot a \equiv 1 \mod n; \quad \text{bzw.} \quad [q \cdot a]_n = [1]_n$$

$$(5.6)$$

¹⁴³⁵ d.h. das q aus $\begin{pmatrix} cop3\\ 5.5 \end{pmatrix}$ ist das gesuchte Inverse b.

¹⁴³⁶ 5.1.2.2 Kleiner Fermat:

¹⁴³⁷ Ist p prim, dann gilt ²

$$a^p \equiv a \mod p \quad \text{bzw} \quad a^p - a = k \cdot p; \qquad k \in \mathbb{Z}$$
 (5.7) **kf**

²Fermat, Brief 1640, ohne Beweis

¹⁴³⁸ Normalerweise bringen wir keine mathematischen Beweise, doch der kleine Fermat ist so
¹⁴³⁹ berühmt und der Beweis durch vollständige Induktion ist so einfach, dass wir hier eine
¹⁴⁴⁰ Ausnahme machen:

- 1441 $a^p \equiv a \mod p$ gilt für a = 1.
- 1442 Er gelte für a, d.h. $a^p a = k \cdot p$

Nach Binomi gilt

$$(a+1)^p - (a+1) = \left(a^p + \sum_{k=1}^{p-1} {p \choose k} a^{p-k} + 1\right) - (a+1) = a^p - a + \sum_{k=1}^{p-1} {p \choose k} a^{p-k}$$

Die Summe

$$\sum_{k=1}^{p-1} \binom{p}{k} a^{p-k} = \sum_{k=1}^{p-1} \frac{p(p-1)\cdots(p-k+1)}{k!} a^{p-k}$$

ist für 0 < k < p stets durch p teilbar, da der Faktor p im Zähler steht und er stets coprim zum Nenner ist (p ist prim) kann er nicht gekürzt werden. Daher gilt:

$$(a+1)^p - (a+1) = a^p - a + k \cdot p \quad k \in \mathbb{Z}$$

Nach Induktionsvoraussetzung ist $a^p - a = k \cdot p$, d.h.

$$(a+1)^p - (a+1) = k' \cdot p \quad k \in \mathbb{Z}$$

bzw:

$$(a+1)^p \equiv (a+1) \operatorname{mod} p$$

1443 qed

1444 5.1.2.3 Euler-Fermat

¹⁴⁴⁵ Der kleine Fermat wurde 1736 von Euler bewiesen und erweitert: ³

$$a^{\phi(n)} \equiv 1 \mod n \tag{5.8} \quad \text{ef}$$

(5.9)

euler-n

wobei *a* coprim zu *n* ist und $\phi(n)$ ist die Eulersche Funktion:

 $\phi(n) =$ Anzahl der zu *n* coprimen Zahlen, die kleiner als *n* sind, incl. der 1 !

¹⁴⁴⁷ Eigenschaften der Euler Funktion ϕ :

- Ist p prim, dann $\phi(p) = p 1$
- Sind p_1, p_2 coprim, dann $\phi(p_1 \cdot p_2) = \phi(p_1) \cdot \phi(p_2)$

1450 Beispiele:

- $_{^{1451}} \phi(15) = 8: \supset \{14, 13, 11, 8, 7, 4, 2, 1\} \quad \phi(5) = 4: \supset \{4, 3, 2, 1\}; \quad \phi(3) = 2: \supset \{2, 1\}$
- ¹⁴⁵² 15 = 3 · 5 : $p_1 = 3, e_1 = 1; p_2 = 5, e_2 = 1; \phi(15) = 15\left(1 \frac{1}{3}\right)\left(1 \frac{1}{5}\right) = 2 \cdot 4 = 8$
- ¹⁴⁵³ Der kleine Fermat $(\stackrel{\underline{kf}}{5.7})$ folgt aus Euler-Fermat $(\stackrel{\underline{ef}}{5.8})$ durch Multiplikation mit $[a]_n$.

³Euler, St. Petersburg 1736, Leibniz, unveröffentlicht, vor 1683

period: 5.1.2.4 Periodizität T

Wenn $a^T \equiv 1 \mod n$ ist, dann ist die Funktion $f_{a,n}(s) : s \to a^s \mod n$ periodisch mit der Periode T.

¹⁴⁵⁷ Dies ist einfach zu sehen:

$$a^{T} \equiv 1 \mod n \to a^{T} - 1 = k \cdot n$$

$$a^{T+s} - a^{s} = k \cdot n \cdot a^{s}$$

$$a^{T+s} = a^{s} + k' \cdot n$$

$$a^{s} \equiv a^{T+s} \mod n$$
(5.10)

¹⁴⁵⁸ Daraus folgt: Die Funktion $f_{\underline{e},n}(s) : (s \to a^s \mod n)$ ist sicher periodisch wenn a, n coprim ¹⁴⁵⁹ sind. Auf jeden Fall nach (5.8) mit der Periode $T' = \phi(n)$, aber möglicherweise auch mit ¹⁴⁶⁰ einem Teiler von $\phi(n)$, denn mit T ist auch ein vielfaches von T eine Periode.

¹⁴⁶¹ Umgekehrt, gilt für s = 0

$$a^T \equiv 1 \mod n$$
 (5.11) period-2

¹⁴⁶² Die Periode T zu finden ist (gegenwärig) der einzige Algorithmus der über die Quanten
¹⁴⁶³ Fourier Transformation das QC so überlegen gegen dem klassischen Rechnen macht.

¹⁴⁶⁴ 5.2 RSA-Verschlüsselung

¹⁴⁶⁵ Eine asymetrische Verschlüsselung ist eine Verschlüsselung mit einem öffentlichem Schlüssel,

1466 Die Dechifrieren ist aber praktisch nur mit einem geheimen Schlussel möglich

¹⁴⁶⁷ Die Basis der gebräuchlichen RSA ⁴ Verschlüsselung ist:

¹⁴⁶⁸ 1) Der kleine Fermat in der Eulerschen Form, $(\stackrel{ef}{5.8})$

1469 2) Die Existenz inverser Restklassen

¹⁴⁷⁰ 3) Die Quanten-FT als Basis des schneller Algorithmus

¹⁴⁷¹ 5.2.1 Chiffrierung

- 1472 B veröffentlicht den Chiffriercode:
- ¹⁴⁷³ n (sehr gross) und a, nicht so gross.

Sei die ganze positive Zahl M die Nachricht (hier ausnahmsweise mit grossem Buchstaben bezeichnet, der ASCI code für einen Buchstaben), dann chifriert A diese message mit Hilfe der öffentlichen Schlüssel zu dem Chiffrat:

 $c \equiv M^a \bmod n$

⁴RL Rivest, A Shamir, L Adleman, Communications of the ACM, 1978 - dl.acm.org http://people.csail.mit.edu/rivest/Rsapaper.pdf

Obwohl der Chiffriercode a öffentlich ist, ist es ohne weitere Kenntnisis sehr schwer, aus c die Nachricht n zu gewinnen, man mus lösen

$$M = (c - k n)^{1/a}$$

1474 wobei k eine unbekannte ganze Zahl ist.

1475 5.2.2 Dechiffrierung

¹⁴⁷⁶ A hat aber eine einfache Möglichkeit die Nachricht M aus dem c Chifrat wiedrerzugewinnen, ¹⁴⁷⁷ nämlich einen Schlüssel, die Zahl b, die er nur mit Wissen über die Struktur von n bestimmen ¹⁴⁷⁸ kann: Mit diesem diesen Schlüssel b gilt:

$$c^b \equiv M \mod n.$$
 (5.12) schl

¹⁴⁷⁹ Um mit Wissen über die Struktur von n und a den Schlüssel b zu bestimmen,wählt B ¹⁴⁸⁰ $n = p \cdot q$ wobei p und q grosse, nicht zu sehr benachbarte und nicht zusehr verschiedene ¹⁴⁸¹ Primzahlen sind und seinen geheimen Schlüssel b, der coprim zu $\phi(n) = (p-1)(q-1)$ ist. ¹⁴⁸² Da b und $\phi(n) = (p-1)(q-1)$ coprim sind (s. (5.4) gibt es ein multiplikatives Inverses a im ¹⁴⁸³ Ring der ganzen Zahlen modulo $\phi(n)$:

$$a \cdot b \equiv 1 \mod \phi(n) \tag{5.13} \quad | \operatorname{dd0}$$

1484 Daher gilt:

$$a \cdot b = 1 + k \cdot \phi(n) \tag{5.14} \quad \texttt{dd1}$$

Aus $(\stackrel{\text{ef}}{5.8})$ folgt für jedes m das p nicht als Faktor enthält:

Aus der Multiplikationsregel (b.1) folgt: $A \equiv B \mod n \Rightarrow A^r \equiv B^r \mod n; \quad \forall r > 0 \text{ d.h.}$

 $M^{r \cdot (q-1) \cdot (p-1)} \equiv 1 \mod p$ sowie $M^{r \cdot \phi(n)+1} \equiv M \mod p$

 $M^{p-1} \equiv 1 \bmod p$

 $Da \phi(n) = (q-1) \cdot (p-1)$

$$M^{r \cdot \phi(n)+1} \equiv M \mod p; \quad \Leftrightarrow \quad M^{r \cdot \phi(n)+1} - M = k \cdot p$$

Genauso zeigt man:

$$M^{r \cdot \phi(n)+1} \equiv M \mod q \quad \Leftrightarrow \quad M^{r \cdot \phi(n)+1} - M = \ell \cdot q$$

Da p und q sicher coprim sind, sind die beiden letzen Gl. nur verträglich, wenn

$$k = k' \cdot q, \quad \ell = \ell' \cdot p$$

$$M^{r \cdot \phi(n)+1} - M = k' \cdot \underbrace{p \cdot q}_{n} \quad \Leftrightarrow \quad M^{r \cdot \phi(n)+1} \equiv M \mod n$$

¹⁴⁸⁵ wegen $\begin{pmatrix} dd1\\ 5.14 \end{pmatrix}$ gilt also:

$$M^{a \cdot b} = M^{r \cdot \phi(n) + 1} \equiv M \mod n \tag{5.15} \ \ \textbf{dd2}$$

Das Chiffrat war $c = M^a \mod n$, also gilt nach $\begin{pmatrix} dd1\\ 5.14 \end{pmatrix}$ und $\begin{pmatrix} dd2\\ 5.15 \end{pmatrix}$:

$$c^b \equiv (M^a)^b \equiv M^{a \cdot b} \equiv M^{k \cdot \phi(n) + 1} \equiv M \mod n$$

Die Entschlüsselung über $M \equiv c^b \mod n$ ist also nur sehr einfach, wenn man, ausser den öffentlich zugänglichen Verschlüsselunsparametern, n und a auch die Zerlegung von $n = p \cdot q$ kennt und damit den Schlüssel b als modular inverses von a in der Restklass $[k]_{\phi(n)}$ bestimmen kann. Deswegen ist die Primzahlzerlegung so wichtig und die grösste Hoffnung für bzw Gefahr durch das QC.

¹⁴⁹¹ 5.3 Berechnung des Schlüssels aus dem öffentlichen n

erlegung

5.3.1 Faktorzerlegung von n

1) Man wähle eine ganze Zahl, d die coprim zu n ist. Die Fuktion

$$f_{d,n}(x): x \to (d^x \mod n)$$

ist dann periodisch, s. ($\stackrel{\text{period}}{5.1.2.4}$). Die Fouriertransformation ($\stackrel{\text{XXX}}{??}$ erlaubt, die Periode T zu bestimmen. Haben wir T bestimmt, so können wir damit Faktoren von n bestimmen, mit folgendem Algorithmus:

¹⁴⁹⁶ Erhalten wir wir, z.B. mit hilfe der QFT die Periode T und sei T gerade (wenn T ungerade, ¹⁴⁹⁷ versuchen wir es mit einem anderen d) dann gilt ((5.11))

$$a^T = (a^{T/2})^2 \equiv 1 \mod n$$
 (5.16)

1498 Daraus folgt

 $a^+ \cdot a^- = a^T - 1 = 0 + k \cdot n;$ mit $a^{\pm} = a^{T/2} \pm 1$ (5.17) best

¹⁴⁹⁹ Wir betrachten nun den interessanten Fall, dass $n = p_1 \cdot p_2$ mit p_ℓ prim. Dann muss das ¹⁵⁰⁰ Produkt $a^+ \cdot a^-$ die Faktoren p_ℓ enthalten. Wir suchen also die grössten gemeinsamen Tei-¹⁵⁰¹ ler von a^+ und a^+ und erhalten damit p_ℓ . Natürlich ist sehr leicht festzustellen ob die do ¹⁵⁰² gewonnenen p_ℓ tatsächlich das Produkt $p_1 \cdot p_2 = n$ ergeben.

1503 5.3.2 Numerisches Beispiel

1504 5.3.2.0.1 Verschlüsselung A geht bei der Konstruktion von der Zahl

1505 $n = 13 \cdot 19 = 247$ aus. Damit ist $\phi(247) = 12 \cdot 18 = 216$.

Der (öffentliche) Chiffrierschlüssel a und der geheime Dechiffrierschlüssel b müssen nach (5.14) erfüllen:

$$a \cdot b = 1 + r \cdot 216.$$

- 1506 Für r = 3 z.B. erhalten wir
- 1507 factor $(1 + 3 \cdot 216) = 11 \cdot 59;$

A kann also n = 247 und a = 11 veröffentlichen, sein geheimer Schlüssel ist dann b = 59

1509 Das Ciffrat von M = 23 ist $c = \mod (23^{11}, 247) = 952809757913927 + k \cdot 247$

1510

Bei Empfang dieser Nachricht kann A sie mit dem geheimen Schlüssel b = 59 keicht entziffern:

$$mod(c^b, 247) = mod(952809757913927^{59}, 247) = 23$$

Allerdings wäre ein Hacker auf dieses Ergebnis auch mit den öffentlichen Schlüssel gekommen:

 $M = c^a \Rightarrow M = c^{1/a}; \quad M = 952809757913927^{1/11} = 23$

Aber: Zu dem kleinsten Repräsentanren der Restgruppe $M^a \mod 247$ auch noch ein beliebiges ganzzahliges Produkt $k \cdot 247$ zufügt werden, wobei k etwa durch einen Zufallsgenerator bestimmt wird. Dann wirkt der Schlüssel b immer noch:

¹⁵¹⁴ . z.B. $c1 = 23^{11} + 200^{11} * 247$; $mod(23^{11} + 7 * 247)^{59}, 247) = 23$ ¹⁵¹⁵ aber der Trick mit der öffentlich zugänglichen Wurzel funktioniert natürlich nicht mehr: ¹⁵¹⁶ $(c1 + 200^{11} * 247)^{1/11} = 330.02...$

Allerdings muss man schon klotzen, denn wenn k zu klein ist die Wurzel zu nahe an der message M=23. Mit k = 10000 erhält man: $(c1 + 10000 * 247)^{1/11} = 23.00000000542033$

¹⁵¹⁹ **5.3.2.0.2** Angriff der Hacker Die Hacker (H) kennen n = 247 und das Schloss a = 11. ¹⁵²⁰ Sie nutzen den Shor'schen Algorithmus: Die einzelnen Schritte sind:

1) Periodenbestimmung der Funktion

$$f(j) = (d^j \operatorname{mod} 247)$$

¹⁵²¹ mit Hilfe der FT.

1522 2) Primzahlzerlegung mit Hilfe der Periode, s. Abschn. 5.3.1

¹⁵²³ 3) Berechnung des Schlüssels b aus der Faktorzerlegung und Kenntnis und des Schlösses a. ¹⁵²⁴ Sie suchen

1525 1. Schritt: Periodenbestimmung

Dazu bilden sie zunächst das Quantenregister:

$$|QR_1\rangle \otimes |QR_2\rangle = \sum_j |j\rangle \otimes |7^j \mod 247\rangle =$$

1526 d.h. sie haben d = 7 gewählt.

¹⁵²⁷ Wir hatten dieses QR in sect. ^{numfourier}/_{4.3.2} bereits berechnet und gefunden:

 ${}^{1528} \quad \frac{QR_1: \quad j \quad 0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ \cdots \ 255}{QR_2: f_{7,247}(j) \quad 1 \ 7 \ 49 \ 96 \ 178 \ 11 \ 77 \ 45 \ 68 \ 229 \ 121 \ 106 \ \cdots \ 96} }$

Dann wird eine Messung im QR2 durch geführt. Messung im QC heisst, wenn nicht ausdrücklich anders festgestellt, immer : **Projektion auf einen Basiszustand der CB**.

das Resultat der Messung sei z.B. 49, es wird also auf den Zustand

$$\underbrace{\left(\frac{1}{\mathcal{N}}\sum_{\ell}|k_{\ell}\rangle\right)\otimes\underbrace{|49\rangle}_{QR_{2}}}_{QR_{1}}; \quad \text{mit } 7^{k_{\ell}} \operatorname{mod} 247 = 49$$

1531 projeziert

1534 1532

¹⁵³³ Wir fouriertransformieren den Teil aus QR_1 ,

$$\underbrace{\frac{1}{\mathcal{N}} \underbrace{\sum_{\ell} |k_{\ell}\rangle}_{\ell} = \frac{1}{\mathcal{N}\sqrt{32}} \sum_{y=0}^{31} \sum_{\ell} e^{2\pi \boldsymbol{i} \, y \, k_{\ell}/32} |y_{d}\rangle}_{\ell}$$

¹⁵³⁵ Die Betragsquadrate der Koeffizienten von $|y_d\rangle$ sind in Abb. $\frac{|\text{ftnum}|}{5.2}$ aufgetragen.

¹⁵³⁶ An eingen Werten der Fourier-Variable y addieren sich die Koeffizienten konsruktiv, aber an ¹⁵³⁷ den meisten "oszilieren sie sich weg". mit grosser Wahrscheinlichkeit wird also der Wert den

¹⁵³⁸ Zustand $|8_d\rangle = |0\rangle \otimes |1\rangle \otimes |0\rangle \otimes |0\rangle \otimes |0\rangle; |16_d\rangle = |1\rangle \otimes |0\rangle \otimes |0\rangle \otimes |0\rangle \otimes |0\rangle;$ oder

1539 $|24_d\rangle = |1\rangle \otimes |1\rangle \otimes |0\rangle \otimes |0\rangle \otimes |0\rangle$ genessen.

- 1540 Dies ergibt eine Periode in den "Fouriervariablen" y von $y_m = 8$.
- ¹⁵⁴¹ Die konstruktiven Iterferenzen ergeben sich, wenn für die Periode T in $\frac{1}{N} \sum_{\ell} |k_{\ell}\rangle$ und damit ¹⁵⁴² in in $f(\ell) = (|7^{\ell}\rangle \mod 247)$ wenn $T \cdot y_m/2^5 \in \mathbb{Z}$.

Die von den Hackern gesuchte Periode muss in diesem Beispiel erfüllen:

$$T \cdot 8/32 \in \mathbb{Z}$$
 oder $T = n \cdot 4$.

¹⁵⁴³ Daraus können die Hacker schliessen, dass die Periode T ein vielfaches von 4 sein muss: ¹⁵⁴⁴ $T = k \cdot 4$. In unserem Trivialbeispiel mit den recht kleinen Zahlen wussten wir das schon ¹⁵⁴⁵ vorher, aber bei 100 und mehrstelligen Zahlen ist der Überblick schon schwerer :).

Abbildung 5.2: **Betnag** squadrat der Fouriercoeffizienten des Zustands (??) auf 5 Qubits

1546 2. Schritt. Primzahlzerlegung

¹⁵⁴⁷ Die Hacker hatten d = 7 gewählt und T = k * 4 gefunden. Also wissen sie nach $(\stackrel{\text{best}}{5.17})$ dass ¹⁵⁴⁸ $d^{\pm} = 7^{4k/2} \pm 1$ die Faktoren von *n* enthalten muss. Also versuchen sie:

$$k = 1; \quad \gcd(7^2 - 1, \ 247) = 1; \quad \gcd(7^2 + 1, \ 247) = 1$$
 (5.18)

$$k = 2; \quad \gcd(7^4 - 1, 247) = 1; \quad \gcd(7^4 + 1, 247) = 1$$
 (5.19)

$$k = 3; \quad \gcd(7^6 - 1, 247) = 19; \quad \gcd(7^6 + 1, 247) = 13$$
 (5.20)

und damit haben sie mit k = 3 die Zerlegung

 $247 = 13 \cdot 19$

gefunden. Damit haben Sie das gleiche Wissen wie A und können jede so verschlüsselteNachricht dechiffrieren.

1551 3. Schritt. Bestimmung des Schlüssels

Der Schlüssel muss bei bekannten Schloss 11 und n = 247 Lösung der modulare Gleichung sein:

$$(b \cdot 11) \equiv 1 \mod \underbrace{\phi(13 \cdot 19)}_{12 \cdot 18 = 216}$$

z.B.

1552 d.h. 59 ist der gesuchte Schlüssel