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Abstract: Relativistic quantum field theory is generally recognized to
form the adequate theoretical frame for subatomic physics, with the Standard
Model of Particle Physics as a major achievement. We point out that quan-
tum field theory in its present form is not a monolithic theory, but rather
consists of distinct facets, which aim at a common ideal goal. We give a
short overview of the strengths and limitations of these facets. We empha-
size the theory-dependent relation between the quantum fields, and the basic
objects in the empirical domain, the particles. Given the marked conceptual
differences between the facets, we argue to view these, and therefore also
the Standard Model, as symbolic constructions. We finally note that this
view of physical theories originated in the 19th century and is related to the
emergence of the classical field as an autonomous concept.
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0.1 Introduction

Relativistic quantum field theory is widely believed to provide a successful
representation of subatomic physics as observed in the presently accessible
experimental domain. In the course of time various approaches to quantum
field theory have been developed, each focussing on different aspects of the
goal envisaged. The development of these various approaches to quantum
field theory reflects the quite indirect relationship between the basic concept
in the theory and the central notion of the empirical domain, to wit, fields and
particles. The experiments are bound to register particles, whereas the basic
concept of the theory is the quantum field, technically seen an operator-valued
distribution. Such a mathematical object requires in a quantum field theory
showing interaction necessarily a process of renormalization, in contrast to a
corresponding classical theory, where a field is a function. (In our paper we
shall not discuss the general problems of quantum physics, as accentuated
in the measuring process.) In general, the particle content of a quantum
field theory is not related a priori to the field operators entering the theory,
but is considered to result from the particular interaction of the quantum
fields built into the theory. Nearly all of the observed subatomic particles
are unstable, and there is a huge disparity in the respective lifetime of the
different types of particles ranging from 10 3 to 10−25 seconds.

The object of this paper is to point out that the different approaches
to quantum field theory alluded to above are rather different facets of a
general program than distinct subtheories of a coherent embracing theory.
To this end we shall first give a short overview of these different approaches
to quantum field theory. The presentation chosen enters into the technical
details only to such an extent, that it is still comprehensible for a physicist not
working directly in the realm of elementary particle physics. This may lead
sometimes to rather sketchy statements, but we shall quote always relevant
original literature, specialized reviews and/or monographs. Already here it
is important to stress that we do not intend a systematic presentation of the
history of any development considered in this article, but we do mention time
and again particular crucial steps in the progress of a development discussed.
Likewise, our bibliography is necessarily selective, chosen in connection with
our discussion.

In the overview we start with the more abstract approaches Axiomatic
quantum field theory and Algebraic quantum field theory, now frequently
named General Theory of Quantum Fields and Local Quantum Physics, re-
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spectively. These approaches intend to provide a solid basis of a quantum
field theory on a rigorous mathematical footing, which is to serve as a frame-
work for developing detailed theories related to phenomena. Hence, this
foundational work mainly deals with general structures, exploiting in partic-
ular the basic locality property of a quantum field or of a quantum observable.
Up to now one only knows quantum field theories without interaction, satis-
fying the basic assumptions of these approaches; the mathematically rigorous
construction of a quantum field theory with interaction (in four dimensions)
still remains an open problem. To settle this problem of primary theoret-
ical importance is the ultimate goal of Constructive quantum field theory,
dealing with it in a Euclidean formulation of quantum field theory. Briefly,
the foundational efforts of these three approaches are mainly of paradigmatic
character and largely ignore the relation to the concretely observed particles,
apart from very general features. More closely related to particularities of
the phenomena are Renormalized Perturbation Theory and Lattice Regular-
ization, especially of a gauge theory, both approaches involving a concrete
dynamical evolution. Each has its own specific inner concept of the rela-
tion between the quantized fields and the particles, which are more or less
connected with observed particles.

As we look at quantum field theory as a physical theory, i.e. as a the-
oretical structure providing experimentally well corroborated results, it ap-
pears justified to confine our considerations to the development of relativistic
quantum field theory, which eventually culminated in the Standard Model of
particle physics. This model is considered to essentially cope with the physics
of subatomic particles up to the currently accessible energies, which probe
distances down to 10−16 cm. We therefore do not consider in our paper the
large amount of recent research which is more speculative as e.g. noncom-
mutative geometry of space-time, string theory, or other attempts to create
a quantum theory of gravity4.

The concept of an internal symmetry inherent in a concrete quantum
field theory, which governs the interaction of various fields, has proven fertile,
accounting for certain regularities observed in the phenomena. Local gauge
symmetry is the most prominent instance of such a feature. The invariance
of all interactions of the Standard Model under local gauge transformations
of its quantum fields determines the form of this theory to a large extent. It
should be noted that local gauge symmetry is not dealt with in Axiomatic

4For non-technical reviews see in (Seiler and Stamatescu (2007))
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quantum field theory. Moreover, in Local Quantum Physics, which considers
quantum observables as its basic concept, such a symmetry would remain
hidden, since it leaves the observable quantities unchanged. To achieve a
renormalized perturbation theory in the case of a field theory showing local
gauge symmetry requires a specific extension of such a construction. The
formulation of a field theory with local gauge symmetry within the approach
of lattice regularization, fully keeping this symmetry, provides a lattice gauge
theory. The mechanism of mass generation for gauge bosons by spontaneous
symmetry breaking in the renormalized perturbation construction is in sharp
contrast to lattice gauge theory, where spontaneous breaking of the gauge
symmetry is not possible.

The Lagrangian of the Standard Model shows independent local gauge
symmetries of its electroweak and its strong interaction part. Phenomenologi-
gal consequences herefrom are extracted via the approaches of renormalized
perturbation theory and of lattice regularization, according to the respective
expected appropriateness of these approaches.

Effective Field Theories appear as particular perturbative constructions,
possibly allowing non-renormalizability. A typical example of the latter case
is Chiral Perturbation Theory.

Having presented a somewhat panoramic overview of the different ap-
proaches to quantum field theory we turn to an epistemological evaluation of
the state of affairs we are faced with. We emphasize the marked differences in
the respective set-up of these approaches, each showing an intrinsic concept
of its own. Although restricted in scope, these approaches are directed to-
wards a common ideal goal. Therefore we term them facets of quantum field
theory and argue that they should be viewed as synchronous symbolic con-
structions. Moreover, we discuss implications of this view for the Standard
Model. Should some day a mathematically consistent and empirically suc-
cessful theory have been constructed, of which the facets are genuine parts,
such an achievement should also be viewed as a symbolic construction, with
a much larger domain of validity as any of the present facets, of course. We
point out that the perspective of a symbolic construction emerged already in
classical physics towards the end of the 19th century.
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0.2 Particle Physics

0.2.1 Elementary Particles

From the experimental point of view, a microscopic particle manifests itself
by a particular event in a special detection device, e.g. as a single track in a
track chamber or as an electric discharge in a Geiger counter. A particle is
identified mainly by its mass. The relation between energy E and momentum
~p leads to a discrete5 value m, the mass of the particle:

E2/c2 − ~p 2 = m2c2, (1)

where c is the velocity of light in the vacuum.
According to this definition, atoms and molecules are particles, and for

many purposes, e.g. those of statistical mechanics, they can be considered
even as elementary particles. In atomic physics, however, one has to take into
account that atoms have an inner structure. The quantum mechanical version
of the Rutherford atom, a nucleus surrounded by a cloud of electrons, explains
an enormous range of phenomena from solid state physics to chemistry. The
elementary particles in such a theory are the electrons, the constituents of
the cloud, and the neutrons and protons, the constituents of the nucleus.
This classification holds both from an experimental and from a theoretical
point of view, since there is a well defined and unique relation between the
theoretical objects, the vectors of a Hilbert space (states), and the observed
particles. Composite particles, e.g. atoms and molecules, can be split into
the elementary ones. The state of composite particles, e.g. an atom, is
contained in the space constructed from elementary states as a superposition
of products.

In spite of its still ongoing success, the nonrelativistic quantum mechani-
cal model is unsatisfactory also from a purely phenomenological point of view
for several reasons: 1) Nonrelativistic kinematics has only a limited range of
validity and has to be superseded by relativistic kinematics. 2) In nonrela-
tivistic quantum mechanics the number of elementary particles is conserved
and a spontaneous decay cannot be described consistently; all states, also the

5Since charged particles cannot be separated from their radiation field, the energy of
a charged particle is not discrete. Given the very weak coupling and the finite energy
resolution of every counter, this problem is however experimentally not very relevant. Its
serious theoretical implications and methods to overcome the difficulties are discussed at
the end of sect. 0.4.2
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excited ones, are stable in this theory. 3) Last but not least, it is necessary to
describe also electromagnetism, which is inherently relativistic, in quantum
physics. This led to the development of relativistic quantum field theory, the
principles of which will be introduced in the next subsection.

Extending the range of energies in scattering experiments transmutation
of energy into matter and vice versa appeared as new salient feature in the
reaction processes. Particles can be created and annihilated, this process is
governed by certain conservation laws, in particular the energy equivalent
∆E = mc2. In the course of time more and more particles, which could
be called elementary particles, were detected6. All of them are unstable,
but some of them have a lifetime which is so long that the uncertainty in
energy is unmeasurably small (for charged pi-mesons the relative mass spread
∆m/m ≈ 1.8·10−18). But there are other ones, which have an unmeasurably
short lifetime, but where in turn the spread in energy in eq. (1) is clearly
evident7. There are therefore two possibilities to define an elementary particle
in purely experimental terms:

1 An entity which is identified by a particular event and with a mass spread
which is small compared to the mass, determined according to (1).
These particles can be used for constructing beams in scattering exper-
iments and show, if charged, a visible track in a track chamber (Wilson,
bubble, or wire chamber).

2 An object with a distinct bump in the mass distribution.

In the latter case the particle can only be detected indirectly, e.g. by its
decay products. The second definition includes definition 1. These particles
are listed in the “Particle Listing” in the standard bi-annual “Review of
Particle Physics”,the last issue is (Nakurama, K. et al. (2010)).

The definitions, especially 2, are rather vague. Among other things this is
reflected in the disappearance and reappearance of particles in the “Particle
Listing”(Nakurama, K. et al. (2010)). The definitions will be supplemented
below by other ones based mainly on theoretical arguments.

It seemed first tempting to identify the states with broader energy distri-
bution as composite ones, like excited atoms. This goal could certainly not

6The first ones were the muon (Anderson (1933)) and the charged pi-meson(Lattes et
al. (1947))

7The first one was the ∆-resonance in pion-nucleon scattering(Anderson et al. (1952)).
Its mass is 1.232 GeV/c2, its width ∆m = 120 GeV/c2
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be achieved within nonrelativistic quantum mechanics and has been another
motivation for the search of a relativistic quantum theory.

0.2.2 Relativistic Quantum Field Theory

Relativistic quantum field theory has grown out by a synthesis of classical
relativistic field theory, notably Maxwell’s theory of electromagnetism, and
the quantization rules used in nonrelativistic quantum mechanics. Like the
latter it enables to make quantitative statements and predictions about the
outcome of experiments, that is of probabilities to observe particles under
well defined experimental conditions.

As in the classical relativistic theory, space-time is fixed as a four-
dimensional real vector space, with a metric invariant under Lorentz trans-
formations and translations, that is the elements of the Poincaré group. In
contrast to nonrelativistic quantum mechanics, however, relativistic quantum
field theory implies the possibility to create and annihilate particles.

The basic entities of the theory, the quantum fields, are space-time depen-
dent operators in a Hilbert space. There is however no point-like mapping
of the space-time continuum to the field operators, but only as a distribu-
tion. Phrased technically, a relativistic quantum field is an operator-valued
distribution. Therefore a well-defined operator cannot be related to a defi-
nite space-time point x, but only to a space-time domain of finite, though
arbitrarily small, extent.

In order to make use of the quantization rules and to incorporate the
causal space-time structure together with the Poincaré symmetry into the
theory, one starts with a Lagrangian formulation of the classical field theory.
The incorporation is achieved by keeping the functional form of the classical
Lagrangian density — a local polynomial of the field(s) and of its space-time
derivatives — and by just replacing the classical field ϕ(x) by the quantum
field φ(x).

As an example for immediate reference we show the Lagrangian density
of a model involving a single real scalar field only:

L(x) =
1

2

(
∂µφ(x) ∂ µφ(x)−m2φ2(x)

)
− λ

4!
φ4(x), (2)

where the first part describes a free field and the term proportional to the
coupling constant λ the (self)interaction of the field.
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Due to the fact that the quantum fields behave like distributions, not
like functions, the local products of field operators are ill-defined and lead to
infinities, if one attempts to deduce directly physical consequences from such
a Lagrangian. In the early period of exploring quantum field theories these
infinities caused a considerable bewilderment. Later, a systematic reformula-
tion of the originally ill-defined approach to relativistic quantum field theory
was achieved — called perturbative renormalisation theory — which provides
a mathematically well-defined quantum field theory as a formal power series
in a renormalised version of the coupling constant. This theory produces
strictly finite physical predictions in each order of the expansion. The price
to be paid will be expounded in the sequel.

0.2.3 Particles and Fields

Originally the fields introduced in quantum field theory were thought to be
operators in a state space close to that of quantum mechanics, constructed
to describe the states of elementary particles. It turned out, however, that
this procedure is to restrictive.

A free field theory is a theory without interaction between the fields,
λ = 0 in our example (2). In this case we can establish a direct relation
between particles and fields. The state space is constructed on the basis of
single particle states similar to quantum mechanics. In quantum mechanics
operators of observables act in an n-particle space, which is the properly
symmetrized or antisymmetrized product of single particle spaces, whereas
quantum fields act in the Fock space, the direct sum of all spaces with a
discrete number of particles, including the vacuum, the zero-particle state.
Free field theory is the basis of renormalized perturbation theory (sect. 0.3.4)
and therefore the relation between particle and field in perturbation theory
is close to that of the free theory. Seemingly, regarding the Lagrangian (2),
we can therefore use another definition:

3 A physical particle corresponds to a field in the quadratic part of the
Lagrangian.

It should be noted, however, that important caveats are necessary. In the
important case of a gauge field theory not all components of the field are
independent dynamical variables; the consequences will be discussed in more
detail in section 0.4.2.
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Since perturbation theory can be fruitfully applied in the theory of elec-
tromagnetic and weak interactions, we can give a closely related definition,
which is nearer to experiment, namely

4 a particle is an entity which were stable, if there was no weak and electro-
magnetic interaction

This definition is very close to the practical definition 1 of sect. 0.2, which
can be formulated in a more precise mathematical way as

1’ a particle corresponds to a particular unitary representation of the
Poincaré group (Lorentz transformations and translations), implying
definite mass and spin.

0.3 The Facets of Quantum Field Theory

In the course of time various approaches to relativistic quantum field theory
have been developed, each focussing on different aspects of the goal envis-
aged. The General Theory of Quantum Fields and Local Quantum Physics
deal with the basic conceptual frame and general consequences therefrom.
Constructive Quantum Field Theory, Perturbative Renormalization Theory,
and Lattice Theory direct their attention to the construction and evaluation
of concrete dynamical models. We call these different approaches facets and
give first a short overview.

0.3.1 General Theory of Quantum Fields

In the middle of the last century, the achievement of quantum electrodynam-
ics (QED) as a renormalized perturbation theory together with the insight
gained into inherent difficulties of this development prompted a new ap-
proach, often termed Axiomatic Quantum Field Theory. The aim of this
approach is to formulate a mathematically well-defined general conceptual
frame of a relativistic quantum field theory beyond perturbation theory, and
to analyze its consequences, (Streater and Wightman (1980); Jost (1965)).
This frame is formed by a few postulates - usually called Wightman axioms
- avoiding any recourse to classical field theory. These postulates essentially
are
W1.(Relativistic Covariance) The Hilbert space H of physical states carries
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a unitary representation U(Λ, a) of the restricted Poincaré group, i.e. with
Λ a restricted Lorentz transformation8 (without space and time reflections)
and a a space-time translation. There is a unique vacuum state Ω which
satisfies

U(Λ, a) Ω = Ω , for all {Λ, a} . (3)

W2.(Energy-Momentum Spectrum) The generators (H = P 0, ~P ) of the
translation subgroup U(1, a) = exp iP µaµ have spectral values (p0 > 0, ~p ) ,

(p0)2 − ~p 2 ≥ 0 . (4)

W3.(Field Operator) The quantum field Φj(x) , when smeared with a smooth
test function f(x) on space-time having compact support, formally,

Φj(f) :=
∫
d4x f(x) Φj(x) , (5)

is a proper operator in H on a dense domain containing the vacuum state
Ω. This vector Ω is cyclic with respect to P , the set of all polynomials of
smeared fields. That is, PΩ is dense in H. A precise formulation of (5) is
to regard the field Φj(x) as an operator-valued distribution: for all vectors
Ψ,Ψ′ the scalar product in H , (Ψ,Φj(f)Ψ′) , is a functional of f .
W4.(Covariant Field Transformation) The (in general) multi-component field
transforms covariantly under restricted Poincaré transformations,

U(Λ, a) Φj(x)U(Λ, a)−1 =
n∑

k=1

Sjk(Λ
−1)Φk(Λx+ a) , (6)

where S is a finite-dimensional represention of the restricted Lorentz group,
see footnote in W1.
W5.( Locality) If the supports of f(x) and g(y) are space-like separated, the
fields either commute (−), or anticommute (+),

Φj(f)Φk(g) ∓ Φk(g)Φj(f) = 0 . (7)

The vacuum expectation values, for simplicity written in the case of a
scalar field, n ∈ N,

(Ω,Φ(x1)Φ(x2), · · · ,Φ(xn) Ω) =: Wn(x1 − x2, x2 − x3, · · · , xn−1 − xn) , (8)

8More precisely, in order to account also for half-integer spin the restricted Lorentz
group L↑

+ has to be replaced by its universal covering group SL(2, C).
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play a central role in exploring the framework: It has been shown (Streater
and Wightman (1980)) that from the collection of these distributions (8) -
called Wightman functions - the theory satisfying the postulates W1-W5 can
be reconstructed.

From these postulates several physically important structural results have
been deduced (Streater and Wightman (1980)). We mention the PCT -
theorem which asserts that the combined action of time reflection T , particle-
antiparticle conjugation C and space reflection P is necessarily a symmetry,
whether the individual actions are symmetries or not. Furthermore, a distinct
connection between spin and statistics results: the alternative in W5, (7), is
reduced requiring there an integer spin field to commute, but a half-integer
spin field to anti-commute. Moreover, it has been shown that within this
frame a collision theory of particles can be formulated for massive aymp-
totic states. However, there is no direct correspondence between the field
operator and the particle content of the theory. The consequences of the
Wightman postulates are mainly derived by analyzing analytic properties of
the Wightman functions (8). These “functions”, actually distributions with
respect to the real coordinate differences xl − xl+1 , due to W1-W5 can be
analytically continued to complex values with a large domain of holomor-
phy. This domain contains the so-called Euclidean points zl = (isl, ~xl) with
sl ∈ R, ~xl ∈ R3. Moreover, the Wightman functions are determined by
their values at these points which allows to define the Schwinger functions
at non-coinciding points,

Sn(xE
1 − xE

2 , · · · , xE
n−1 − xE

n ) = Wn(z1 − z2, · · · , zn−1 − zn) (9)

with xE
l = (sl, ~xl) and xE

k 6= xE
l , k 6= l. The set of Schwinger functions con-

stitutes the Euclidean formulation of the original relativistic quantum field
theory, with the Euclidean group taking the place of the Poincaré group. In
the reverse direction, Osterwalder and Schrader (1973); 1975) have estab-
lished Euclidean axioms characterizing autonomously given Euclidean corre-
lation functions, i.e. supposed Schwinger functions, to determine a relativis-
tic quantum field theory. The Euclidean formulation allows to employ pow-
erful constructive techniques as e.g. functional integration, see sect. 0.3.3.

Clearly, a free quantum field theory, i.e. a theory without interaction,
satisfies the Wightman postulates. However, a mathematically rigorous con-
struction (i.e. beyond formal perturbation theory) of a concrete interacting
model in four space-time dimensions has not yet been achieved. Neverthe-
less, it is widely believed, that such a construction would have to comply
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with the Wightman postulates. A qualification has to be made, however. To
encompass a gauge field theory the Wightman postulates partly have to be
modified,(Strocchi (1993)).

0.3.2 Local Quantum Physics

The term Local Quantum Physics has taken the place of Algebraic Quantum
Field Theory used before. This development presents an alternative concep-
tual frame to serve as a foundational basis of quantum field theory. Whereas
the general formulation of Axiomatic quantum field theory is based on the
notion of a relativistic quantum field, the basic notation of Local Quantum
Physics, see (Buchholz and Haag (2000)), is directly related to the ultimate
goal of a physical theory, namely to account for observations. Local Quantum
Physics therefore introduces the notion of a local observable as its fundamen-
tal theoretical construct: it is localized in space-time and can be subject to
relativistic causality. Stated more technically, the basic concept is a system
of local observables which are elements of a C∗-algebra:9 To every bounded
open region O of space-time is attributed a C∗-algebra A(O) , describing
the physical observables of this region. These algebras are assumed to show
the following three properties:

i) The algebra of observables on a space-time region O2, which contains
the region O1 contains the algebra on the smaller region: if O1 ⊆ O2 , then
A(O1) ⊆ A(O2) .

ii) The formulation is relativistic invariant, which appears as a representa-
tion of the Poincaré transformations by automorphisms σ(a,Λ) of the algebra.
Denoting byO(a,Λ) the transformed regionO, then σ(a,Λ)(A(O)) = A(O(a,Λ)) .

iii) If the space-time regions O1 and O2 are space-like separated, then
each element of A(O1) commutes with each element of A(O2) . (This prop-
erty is sometimes called “Einstein causality”.)

To obtain physical predictions quantum mechanical expectation values
have to be generated from the (abstract) algebra A of observables. This is
achieved by a normalised positive linear functional ω on A , called a physical
state of the system considered. Hence this state maps the elements of the

9In quantum mechanics observables are formed by self-adjoint operators, in general
unbounded ones. Restricting their spectral representation to finite spectral intervals leads
to bounded operators. The set of all bounded (linear) operators of a complex Hilbert
space forms a C∗ algebra.
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algebra into complex numbers with

ω(1) = 1, ω(A∗A) ≥ 0 , ω(αA+ βB) = αω(A) + β ω(B) ∈ C , (10)

where α, β ∈ C and 1, A,B ∈ A . In its physical interpretation ω(A)
is the expectation value of the observable A in the state ω. Given an
algebra of observables A and a state ω , then a well-defined mathematical
construction, the Gel’fand-Naimark-Segal (GNS) representation, determines
a concrete representation of this algebra A by linear bounded operators on
a Hilbert space.

In this approach quantum fields have no basic status, as they do not
directly represent physically observable quantities. They may and can act as
particular building blocks in forming observables of the algebra A.

Among the principal achievements of local quantum physics (Kastler
(1990); Haag (1996)) is a general characterisation of a relativistic quantum
field theory at finite temperature (the Kubo-Martin-Schwinger (KMS) condi-
tion). Another important achievement is the Doplicher-Haag-Roberts (DHR)
theory of superselection sectors. This theory provides an analysis of the
charge structure completely within the algebra of observables, i.e. it treats
charged sectors without introducing charged field operators to create these
sectors. Seen technically, the superselection sectors are inequivalent repre-
sentations of the algebra of observables. The analysis has been extended to
cover an internal global symmetry group, but not a local one. Local that is
gauge symmetries (see sect. 0.4.2) seem to be of prime importance in a phys-
ically realistic theory as will be discussed in sect. 0.5. By definition, however,
observables are invariant under these transformations. Therefore, in an ap-
proach strictly based on the concept of observables the question arises, which
intrinsic properties reveal, that a theory is actually a gauge theory?

Besides this foundational work rooted in the concept of observables in re-
cent times the perturbative construction of a quantum field theory in a classi-
cal curved space-time, as given by General Relativity, in place of Minkowski
space has been investigated within the algebraic framework,(Brunetti and
Fredenhagen (2009); Wald (2009)). A generic space-time manifold M has
no symmetries and its metric g depends on time. Then, because of lack
of symmetry under time translations there is no longer a natural notion of
a vacuum state and of a particle, which originates from positive-frequency
solutions of a (free) wave equation. Considering the family of globally hyper-
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bolic time-oriented manifolds10 the fundamental locality property iii) can be
kept. The (formal) perturbative construction of an interacting quantum field
theory is based on a free one, the latter is determined by its two-point func-
tion. As a substitute for the two-point function in Minkowski space, which
results from the vacuum state, a two-point function H(x1, x2) of Hadamard
type is constructed on M . Such a singular function, i.e. a distribution, has
a similar singularity structure in the coincidence limit x1 → x2 as its equiv-
alent in Minkowski space, but is not unique. Two Hadamard functions H
and H ′ have a smooth difference H −H ′, leading to equivalent theories. In
the case of a self-interacting scalar field a renormalized (formal) perturbation
construction has been achieved (Brunetti and Fredenhagen (2000); Hollands
and Wald (2002)). Poincaré invariance in Minkowski space restricts the sin-
gular terms arising and to be dealt with by the process of renormalisation.
This role is taken by a crucial principle of general covariance, which requires
a purely local and covariant construction out of the space-time geometry.
In consequence, the theory is constructed on the whole family of space-time
manifolds considered. Up to now, this theory is interpreted in terms of co-
variant fields. Physical predictions would in addition require to point out
(in principle) measurements aimed at by the theory as well as to define the
corresponding state functionals ω.

0.3.3 Constructive Quantum Field Theory

In the late sixties, faced with the demands of the Wightman postulates and
the mathematically unsatisfactory status of renormalized perturbation theory
based on a formal series expansion, likely not to be summable, a new branch
of theoretical activity set in, soon called Constructive Quantum Field Theory.
Its general aim is to construct with mathematical rigour concrete models of
quantum field theory resulting from specific Lagrangians with interaction. Up
to now this aim has been approached to a notable, but limited extent. Within
the Euclidean formulation, elaborate techniques of functional integration -
the mathematical version of Feynman’s path integral - have been developed
providing the rigorous construction of a number of models, among them with
the Lagrangian (2), (Glimm and Jaffe (1987)), but in two and three space-
time dimensions only. Via the Osterwalder-Schrader reconstruction these
models satisfy the Wightman axioms with corresponding lower-dimensional

10It includes the Robertson-Walker metric, which is of prime cosmological interest.
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space-time. In the language of perturbation theory the models constructed
are super-renormalizable, i.e. the inherent singular ultraviolet behaviour
only appears in terms of low order in the formal series expansion (see next
subsection)). Nevertheless, the crucial renormalization outside perturbation
theory had to be achieved in the rigorous construction of these models.

Viewed from perturbation theory, the massive Gross-Neveu model in two
space-time dimensions differs characteristically from the models referred to
before: it is renormalizable, but not super-renormalizable, and ultraviolet
asymptotically free (see next subsection). These properties are also shown
by a non-Abelian gauge theory in four space-time dimensions, attracting ad-
ditional physical interest in the Gross-Neveu model. It is built of a multiplet
of Dirac fields ψa(x) with an inner symmetry index a = 1, 2, · · · , N ≥ 2 and
has the classical Lagrangian density

L(x) =
N∑

a=1

ψa (iγµ∂µ −m)ψa +
λ

N
(

N∑
a=1

ψa ψa)2 , (11)

with a quartic self-interaction. Proceeding in the Euclidean formula-
tion the Schwinger functions of this model have been rigorously con-
structed,(Gawedzki and Kupiainen (1985); Feldman et al. (1986); Diser-
tori and Rivasseau (2000)), satisfying the Osterwalder-Schrader axioms (for
fermions). Furthermore, these Schwinger functions are shown to be the Borel
sum of their renormalized perturbation series. This is interesting for renor-
malized perturbation theory (sect. 0.3.4), since it shows that in this case the
formal power series can be brought into an explicit form by resummation.

0.3.4 Perturbative Renormalization Theory

This approach uses the well-defined theory of “free” quantum fields as its
basic frame and deals with the interaction as a “small” perturbation. It was
mainly focussed on quantum electrodynamics at the beginning. In the pertur-
bation expansions as actually performed soon infinities occured, which were
considered as a serious obstacle. Eventually, these infinities could be “can-
celled” by an approriate redefinition of the parameters entering the theory
(mass, coupling constant, field normalization), a procedure called renormal-
ization. This development is extensively treated by Schweber (1994). Af-
ter the advent of a covariant perturbation formalism (Feynman, Schwinger,
Tomonaga), the era of systematic perturbative renormalization opened with
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Dyson’s pioneering work (Dyson (1949a); 1949b)). In the course of two
decades the rigorous Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) ver-
sion of perturbative renormalization theory has been achieved, (Bogoliubov
and Parasiuk (1957); Hepp (1969); Zimmermann (1970)). Moreover, this
version has been extended by Lowenstein (1976), to BPHZL, covering now
massless fields, too. There are other formulations, physically equivalent, but
differing technically (e.g. using counterterms or dimensional regularization).
Common to the BPHZL formulation and the other ones is to exploit the
translation symmetry of the Minkowsky space and passing via Fourier trans-
formation to momentum space. In contrast, Epstein and Glaser (1973), have
developed an inductive construction of the S-operator in terms of the free field
operator using crucially its locality property. The role of renormalization is
replaced there by an operation of distribution splitting. As the construction
does not require translation invariance to hold, it can also be performed,
if an external (classical) field is present, (Dosch and Müller (1975)), or for
investigating quantum fields on a given curved space-time, (Brunetti and Fre-
denhagen (2000)). The perturbation expansion of a gauge field theory (sect.
0.4.2) demands in addition to cope with the inherent local gauge invariance,
requiring a particular construction. Eventually, t’Hooft and Veltman, (’t
Hooft (1971b); 1971a); ’t Hooft and Veltman (1972a)), demonstrated the
perturbative renormalization of a spontaneously broken non-Abelian gauge
theory, an achievement of prime physical importance in view of the Standard
Model.

We outline the salient points of perturbative renormalization theory in
the case of a neutral scalar field, with classical Lagrangian (2). The ba-
sic quantities to be determined by perturbation theory are the time-ordered
Green functions,

τn(x1, x2, · · · , xn) := (Ω, T Φ(x1)Φ(x2), · · · ,Φ(xn) Ω) , (12)

the vacuum expectation values of time-ordered products of field operators,

T Φ(x1)Φ(x2), · · · ,Φ(xn) = Φ(xj1)Φ(xj2), · · · ,Φ(xjn) , (13)

x0
j1
> x0

j2
> · · · > x0

jn
.

In spite of the distinction of the time component x0 of a space-time point
x, due to the locality property of the field operator Φ(x) this product is
relativistically covariant. However, at coinciding points the definition has to
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be supplemented by way of construction.11 Moreover, it suffices to consider
connected Green functions, i.e. those which do not factorize. Because of
translation invariance, the Fourier transformed connected Green functions
(12) have the form

( n∏
j=1

∫
dxje

iqjxj

)
τn(x1, x2, · · · , xn)con = (2π)4 δ(q1 + · · ·+ qn)Gn(q1, · · · , qn) ,

(14)
the n four-momentum variables of Gn satisfying q1 + · · ·+ qn = 0 .

In perturbation theory the Green functions are generated as formal power
series in the coupling

Gn(q1, · · · , qn) =
∞∑

r=1

∑
F

λrI
(r)
n,F (q1, · · · , qn) (15)

The terms I
(r)
n,F (q1, · · · , qn) emerge from the local interaction and from the

propagators, the two point functions of the free theory. These expressions
are multiple momentum-space integrals, with integrands formed of products
of couplings and of propagators. They can be represented graphically by
Feynman diagrams. Perturbative renormalizability is determined by the local
form of the Lagrangian and the resulting behaviour of these integrands for
large momenta.

The inductive generation of the Green functions proceeds in two steps:
an intermediate regularization followed by a process of renormalization.

(i) The regularization has to prevent divergences to occur: in d-

dimensional space-time, an unregularized Feynman integral I
(r)
n,F contributing

to Gn in the perturbative order r has the superficial degree of divergence, in
the case of Lagrangian (2),

ω(I
(r)
n,F ) = d− (1

2
d− 1) + (d− 4) r . (16)

For the case ω < 0 the integral appears to converge, for ω = 0 to diverge
logarithmically or to converge, and for ω > 0 to diverge. The qualification
superficial means that a Feynman integral with ω < 0 may also diverge,
if it contains a divergent subintegral. Regarding (16) we notice, that for

11Formally, a time-ordered Green function is the product of the corresponding Wightman
function with step functions of time differences, requiring additional properties to be
defined.
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d = 2, 3 a non-negative ω can appear only in low order r: the respective
theory is super-renormalizable. In the physical case d = 4 a degree ω ≥ 0
can arise in any order r of the perturbation expansion, but only if n = 2
or n = 4: the theory is renormalizable. In contrast, if d > 4 for every n
the degree eventually becomes positive with increasing order r : the theory
is non-renormalizable. A variety of equivalent regularization methods have
been invented. As regards Yang-Mills theories, however, only dimensional
regularization appears practicable since it respects the local gauge symmetry.
Dimensional regularization consists in the analytic continuation of the space-
time dimension d in Feynman integrals, and the fact that these integrals
converge for sufficiently small d, see (16).

(ii) Renormalization is an inductive procedure to subtract from the reg-
ularized Feynman integrals their potentially divergent parts such that the
difference stays finite upon removing the regularization. In a renormalizable
theory as key property these subtractions can be generated by introducing
additional local interaction terms into the Lagrangian, (“counter terms”)
which exactly correspond to all the local terms composing the (classical) La-
grangian (2), but supplied with “coupling constants” which themselves are
formal power series in the expansion parameter λ, with coefficients depending
on the regularization,(Zimmermann (1969)). In every order the subtraction
operation is only determined up to a finite number of constants, (three in
the case considered here, see (2)), which have to be fixed by prescribing re-
lated renormalization conditions. A massive theory allows to subtract on
mass-shell, yielding physical parameters characterizing the theory.

Scattering processes are expressed by the S-matrix of the theory. The
S-matrixelement describing a process of 2 incomming particles with mo-
menta p1, p2 and n − 2 outgoing particles with momenta p3, · · · , pn, where
p = (

√
m2 + ~p 2, ~p), is given by the Lehmann-Symanzik-Zimmermann (LSZ)

reduction formula, (Lehmann et al. (1955)), in terms of the time-ordered
Green function (14),

(p3, · · · , pn|S − 1|p1, p2) = (17)

δ(p1 + p2 − p3, · · · − pn) lim
n∏

j=1

(p2
j −m2)
√
Z

Gn(p1, p2,−p3, · · · ,−pn) ,

where lim denotes the mass shell limit p0
j →

√
m2 + ~pj

2. The space of physi-
cal states is the Fock space connected with a free neutral scalar field operator,
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the field strength renormalization Z follows from the renormalization condi-
tions.

In the case of a massless theory, in particular in an unbroken non-Abelian
gauge theory, the subtraction in the renormalization procedure cannot be
performed on mass-shell, because of infrared singularities. The classical La-
grangian lacks any scale parameter, cp. (2) with m = 0 (in d = 4). In
the metamorphosis to a quantum field theory, however, such a parameter
necessarily has to appear in the renormalization conditions. The renormal-
ization point is appropriately chosen at Euclidean values of the momenta,
p 2 = −µ2 < 0. Independence of observable quantities from the arbitrary
choice of µ leads to constraints, expressed by the renormalization group.
This holds in particular for the effective coupling strength λ(µ) . A non-
Abelian gauge theory is distinguished by the property, called asymptotic
freedom, that its effective coupling strength vanishes with µ→∞ .

In comparision with other approaches to quantum field theory perturba-
tive renormalization theory appears most fertile in providing physical predic-
tions, both in quantity and in precision. It was mainly the very high degree
of agreement between the outcome of specific experiments and its descrip-
tion by QED, which led to the recognition of the perturbative method, in
spite of serious unmet questions: Mathematically, the construction produces
inductively a formal power series (only) without attention to convergence.
In practice only few orders are explicitly calculable.

0.3.5 Lattice Regularization

Field theories on a lattice were introduced in order to obtain vacuum expecta-
tion values of interacting field theories in a constructive way by quadratures.
For that one discretizes the space-time continuum to a lattice, the fields
are attached to the lattice points (and possibly to the links between the
points). The n-point functions, the vacuum expectations values of quantum
field theory, are obtained by integration over the fields, with the measure
given by the action. In order to obtain a well defined, i.e. positive, measure,
one has to construct a Euclidean theory: the lattice is not embedded into a
four-dimensional space-time continuum with Minkowski metric, but into an
Euclidean four-dimensional space. In this way one obtains not the Wight-
man, but the Schwinger functions, see (9). Schematically we can write the
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expression for the Schwinger n-point function as:

〈φ[k1] . . . φ[kn]〉 =
1

Z

∫ ∏
i

dφ[i](φ[k1] . . . φ[kn])e−SE (18)

Here φ[j] is the field at the lattice point xj, Z is the normalization for the
measure and SE is the action obtained from the discretized classical Euclidean
Lagrangian; for a hypercubic lattice with lattice spacing a one has:

SE = a4
∑

i

L[φ[i]], (19)

the index i runs over all lattice points. This shows the close connection
between the lattice version of relativistic quantum field theory and classical
spin models of statistical mechanics.

If the lattice is finite one has introduced an infrared (long distance) cutoff,
and an ultraviolet (short distance) cutoff because of the finite lattice spacing.
In this way it is possible always to work with well defined quantities. One
obtains hopefully a continuum theory by making the lattice infinite (ther-
modynamic limit) and letting the lattice spacing a tend to zero (continuum
limit).

Up to now lattice theories are the only way to explore constructively
strongly interacting theories. A major task is to deduce the observed prop-
erties of compound particles from the theory. Massive particles correspond
to correlation lengths in the Schwinger functions. These correlation lengths
are, in contrast to the lattice spacing, physically sensible quantities and set
the scale.

A major task is to come to a physically sensible continuum limit. On the
lattice the correlation length ξ is expressed in units of the lattice spacing,
that is the continuum limit a → 0 corresponds to ξ → ∞ on the lattice.
In the language of statistical mechanics the continuum limit corresponds to
a critical point of the (Euclidean) theory. We shall come back to lattice
theories in the form of lattice gauge theories in sect. 0.4.3.

0.4 Internal Symmetries

0.4.1 General Remarks

The insufficiency of perturbation theory in the case of strong interactions and
certain phenomenological regularities led to the concept of (approximate)
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internal symmetries. In contrast to the Poincaré symmetry (see sect. 0.3.1)
these symmetries are not related to the space-time structure. An (exact)
internal symmetry of a field theory is characterized by a continuous symmetry
group (Lie group) G: n fields are joint to constitute a multiplet, i.e. to each
member is attributed a basis vector of an irreducible unitary representation
of the symmetry group. The representation is a map of the group G to
n-dimensional unitary matrices ω:

G 3 h→ ω ∈ Mat(C, n) (20)

The n-dimensional space is called charge space and the fields matter fields.
The theory is said to be symmetric under the group G if the Lagrangian is
invariant under the transformations ω of the matter fields. If there are terms
in the Lagrangian which are not invariant under these transformations, the
symmetry is said to be broken by these terms.

The historically first and still very important example of such a symmetry
is the isospin symmetry, for historical remarks see Kemmer (1982). The
(exact) isospin symmetry is an idealization and broken at least through the
electromagnetic interaction. The symmetry breaking is much stronger for
another internal symmetry, the so called flavour SU(3).

If the classical Lagrangian is invariant under G, but if higher order per-
turbation corrections break the invariance, one say the symmetry is broken
by an anomaly.

A symmetry is called spontaneously broken, if the Lagrangian is invariant
under symmetry transformations, but not the vacuum (cf sect. 0.3.1), the
ground state of the theory. The most intuitive example is the ferromagnet. In
the absence of an external field the Lagrangian is invariant under rotations,
but not the ground state, the magnetic field of which points in a distinct
direction.

An important consequence of the spontaneous breaking of a continu-
ous symmetry is the occurrence of massless bosons, the so called Goldstone
bosons (Goldstone (1961); Goldstone et al. (1962)). They are present if a
continuous symmetry of the Lagrangian with group G is spontaneously bro-
ken to the (smaller) symmetry of the vacuum state, with group H ⊂ G, and
if there are non-vanishing vacuum expectation values of operators with non-
trivial quantum numbers. The fields corresponding to the Goldstone bosons
are the coordinates in the coset space G/H. In the case of the ferromagnet
the full 3-dimensional rotational symmetry is broken to a rotation symme-
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try around the direction of the magnetic field of the ferromagnet. The two
resulting Goldstone bosons are the quanta of the transverse spin-wave field.

A general formulation of the theorem for relativistic local fields is given
in (Strocchi (2008)), ch. II.17. It states: “If a continuous symmetry, which is
represented by a one parameter group of *-automorphisms of the field algebra
locally generated by charges is spontaneously broken in the sense, that for at
least one field operator A the vacuum expectation value is different from zero,
then there exists in the Fourier transform of the vacuum expectation value of
the product of that field A and the charge density a δ(p2) singularity.” This
singularity signifies the presence of a massless particle.

0.4.2 Gauge Symmetry

One of the most important developments in particle physics, leading to
the standard model, was the use of local or gauge symmetries as con-
structive principle. This principle is based on local symmetry operations,
that is the elements of the symmetry group depend on space and time.
It was first recognized as a powerful construction principle by Hermann
Weyl in connection with a tentative extension of general relativity (Weyl
(1918a); 1918b); 1919); 1923)) and then applied to quantum physicsWeyl
(1929).12 The prehistory of the gauge principle dates back to the develop-
ment of classical electrodynamics in the 19th century, see (Jackson and Okun
(2001)). We shall go immediately medias in res and present it in the final
form as developed by Yang and Mills (1954).

We start with an (exact) internal symmetry having a compact semisim-
ple Lie group G as symmetry group and its unitary irreducible representation
ω, see (20). This representation provides also the corresponding representa-
tion of the Lie algebra of G by hermitian13 generators ta ∈ Mat(n,C), a =
1, · · · ,L := dimG, which satisfy

[ ta, tb ] = i
L∑

c=1

fabc tc (21)

with the real structure constants fabc of the Lie group G. Then ω can be

12For a review of the historical development see (Straumann (1987); O’Raifeartaigh and
Straumann (2000)).

13We adopt this convention mostly used by physicists
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given the form ,

ω = exp (− i
L∑

a=1

αa ta) , (22)

with real parameters αa.
For the non-Abelian groups G = SU(2), SU(3) in their respective self-

representation, also called fundamental representation, the generators can
be chosen in the form ta = 1

2
σa, a = 1, 2, 3, and ta = 1

2
λa, a = 1, · · · , 8, ,

respectively, where σa are the Pauli matrices and λa the Gell-Mann matrices.
The representation of the Abelian group G = U(1) is contained in the for-
mulae above and in those to follow by setting L = 1, n = 1, t1 = 1, fabc = 0.

The symmetry is promoted to a local one or gauge symmetry by admitting
the parameters αa in (22) to depend on space-time, αa = αa(x) , and hence
ω = ω(x). Moreover, due to the unitary representation, ω(x)∗ = ω(x)−1.
To account for the local representation the derivation operation has to be
modified, introducing the Lie algebra-valued gauge field

Aµ(x) =
L∑

a=1

Aa
µ(x) ta , (23)

formed with an L-tuple of real covector fields Aa
µ(x), and which transforms

in conjunction with the matter field ψ(x) as

ψ′(x) := ω(x)ψ(x) , A′µ(x) := ω(x)Aµ(x)ω(x)∗ + i∂µω(x) · ω(x)∗ . (24)

Then, the covariant derivative

∇A
µ = ∂µ + iAµ(x) (25)

transforms covariantly under the local gauge transformation (24) ,

∇A′

µ ψ
′(x) = ω(x)∇A

µ ψ(x) . (26)

Furthermore, the field tensor

Fµν(x) := ∂νAµ(x)− ∂µAν(x)− i [Aµ(x), Aν(x)] =
L∑

a=1

F a
µν(x) t

a , (27)

with components

F a
µν = ∂νA

a
µ − ∂µA

a
ν +

L∑
b,c=1

f bcaAb
µA

c
ν (28)
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transforms under (24) homogeneously,

F ′
µν(x) = ω(x)Fµν(x)ω(x)∗ . (29)

From (29),(28) follows that in any irreducible representation TrFµνF
µν is

a gauge invariant Lorentz scalar, at most quadratic in the derivatives. In
addition, given the groups considered, traces in different irreducible repre-
sentations are proportional. In the respective self-representation of these
groups we have Tr(tatb) = 1

2
δa b , hence

TrFµνF
µν |s.r. = 1

2

L∑
a=1

F a
µνF

aµν . (30)

We notice, that this invariant involves terms quadratic, in the non-Abelian
case also cubic and quartic, in the gauge field Aa

µ , the quadratic part formed
by derivatives only. For a matter multiplet ψ transforming according to
a given irreducible representation a gauge invariant Lagrangian can be ob-
tained replacing in the Lagrangian of the free field ψ the derivative by the
related covariant derivative, (25), – called minimal coupling – and adding the
invariant (30). Thus, in the case of a Dirac spinor multiplet ψ , we obtain

Linv = − 1

2g2
TrFµνF

µν |s.r. + ψ(iγµ∇A
µ −m)ψ . (31)

As the gauge field transforms inhomogeneously, (24), a mass term TrAµA
µ

is not invariant and thus excluded. The dimensionless real parameter g acts
as a coupling constant. Rescaling finally the gauge field,

Aa
µ(x) → g Aa

µ(x), (32)

in (31) the coupling constant is shifted in front of the interaction terms. We
observe, that in the case of the Abelian group G = U(1) the Lagrangian (31)
is the familiar one of spinor electrodynamics. If G = SU(3) and the spinor
field transforming according to the self-representation of this group, (31)
is the Lagrangian of the fundamental theory of strong interactions, called
quantum chromodynamics (QCD), see sect. 0.5.2. There, the spinor fields,
the gauge fields and the internal space are called “quarks”, “gluons” and
space of “colour”, respectively.

In the conversion of the classical theory into a perturbative quantum
field theory the quadratic part of the Lagrangian is supposed to determine
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the corresponding free quantum field theory with its propagators. This part
of (31), after rescaling (32), reads

L2 = −1

4

L∑
a=1

(∂νA
a
µ − ∂µA

a
ν)(∂

νAaµ − ∂µAaν) + ψ(iγµ∂µ −m)ψ . (33)

The part L2(A) resulting from the gauge field, however, is degenerate, since
not all components of this field are dynamical degrees of freedom, because of
the gauge symmetry. The restriction of the gauge field Aµ to its genuinely
dynamical components by imposing a particular condition to eliminate the
gauge freedom (as e.g. the Coulomb gauge) destroys the manifest covariance
of the formulation. Such a formulation, however, appears to be instrumental
in order to develop a renormalized perturbation theory.
The choice of a covariant gauge fixing condition as, after rescaling,

Lg.f. = − 1

α
Tr (∂ µAµ)2 |s.r. = − 1

2α

L∑
a=1

(∂ µAa
µ)2 . (34)

with α > 0, is sufficient in the case of U(1), i.e. QED, but it proves to be
deficient in the non-Abelian case, however. There, it leads to a S-matrix
which violates unitarity, first noticed by Feynman (1963). As shown by
Faddeev and Slavnov (1991), the proper choice of a gauge fixing condition as
(34) is connected with the appearance of a related functional determinant.
This latter nonlocal object can be added to the Lagrangian density in the
form of a local term, employing “ghost fields” ca(x) and “antighost fields”
ca(x), a = 1, ..., L, transforming according to the adjoint representation of G,

Lghost = i
L∑

a,b=1

ca(x) ∂µ(∂µ δ
ab − g

L∑
l=1

f labAl
µ(x))cb(x) . (35)

These new unphysical fields are scalar quantum fields which are required
to satisfy the anticommutation relation in (7), thus not conforming with the
connection between spin and statistics. Then the (classical) total Lagrangian
density

Ltot = Linv + Lg.f. + Lghost (36)

has relativistically invariant gauge fixing built in and owns a quadratic part
which is non-degenerate. Thus it has the appropriate shape to serve as a
point of departure in developing a corresponding relativistic quantum field
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theory in the form of a renormalized perturbation theory. The perturba-
tion expansion with the renormalization procedure connected is performed
in terms of Green functions. These functions are not gauge invariant in-
dividually and depend on the gauge fixing chosen. Insisting on a locally
gauge invariant quantum field theory requires the Green functions to satisfy
the system of Slavnov-Taylor identities (Faddeev and Slavnov (1991); Taylor
(1971)), analogous to the Ward identities (Ward (1950); Takahashi (1957))
in quantum electrodynamics. Actually there exists a symmetry of the total
Lagrangian (36), providing an alternative derivation of the Slavnov-Taylor
identities: Ltot is invariant under the Becchi-Rouet-Stora-Tyutin (BRST)
transformations, (Becchi et al. (1976); Tyutin (1975)), which affect all fields
entering it. The state space resulting from the quadratic part of Ltot has
an indefinite metric. But a space of physical states can be constructed as
a quotient space on which the S-matrix fulfills perturbative unitarity. We
shortly outline the construction: Subsidiary conditions in terms of charge
operators due to the BRST symmetry and (the form of) Lghost determine a
subspace Vphys with positive semidefinite norm, which is spanned by phys-
ical state vectors having positive norm and (unphysical) null-vectors. The
latter ones are orthogonal on the physical state vectors and form a subspace
V0 ⊂ Vphys. The subspace Vphys remains invariant under time translations,
and the quotient space Vphys/V0 forms the above mentioned space of physical
states, (Faddeev and Slavnov (1991)).

If a quantum field carries an electric charge, its relation to observed par-
ticles turns out to be distinctly more intricate than in the case of a neu-
tral field. The predictions of a massive quantum field theory are recorded
in its S-matrix with regard to asymptotic particle states, see (17). This
concept, however, has to be extended if the electromagnetic interaction is
involved. Since the gauge field is massless, two types of singularities in the
infrared would arise in following straight the path of renormalized perturba-
tion theory: 1) In a Feynman integral, the integration over a “virtual” photon
momentum diverges at vanishing momentum value. 2) The emission proba-
bility of a (real) photon, calculated via the corresponding S-matrixelement,
diverges with vanishing frequency. These consequences point to an inherent
deficiency in treating charged fields like neutral ones in establishing the renor-
malization process. Within perturbation theory the arising obstacles can be
circumvented by using a fictitious (small) photon mass at an intermediate
stage. Regarding experiments, all measurements have necessarily a limited
energy and momentum resolution. Therefore, the requirement of a discrete
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value for m2 in the relation (1) can never be checked exactly. Taking explic-
itly into account these limiting observational conditions the construction of
a renormalized perturbation theory can be extended to cover the pecularities
of the electromagnetic interaction in the infrared, too. To create an interme-
diate infrared regularization, a particular gauge fixing term (the Stueckelberg
gauge) of the gauge field Aµ is introduced, as well as a fictitious mass term
for this field, see (Itzykson and Zuber (1980)). Hereof results a propagator
for Aµ, which is finite at vanishing momentum, allows renormalization and
has a proper zero mass limit. To determine then the transition probability
for a certain reaction in a fixed order of the perturbation theory, given the
resolution ∆E of the counter, the respective transition probabilities of all
reactions which involve additional “massive” soft photons of energies smaller
than ∆E in the initial and final state have to be summed. Then, in this
sum the fictitious photon mass can be made to vanish, yielding in the fixed
order considered a finite observable quantity, depending on ∆E, see (Jauch
and Rohrlich (1980)).14 In short, by this constructive procedure the infrared
divergences emerging from real and virtual soft photons compensate each
other in a controlled way.

Notwithstanding the empirical success of this calculational procedure var-
ious attempts towards a genuine formulation of a charged state have been
made, see (Morchio and Strocchi (1986)). Already in the early period of
QED Bloch and Nordsieck (1937) devised a simplified model to deal with
the electromagnetic interaction of a spinor field in the low-frequency domain
without taking recourse to perturbation theory, see also (Bogoliubov and
Shirkov (1959)). In this model the complete 2-point function of the charged
field can be evaluated exactly and shows in momentum space a pole singular-
ity, however multiplied by a further singular factor. A power series expansion
of the latter one in the fine structure constant α leads to powers of the log-
arithm of the pole term. Later on, in the fifties, an analogous singularity
structure has been derived via the renormalization group of QED, (Bogoli-
ubov and Shirkov (1959)). As a consequence charged fields do not have a
particle interpretation according to the LSZ reduction formula (17). In an
imaginative language the charged particle may be described as accompagnied
by a cloud of soft photons. More recently, approaching the infrared problem
from first principles within the algebraic setting of Local Quantum Physics,

14The effective expansion parameter is α log(∆E/m), wherem is the mass of the charged
particle.
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in (Fröhlich et al. (1979)) the representations of the algebra of the asymptotic
electromagnetic field in scattering states are investigated and the connection
with the notion of an “infraparticle”, (Schroer (1963)), is shown. Further-
more, a unified particle concept covering the infrared problem of charged
particles has been developed, (Buchholz et al. (1991)). A novel construction
of renormalized perturbative QED which fully deals with a massless pho-
ton field as basic ingredient has been developed by Steinmann, (Steinmann
(2000)). This approach, which overcomes the ultraviolet and the infrared
problem jointly, makes use of elements from general quantum field theory
as well as from the framework of local observables. It aims directly at the
inclusive cross sections of experiments, avoiding completely to introduce an
S-matrix and any intermediate infrared regularization. Instead, a “particle
probe” is defined, which plays the role of a local observable detecting the
emergence of particle-like objects.

0.4.3 Lattice Gauge Theories

A great advance in the method of lattice regularization was achieved by the
construction of locally gauge invariant lattice theories. The first step was
made in statistical mechanics, where Wegner (1971) realized that for the
construction of gauge invariant quantities on has to attach dynamical vari-
ables not only to the points of a lattice, but also to the links between the
points. Wilson (1974) constructed a lattice version of an Euclidean relativis-
tic non-Abelian gauge field theory with spinor fields.

In this formulation to each ordered link between neighbouring lattice
points xi, xj = xi + a e(µ), e(µ) the unit vector in direction µ, a the lattice
spacing there is attached a copy of the gauge group G = SU(3) in its self-
representation, i.e a unitary matrix u(xi, xj) such that u(xj, xi) = u(xi, xj)

∗ .
Furthermore, to each lattice point is attached a fermion field ψ(xi). Then,
the lattice action of the pure gauge part is

SY M =
1

g2
Re

∑
Tr
(
1− u(xi, xj)u(xj, xk)u(xk, xl)u(xl, xi)

)
, (37)

where xi, xj, xk, xl are the four corner points of an elementary lattice square,
called “plaquette”, and the sum extends over all plaquettes. A simplified

29



version15) of the fermionic lattice action reads

SF = a3
∑

ψ(xi)γµu(xi, xj)ψ(xj) + a4m
∑

ψ(xi)ψ(xi) , (38)

where the first sum extends over the links, affecting also the related γµ, and
the second one over the sites of the lattice. Finally, a local gauge trans-
formation is an independent map of each lattice site xi → ω(xi), the self-
representation of G, together with the replacements

u(xi, xj) → ω(xi)u(xi, xj)ω(xj)
∗, ψ(xi) → ω(xi)ψ(xi) , (39)

which obviously leave SY M and SF invariant. Heuristically, in a formal con-
tinuum limit a→ 0, suggested from the continuum parallel transporter16

u(xi, xj) = P exp i
∫ xj

xi

Aµdxµ → exp iaAµ(xi) , (40)

provides SY M + SF →
∫
d4xLinv,E , where Linv,E is the Euklidean version of

(31).
This lattice regularization leads to well defined correlation functions

(Schwinger functions, see sect. 0.3.1) and avoids the introduction of “un-
physical” degrees of freedom, like ghost fields (see (35)). The still unachieved
task is however to prove the existence of a physically sensible continuum limit
a→ 0.

Realistic lattice gauge theories are analytically inaccessible, but the im-
mense progress in computing technology has made it possible to perform
numerical calculations of some Schwinger functions on fairly extended hy-
percubic lattices (up to 644 lattice points). The best studied part is pure
gauge theory. The inclusion of fermions poses in principle no problems,
since the fermion integration can be performed analytically. The resulting
determinant however exhibits long distance correlations which make the nu-
merical calculations of Schwinger functions impossible, at least at the present
state of computing technology. Therefore calculations, especially with light
fermions have to be based on additional assumptions. The lattice version of
non-Abelian gauge theory was constructed as a model to perform numerical
calculations in QCD (Wilson (1974)), the field theory of strong interactions,
we therefore come back to its achievements in the specific section 0.5.2.

15For the improved form see (Seiler (1982)
16P denotes path ordering
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0.4.4 Spontaneous Symmetry Breaking: Gauge Theo-
ries

The important role of gauge symmetry in QED led early (Klein (1938)) to
consider gauge symmetries in strong and weak interactions, too. The success
of the non-renormalizable four-fermion coupling (Fermi (1934)) in weak in-
teractions made it clear that a description by the exchange of bosons would
imply a very large mass of the latter. Therefore, an underlying gauge symme-
try had to be strongly broken, since gauge bosons in an unbroken symmetry
are massless. An explicit symmetry breaking, (Bludman (1958)), by intro-
ducing a mass term, would render the theory non-renormalizable again. At
first sight, a mechanism of spontaneous symmetry breaking also seems to be
inappropriate, since because of the Goldstone theorem spontaneous symme-
try breaking of a continuous symmetry is accompagnied by massless bosons.
This unwanted linkage, however, can be circumvented. Within a local gauge
theory, spontaneous symmetry breaking without Goldstone bosons has been
achieved, (Higgs (1964); Englert and Brout (1964); Guralnik et al. (1964)),
termed the Higgs mechanism. Eventually, the standard model of elemen-
tary particles as a whole emerged as a local gauge theory. In particular, the
combined electromagnetic and weak interaction with the local gauge group
U(1)× SU(2) is based on the Higgs mechanism in the weak sector.

We exemplify this mechanism in the simpler Abelian Higgs model. In its
classical version a complex scalar field φ(x) and a massless real vector field
Aµ(x) interact with Lagrangian density

Linv(φ,A) = −1
4
FµνF

µν + 1
2
(∂µ− igAµ)φ ·(∂µ + igAµ)φ−λ (|φ|2−ρ2) 2 , (41)

where Fµν = ∂νAµ − ∂µAν and g, λ, ρ are real positive constants.
The Lagrangian density Linv is invariant under local gauge transformations

Aµ(x) → Aµ(x) + ∂µζ(x) , φ(x) → exp(−igζ(x)) · φ(x) , (42)

with a real function ζ(x) , cp.(24). Obviously, this invariance holds a for-
tiori for a constant ζ (global gauge invariance). The energy density resulting
from the Lagrangian (41) has a degenerate minimum formed by the set of
configurations {Aµ(x) ≡ 0, φ(x) = ρ exp iγ | 0 ≤ γ < 2π}. To shape hereof
a perturbative quantum field theory, a particular configuration in the degen-
erate minimum is arbitrarily selected, say by choosing φmin = ρ > 0 , and
restricting the scalar field to have the form

φ(x) = ρ+ ϕ(x), ϕ(x) = ϕ1(x) + iϕ2(x) , ϕ1, ϕ2 real, (43)
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with ϕ(x) vanishing for |x| → ∞. As a consequence the global
U(1)-symmetry present in (41) is now broken, the local gauge invariance
(42),however, still holds, if the gauge functions ζ(x) are required to vanish
asymptotically.

Using (43), the Lagrangian density (41) takes the form

Linv(ρ+ ϕ,A) = L̃2(ϕ,A) + L̃int(ϕ,A) , (44)

with quadratic part

L̃2(ϕ,A) = − 1
4
FµνF

µν + 1
2
(gρ)2AµA

µ + gρAµ ∂µϕ2

+ 1
2
(∂µϕ1)∂

µϕ1 − 1
2
(8λρ2)ϕ 2

1 + 1
2
(∂µϕ2)∂

µϕ2 . (45)

From L̃2(ϕ,A) result the propagators in perturbative quantum field the-
ory. Since (44) is still locally gauge invariant, fixing the gauge degrees of
freedom is required. At first glance, requiring ϕ2 ≡ 0 appears appealing
(unitary gauge): from (45) we read off, that the originally massless vector
field became massive with a mass m = gρ, hence acquiring a longitudinal de-
gree of freedom, whereas the originally complex scalar field now is real with
mass M = 2ρ

√
2λ . Determining the propagators, however, one encounters a

bad ultraviolett-behaviour in case of the vector field, which does not allow a
renormalizable perturbation expansion.
The t’Hooft gauge fixing adds to (44), and thus to (45) the term

Lg.f. = − 1

2α
(∂µA

µ − αgρϕ2)
2 , α ∈ R+ , (46)

which is an extension of (34). Thus, the new quadratic part is given by

L̃2(ϕ,A) + Lg.f. = −1
4
FµνF

µν + 1
2
(gρ)2AµA

µ − 1
2α

(∂µA
µ)2 (47)

+1
2
(∂µϕ1)∂

µϕ1 − 1
2
(8λρ2)ϕ 2

1 + 1
2
(∂µϕ2)∂

µϕ2 − 1
2
α(gρ)2ϕ 2

2 .

It is again diagonal in the fields. In addition to the fields present in (45) the
scalar field ϕ2 appears with mass m

√
α , depending on the gauge parameter

α. This dependence indicates the unphysical nature of the field, produced
by the particular gauge fixing employed. The virtue of this choice is to lead
to a propagator of the vector field having the form17

Dµν(k) =
(
gµν +

(α− 1)kµkν

k2 − αm2 + iε

) 1

k2 −m2 + iε
(48)

17This form also reveals that the part ∂µA
µ of the vector field is unphysical, too.
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the ultraviolett-behaviour of which is compatible with perturbative renor-
malizability.

The Higgs mechanism generated in the standard model is built on non-
Abelian gauge vector fields with gauge symmetry SU(2) together with a
SU(2)-doublet of complex scalar fields. Then the Lagrangian is the very
analog of (41), with corresponding form of the self interaction, pure gauge
term (30), and covariant derivative (25). As a consequence, the degenerate
minimum of the energy density arising now corresponds to a sphere in R4

in place of a circle in R2 met before in the Abelian case. Proceeding on
an analogous route as (43), the still present local SU(2)-gauge symmetry
requires a restriction to classes of gauge-equivalent field configurations, i.e.
gauge fixing. In contrast to the Abelian case, however, requiring in the non-
Abelian theory a relativistically invariant gauge fixing analogous to (46), the
related Lagrangian Lghost has to be introduced in addition, similarly as in
(34), (35). As the analogue of (46) involves scalar fields, Lghost contains
interaction terms of ghost/antighost with the scalar fields. As a consequence
of the choice Lg.f. analogous to (46) there then appear three vector fields
with mass m and one scalar field with mass M as the physical fields; in
addition three further scalar fields as well as three ghost-antighost pairs are
on stage, all with mass m

√
α and having the status of auxiliaries. Moreover,

the propagator of the vector fields is of the form (48).
In contrast to the perturbative approach developed to cope with a fully-

fledged quantum gauge field setting, gauge theories defined on a Euclidean
space-time lattice as introduced by Wilson can be rigorously dealt with, i.e.
without recourse to a (formal) perturbation expansion. With Minkowski
space exchanged by the Euclidean lattice, local gauge symmetry can be
strictly kept in the analysis, gauge fixing is not needed. Exploiting local
gauge invariance of a gauge-invariant version of the XY model, Elitzur (1975)
has shown, that spontaneous breaking of a local gauge symmetry is not pos-
sible without gauge fixing. This result has been sharpened and significantly
extended by De Angelis, de Falco and Guerra,(De Angelis et al. (1978)).
They considered in particular the Euclidean lattice version of the Abelian
Higgs model (41) and proved, that the expectation value of the scalar field
vanishes upon reducing to zero an external field initially coupled to the sys-
tem; removing the external field leads to a gauge invariant state. This lattice
Abelian Higgs model belongs to the family of Higgs type models investigated
by Osterwalder and Seiler (1978) using convergent cluster expansions. They
showed exponential clustering (also) in a special region of the theory’s pa-
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rameters, which can be read as a sign of dynamical mass generation. To be
valid in Minkowski space, all these interesting rigorous results still have to
persist in the continuum limit of the lattice (and Wick rotation).

Remarkably, a massive non-Abelian gauge model can be perturbatively
constructed without resorting to the Higgs mechanism in a classical precursor
theory. This has been achieved by Scharf and coworkers (Scharf (2001);
Dütsch and Scharf (1999); Aste et al. (1999)), following the causal method
of Epstein and Glaser (1973) in constructing the S-matrix of the model. In
this approach massive vector bosons are introduced as fundamental entities
and as a substitute of the BRST symmetry the requirement of causal gauge
invariance is imposed via the asymptotic fields. In the perturbative inductive
construction of a (re)normalizable theory then the need for scalar fields arises,
and the form of the interaction is determined.

0.5 The Standard Model of Particle Physics

0.5.1 Field Content and Interactions

The standard model of particle physics is the renormalizable quantum field
theory of subatomic particles. It describes successfully the strong, the elec-
tromagnetic and the weak interaction. In the following we shall give a very
short outline of its results and methods, which reflect the facet-like charac-
ter of quantum field theory in general.18 Most of the facets contribute to
the successes of the theory, but on the other hand the fragmentation of the
methods leaves some fundamental questions open.

The basic fermion fields entering the Lagrangian are those of the quarks
and leptons, the interaction is determined by minimal gauge invariant inter-
action leading to the gauge-vector fields. The gauged groups are SU(3) for
the strong interaction of the quark fields and the product U(1)× SU(2) for
the electromagnetic and weak interaction.

A remarkable feature of the standard model is the absence of the observed
hadrons among the fundamental fields, whereas no asymptotic particles cor-
respond to the fundamental hadronic fermion (quark) fields of the theory. In
this respect the unified field theory of Heisenberg and coworkers (see Dürr et

18Concise reviews on the principal aspects of the Standard Model can be found in the
Review of Particle Physics (Nakurama, K. et al. (2010))
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al. (1959)), a theory based on fundamental fermion fields can be considered
as a precursor.

Whereas the leptons are only subject to the electroweak interaction, the
quark fields occur both in the electroweak and strong interaction sector. We
therefore give first a short description of this more limited sector.

0.5.2 Quantum Chromodynamics

Quantum chromodynamics (QCD) is generally accepted as the microscopic
theory of strong interactions. The gauge group of QCD is SU(3), the so
called colour group (Han and Nambu (1965); Fritzsch et al. (1973)); the
quark fields transform under the fundamental representation of that group,
they are thus triplets. There are 8 gauge vector fields (gluons), corresponding
to the eight generators of SU(3). The Lagrangian is given by (31). There are
6 triplets of quark fields, distinguished by different quantum numbers, called
flavours, and with different renormalized mass. Since quarks do not occur as
asymptotic particles, there is no on-mass-shell definition of the renormalized
mass, it is therefore an entirely internal parameter. The renormalized quark
masses vary from a few MeV (up and down quark) to 171 GeV (top quark).

An important feature of QCD is the asymptotic freedom (Gross and
Wilczek (1973); Politzer (1973)): The value of the gauge coupling decreases
with increasing mass of the subtraction point. From the fundamental point
this may be an important advantage, since it indicates that it might be a
consistent theory with a Borel-summable perturbative series (see end of sect.
0.3.3). Since the value, where the gauge coupling αs = g2

s/(4π) is small, is
far above the Compton wave length of ordinary hadrons, it is impossible to
apply perturbation theory to calculate such important quantities as hadron
spectra and hadronic cross sections. In order to apply perturbation theory at
all, one has to look for special processes and try to separate the long distance
behaviour from the short distance behaviour, to which perturbation theory
can be applied. For different processes this is possible with varying degrees
of rigour. The most promising method is the operator product expansion or
short distance expansion of Wilson (Wilson (1969); 1971); Wilson and Zim-
mermann (1972); Zimmermann (1973a); 1973b)). A product of operators is
expanded in the form:

φA(x)φB(y)
x→y∼

∑
N

CN(x− y) ON

(
x+ y

2

)
(49)

35



For a free theory the singular behaviour of the coefficient function CN is
determined by the dimensions of the operator. In perturbation theory log-
arithmic deviations can be calculated. Making full use of the machineries
of perturbation theory in this way e.g. the dependence of cross sections
for scattering of leptons on protons have been calculated.19 More precisely,
if the dependence of the cross sections on the total hadronic energy W is

known for Q =
√

(p′` − p`)2 , the fixed (large) momentum transfer to the
leptons, one can predict the dependence on W for fixed higher values of
Q (see e.g. Altarelli (1982)). Similar calculations have been performed in
electron-positron annihilations at large energies. The agreement between
experiment and theory is satisfactory. Unfortunately perturbation theory
in strong interactions is less apt to explain striking phenomena, but rather
special experiments are invented in order to test the theory.

The most salient feature of particle physics, the profusion of “elementary
particles”, in the sense of definition 2 in sect. 0.2.1, cannot be treated in
perturbation theory. Here many efforts have been made by QCD inspired
models, some with remarkable phenomenological success, especially QCD-
inspired quark potential models. In this paper we do not discuss, however,
these more particular approaches.

The only approach to hadron spectroscopy which starts directly from the
Lagrangian is lattice gauge theory, see e.g. (Creutz (1985); Montvay and
Münster (1997); Rothe (2005)). Assuming that finite lattice spacing is a
good approximation to the continuum theory one has verified numerically
confinement for static colour charges in a pure gauge theory: the energy
increases indefinitely with increasing distance between the colour charges
(static quarks). In order to calculate realistic hadron spectra, more assump-
tions have to be made, especially the contributions of quark-antiquark loops
can only be treated approximatively. The resulting mass ratios are however
in satisfactory agreement with experiment. A recent comprehensive survey
of the basic techniques of numerical lattice QCD with emphasis on their
theoretical foundations is given in (Lüscher (2010)).

19Here the short distance expansion, x→ y has to be extended to the light cone expan-
sion (x− y)2 → 0
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0.5.3 The Electroweak Interaction

All fermion fields – quarks and leptons – are subject to the electroweak in-
teraction. Here the gauge group is U(1)×SU(2). All left handed fermions20

are grouped into doublets transforming under the SU(2) part of the sym-
metry (weak isospin), the right handed fermions transform as singlets under
SU(2). The lower component of a lepton doublet is a negatively charged left
handed lepton (e−, µ− or τ−), the upper one the corresponding neutrino.21

The upper component of a doublet of left handed quarks consists of a quark
field with electric charge +2

3
(u, c or t quark), the lower component consists

of a linear combination22 of quarks with charge −1
3

( d, s or b quark).
As the gauge group U(1) × SU(2) is not simple, an Abelian gauge field

Bµ(x), corresponding to U(1), and a non-Abelian gauge field (see (23))
Wµ(x) = 1

2

∑3
a=1 σ

aW a
µ (x), corresponding to SU(2), appear.

A hypercharge Y is introduced, which governs the coupling to the U(1)
gauge field Bµ. The electric charge is given by Q = T3 + Y/2, where T3 is
three-component of the weak isospin.

The Lagrangian has the form (31) with rescaling the gauge fields, see
(32). The covariant derivatives are:

for the doublet : ∂µ1− i
g′Y

2
Bµ1 + ig Wµ (50)

for the singlet : ∂µ − i
g′Y

2
Bµ. (51)

One starts with a classical Lagrangian without fermion masses. In or-
der to generate masses, an additional scalar field is introduced, the so called
Higgs field. In the standard model it transforms as a doublet under the
SU(2) part and has hypercharge Y = +1. The classical Lagrangian for that
field is analogous to the second and third term in (41) with the covariant
derivative (50). It leads to a spontaneous breaking of the symmetry, as dis-
cussed in more detail in sect. 0.4.4. The unitary gauge is chosen in such
a way that only the expectation value of the lower, the electrically neutral,

20For a left handed spinor field the spin polarization is antiparallel to the momentum,
for a right handed one it is parallel.

21Neutrino oscillations indicate small neutrino masses, this has to lead to some mod-
ifications of the Standard model. Given the preliminary state of the field, we shall not
discuss the possible consequences

22The coefficients of the linear combinations are the CKM matrix
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component of the Higgs doublet is different from zero. This has as a con-
sequence that charged gauge bosons and the difference of the U(1) and of
the third isospin component of the SU(2) gauge field, Z0

µ ∼ g′Bµ − gW 3
µ

acquire a mass term. The sum Aµ ∼ g′Bµ + gW 3
µ remains massless, it is

the electromagnetic field. The now massive boson fields W±
µ and Z0

µ are the
intermediate boson fields mediating the weak interaction. The charged inter-
mediate bosons lead in the limit of large mass to the four-fermion coupling,
introduced by Fermi (1934), whereas the Z0 boson induces neutral currents
which in turn give e.g. rise to electron-neutrino scattering. Observation of
those processes made allowed a prediction of the masses of the intermedi-
ate bosons from the classical Lagrangian with an accuracy of a few percent.
This in turn allowed the experimental observation in dedicated experiments.
Very precise measurements of observables in weak interactions and an anal-
ysis of the perturbative corrections allowed the prediction of an up to then
unobserved23 very heavy quark, the top quark.

From its influence due to its presence in internal loops in electroweak
perturbation theory a renormalized mass of about 170 GeV/c2 was predicted,
the observed mass deduced from high energy reactions turned out to be very
near this value (171 GeV/c2). This successful and precise prediction of a new
quark is certainly a highlight of perturbation theory.

The quark masses are generated by couplings of the Higgs boson to the
(massless) quarks, they are proportional to the nonvanishing expectation
value of the Higgs field. The couplings are adjusted in order to yield the
observed renormalized quark masses.

The purely fermionic sector of electroweak interactions is plagued by
quantum corrections which break the symmetry (anomalies) and thus jeop-
ardize the renormalizability of the theory. But fortunately corresponding
anomalies occur in the quark sector with opposite signs such that the stan-
dard model with three doublets of lepton fields and the same number of quark
fields is free of anomalies, (Bouchiat et al. (1972); Faddeev and Slavnov
(1991)).

23Since quarks are not asymptotically observable particles, observed has a somewhat
indirect meaning here
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0.6 Effective Theories

0.6.1 Decoupling and Non-Decoupling Theories

Effective field theories, as a special approach to (perturbative) quantum field
theory have received much attention in the last decades (see e.g. Weinberg
(2009) for a recent short account). As will be stressed in the final section,
a symbolic construction leads inherently to a theory which can be called
effective theory. We therefore in our context do not consider effective theories
as a proper facet of quantum field theory, but rather as an approach to
perturbation theory which illustrates our point of view.

There are two types of effective theories, those which show a decoupling
of the renormalizable from the effective part, and those which show no such
decoupling and are not renormalizable.

A decoupling effective theory is a simplification of a renormalizable theory
containing both light-mass and heavy-mass degrees of freedom (fields with
small and large renormalized mass m and M respectively). Considering only
correlation functions of the light-mass fields, it is intuitive that at low ener-
gies the heavy-mass fields play no role. Indeed it has been shown (Appelquist
and Carrazone (1975); Kim (1995)) that one can obtain any correlation func-
tion of light-mass fields to any order from the (renormalizable) Lagrangian
containing only the light-mass fields and additional insertions. The insertions
are called irrelevant, that is their contributions are suppressed by powers of
( m

M
). A well known example of this type is a theory of leptons ( i.e. an

extension of QED for electrons) as effective theory of the electroweak inter-
actions (see sect. 0.5.3). Here the renormalizable part of the theory is the
QED Lagrangian plus a free Lagrangian for neutrinos, the lowest dimensional
insertion is the four fermion interaction, which in turn can be obtained from
the full electroweak theory. In a non-decoupling effective theory one has in-
teraction terms which may leed to non-renormalizable theories, that is for
each order in the expansion new counterterms may have to be introduced
to balance ultraviolet divergences. A time honoured example is Fermi’s the-
ory of weak interactions (Fermi (1934)) if its four-fermion coupling is not
treated as an insertion but as a genuine interaction term. An attempt to get
insight in the confinement mechanism is based on the effective Lagrangian
of an extended N = 2 supersymmetric gauge theory, (Seiberg and Witten
(1994)). This effective Lagrangian exhibits confinement of fermions through
Abrikosov strings, the mechanism conjectured in the t’Hooft-Mandelstam
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model (Mandelstam (1976); ’t Hooft (1978)) of QCD. An example of an ef-
fective theory, which is directly related to phenomena, will be discussed in
the next subsection.

0.6.2 Spontaneously Broken Chiral Symmetry

Among the strongly interacting particles, the pions have by far the smallest
mass. Therefore it was conjectured that they are the Goldstone bosons of a
spontaneously broken symmetry, see sect. 0.4.1.24 The observation that the
pions form an isovector of pseudoscalar particles led to the conjecture that
the underlying Lagrangian is invariant under the group G = SU(2)×SU(2),
but that it is spontaneously broken to a group H = SU(2). This led to the
construction of an effective Lagrangian reflecting these symmetry properties.
One starts with the conjecture: For a given set of asymptotic states with the
most general Lagrangian allowed by the assumed symmetries yields the most
general S-matrix elements consistent with analyticity, perturbative unitarity,
cluster decomposition and the assumed symmetries. Weinberg (1979) calls
this conjecture “a theorem which has never been proven”. Leutwyler (1994)
stresses the equivalence with the underlying theory, in this case QCD, and
points out the importance of off-shell elements.

As mentioned in sect 0.4.1 the Goldstone-boson fields are in the coset
space G/H. A convenient parametrization for the Goldstone fields is given
by the SU(2) matrix:

U(Φ) = exp[
i
√

2

fπ

Φ] (52)

Here Φ = 1√
2
~σ~φ, with ~φ the triplet of pion fields and fπ the pion decay

constant, ~σ are the Pauli-matrices.
A non-polynomial Lagrangian25 incorporating all symmetry properties is

constructed as a trace function of U(Φ) and ∂µU(Φ). The contribution with
lowest mass dimension is

L2 =
f 2

π

4
Tr
(
∂µU(Φ)†∂µU(Φ)

)
(53)

24The fact that the mass is not completely zero is assumed to be a consequence of an
additional direct symmetry breaking. Therefore the pions are sometimes called pseudo-
Goldstone bosons

25There are also linear realizations of chiral symmetry (Schwinger (1957); Gell-Mann
and Levy (1960)) but they do not lead to phenomenologically satisfactory results
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=
1

2
Tr
(
∂µΦ ∂µΦ

)
+

1

12f 2
π

Tr
(

(Φ ∂µΦ − ∂µΦ Φ) (Φ ∂µΦ− ∂µΦ Φ)
)

+O

(
Φ6

f 4
π

)
. (54)

The first term on the left hand side is the free Lagrangian for the massless
pion fields, the second and higher terms in the pion field ~φ describe the
interaction.

The perturbative expansion is in the order of derivatives (momenta) of
the pion field. Higher order terms lead to divergent loops which have to be
renormalized, that is additional terms have to be introduced. The perturba-
tion theory is well defined to each order in momentum, but with the increase
of powers of momenta the number of additional terms increases. To the
Lagrangian one can add interactions with external fields like the isospin dou-
blet of nucleons, the electromagnetic and weak current as well as symmetry
breaking terms.

This development started before QCD was generally accepted as the quan-
tum field theory of strong interactions and it even was, by its strong relation
to the method of current algebra, one of the roots of the Standard Model.
Interesting short accounts of the history of spontaneous symmetry breaking
and its use in particle physics are given by the protagonists of this field, Y.
Nambu in (Hoddeson and others (1997), p. 510ff) and S. Weinberg, in the
same volume, p. 36ff.

We now want to show in which sense the chiral theory can be considered
as an effective theory for certain aspects of a microscopic, renormalizable
one, namely QCD.

The fermionic sector of the classical QCD Lagrangian with Nf massless
quark fields can be written in terms of the left and right handed Weyl-spinor
fields ψj

L and ψj
R for the quark fields:26

Lquark =
Nf∑
j=1

(
ψ̄j

Liγ
µ(∂µ + igs

1
2
λaA

a
µ)ψj

L + ψ̄j
Riγ

µ(∂µ + igs
1
2
λaA

a
µ)ψj

R

)
. (55)

The Lagrangian is invariant under the rotations of the global chiral sym-

26In terms of the Dirac field ψD, the right- and left-handed Weyl-spinor fields are given
by ψL/R = 1

2 (1∓ γ5)ψD.
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metry group27 G = SU(Nf )L × SU(Nf )R

ψL
G→ gL ψL , ψR

G→ gR ψR , Aa
µ

G→ Aa
µ , gL/R ∈ SU(Nf )L/R .

(56)
We shall concentrate here on the case Nf = 2, that is isospin symmetry.28

The conserved (Noether) currents of the symmetry group G are

Jk
X = 1

2
ψ̄Xγ

µσkψX , X = L,R; k = 1, 2, 3 . (57)

Though one is not in the position to calculate the hadron spectrum an-
alytically from this Lagrangian (55), one can explain with it qualitatively
several observed properties of hadron dynamics. For this purpose one has to
assume that the full chiral symmetry G = SU(2)L×SU(2)R is spontaneously
broken to the symmetry H = SU(2)V = SU(2)L+R of the vacuum state. In
principle this feature should be a consequence of the interaction.

The Noether current of the remaining unbroken symmetry H is

{Jk
V }µ = 1

2
{Jk

R + Jk
L}µ = 1

2
ψ̄Dγµσ

k ψD . (58)

The Goldstone boson fields correspond to the generators of the spontaneously
broken symmetry, that is the charges of the axial current Jk

A = 1
2
(Jk

R − Jk
L).

Therefore there exist 3 pseudoscalar Goldstone bosons which are identified
with the triplet of pions. The small but finite mass of the pions is explained
by a small (renormalized) mass of the light quarks in the QCD Lagrangian.

The spontaneous symmetry breaking also explains why there is no parity
degeneracy of the hadronic states, this would occur for an unbroken chiral
symmetry. These qualitative remarks on the consequences of spontaneous
chiral symmetry breaking can be made quantitative in chiral perturbation
theory, as discussed above. Quark masses in the QCD Lagrangian give rise
to an explicit breaking of the chiral symmetry and hence induce finite masses
for the (pseudo) Goldstone bosons.

27The additional symmetry U(1)L × U(1)R is not discussed here
28The masses of the two lightest quarks are below 10 MeV (in the MS substraction

scheme at a scale of 2 GeV). The strange quark has also a definitely lower mass (< 120
MeV) than the heavy ones (> 1.2 GeV) and therefore a similar reasoning can be applied
to Nf = 3
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0.7 Epistemological and Historical Consider-

ations

0.7.1 The Facets of Quantum Field Theory as Sym-
bolic Constructions

It seems to be one of the great miracles, that physics is very successful in
applying mathematical reasoning to explain natural phenomena, where ex-
plaining implies not (only) general classification but also very specific pre-
dictions. Mathematics is arguably the purest mental construction, whereas
phenomena have certainly also constructive aspects, but the once introduced
quantitative aspects are largely independent of the construction and further-
more are in many cases intimately intertwined with other phenomena. To
give an example: The influence of chemical binding on the magnetic moment
of a proton might seem a rather constructed phenomenological quantity, but
it is also relevant for such mundane applications as magnetic resonance imag-
ing. This seems to be an esoteric example, but experimental physics tends
more and more in this direction. On the other hand also the theories become
more abstract and reveal in this way their highly symbolic and constructive
character. The rotation group SO(3) is a mathematical construction very
close to, and initially motivated by, everyday experience, but its universal
covering group, SU(2) is quite remote from this experience. Nevertheless
these mathematical abstractions, moving away from intuitive reasoning, are
essential to give a theoretical description of experimentally accessible micro-
scopic phenomena, such as spin or isospin.

Whereas everybody should agree that theories are symbolic constructions,
after all they operate with mathematical objects which per se are not related
to direct experience, there seems to be disagreement about the role and
uniqueness of the symbolic representation. In the 19th century a “realistic”
interpretation say of electric phenomena was based on a mechanistic inter-
pretation, that is the theory of mechanics was supposed to be the unique and
adequate representation. But already at the end of that century, Helmholtz
e.g. (in Hertz (1894)), preface) had a wider view of symbolic representation.
He writes that other physicists, as Lord Kelvin and Maxwell, were evidently
more satisfied by mechanical explanations than “by the plain most explana-
tions of the facts and their laws as they are given in physics by the systems
of differential equations”, whereas he himself felt most assured by the latter
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representation.
Quantum field theory comes into view in various branches, grown in the

course of time, the basic concepts of which we have pointed out in an overview
in sect.0.3. These branches, called “facets” by us, are at first sight theories
of their own, each based on its particular intrinsic concept. Notwithstand-
ing the apparent differences in their respective concepts these facets form
particular and restricted approaches towards a common ideal goal, named
relativistic quantum field theory. This goal can be characterized in short as
follows: to transmute classical field theory on Minkowski space-time into a
consistent quantum theory, which shows locality as a central property, and
has phenomena of subatomic particles as its physical domain. It is a goal,
since the construction of such a quantum field theory with inherent inter-
action has not yet been achieved on a sound mathematical footing in four
space-time dimensions, even without being subject to any “external” demand
posed by experiment. Each of these facets approaches autonomously certain
features of the ideal goal, ignoring largely other aspects. Moreover, looking at
the respective set-up of the various facets one recognizes marked differences,
preventing to consider these facets as mere subtheories of a coherent embrac-
ing unit. To clarify the epistemological implications of this state of affairs
deserves special attention. We put forward the view to consider these facets
as synchronous symbolic constructions. As regards (theoretical) physics, a
symbolic construction should comply with three basic requirements:
i) It is a mathematical structure created in accordance with a logically con-
sistent general concept.
ii) A semantic interpretation of the structural relations generated by the the-
ory formed provides a correspondence with specific observational relations
in phenomena, which explains these latter ones and gives them meaning in
terms of the former ones. The symbolic construction becomes empirically
testable only via this correspondence between the structural (i.e. mathemat-
ical) and the observational relations, given by a list of prescriptions.
iii) There is a significant (limited) domain of empirical adequacy, within
which the theory can provide explanation, prediction and quantitative de-
scription of specific phenomena.
This view emphasizes the constructive character of a physical theory. It
stresses the essentially limited range of empirical adequacy of such a theory
and the symbolic character of its basic ingredients.

Concretely, we notice, that the Wightman postulates of General Quantum
Field Theory are widely recognized to form the core properties of a local
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quantum field theory, any dynamical content, however, remains hidden. As
already emphasized in sect. 0.3.1, the PCT theorem and the relation between
spin and statisticts are general consequences of these postulates with far
reaching phenomenological consequences.

Constructive Quantum Field Theory endeavours to establish on a sound
mathematical footing concrete quantum field theories with interaction. These
mathematically ambitious efforts succeeded in two and three dimensional
space-time; the constructions, based on functional methods, satisfy the ana-
logue of the Wightman postulates, they demonstrate the mathematical con-
sistency of these postulates in the case of a theory with interaction. Moreover,
there are some initial steps towards a rigorous non-perturbative construc-
tion of a non-Abelian gauge theory in four space-time dimensions, (Balaban
(1989a); 1989b)).

Local Quantum Physics focusses directly on observations, to be formu-
lated within quantum theory. As all measurements and experimental prepa-
rations are performed in bounded regions of space-time, an algebra of local
observables is introduced as basic structure. Central properties considered
are connected with charge quantum numbers (electric, weak, flavour, etc).
This approach covers charged systems without using unobservable (charged)
fields. Nevertheless, the successful calculations of particular effects within
renormalized perturbation theory of QED rely on local charged fields as ba-
sic constituents of the theory. It does not appear obvious how to reconstruct
these achievements circumventing the use of such fields.

Characterized briefly, the three facets, General Quantum Field Theory,
Constructive Quantum Field Theory, and Local Quantum Physics are more
of a paradigmatic nature and do not intend to cope directly with actual
phenomena.

Renormalized Perturbation Theory generates interacting quantum field
theories in four space-time dimensions, also incorporating the apparently
decisive local gauge symmetry, at a price to be paid, however: seen math-
ematically, the theory appears only as a formal power series in a coupling
strength, disregarding questions of convergence. There are indications, that
at most an asymptotically free theory may be summable. In applications of
this method, the series is restricted to a few orders, believed to be justified
in the case of weak interaction strength. Within this approach specific phys-
ically sensible models have been constructed, culminating in the creation of
the Standard Model. As regards the above mentioned item iii) of a symbolic
construction, this facet is the most fruitful one, providing a host of distinct
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observational results.
In Lattice Gauge Theory the space-time continuum is replaced by a point

lattice, embedded into an Euclidean continuum, and on this lattice a discrete
Euclidean version of QCD is formulated. The functional integrals on the ba-
sic matter fields (quarks) and gauge fields (gluons) reduce there to multiple
Grassmann and Riemann integrals over a finite domain. The formidable
object of this approach is to deduce confinement and the existence and prop-
erties of the observed hadrons. This approach is not restricted to weak
coupling. It is still far from being a complete realization of a relativistic
quantum field theory, since there is no proof of the existence of a contin-
uum limit which in addition would have to allow a proper continuation to
Minkowski space-time. It should be noted, however, that numerical results
are promising. Comparing the two facets Renormalized Perturbation Theory
and Lattice Gauge Theory which aim at concrete empirically adequate con-
structions, they point to complementary physical domains, namely to short
and long distance effects.

This short summary should make it clear, that the complex Relativistic
Quantum Field Theory is not a monolithic theory, but shows complementary
facets which are united rather by a common ideal goal then by a general
theory from which they could be derived.

0.7.2 The Standard Model as Symbolic Construction

In our perspective on relativistic quantum field theory, which is directed
towards its constituting general aspects, we do not consider the multitude
of models which combine elements of the facets expounded, augmented by
further particular assumptions or approximations. Especially in QCD such
models play a prominent role and in some cases they are even a prerequi-
site for a systematic treatment, as for instance the parton model for the
application of perturbation theory in strong interactions.

We now come back to the intricate relation between particles and fields
already alluded to in sect. 0.2.3. Making use of the material presented
in sect. 0.3 we can expound our point of view, namely that constructions
of increasing complexity have to be made in order to achieve a consistent
theoretical description of the phenomena.

Especially the conversion of a classical field theory with local gauge sym-
metry into a quantum field theory requires novel constructions. Because of
the local symmetry present in the classical Lagrangian a whole class of field
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configurations equivalent under gauge transformations, determines a physi-
cal configuration, in place of a single field configutation, see (24),(42). In the
process of quantization within perturbation theory a unique representative
of each class is selected by imposing an appropriate gauge condition. The
Coulomb gauge fixing (~∂ · ~A = 0) provides such a selection, but it violates
relativistic invariance in the construction, in addition a non-local interaction
is introduced. In order to construct a systematic renormalized perturbation
expansion the choice of a covariant gauge fixing condition appears to be
indispensable; this in turn rules out a state space with a positive definite
metric, (Strocchi (1970)). “Unphysical states” with partly negative norm
have to be introduced (longitudinal and timelike photons), the correspond-
ing field components, however, are treated in the course of the evaluation of
Feynman diagrams exactly as the fields corresponding to the physical states.

In the case of non-Abelian gauge symmetry the construction has even
to be extended. Because of the inherent self-interaction of the gauge fields,
gauge fixing generates a non-local contribution, the Faddeev-Popov deter-
minant, as an additional dynamical agent. This determinant can be im-
plemented into the Lagrangian by introducing additional scalar local fields,
ghost fields, see (35), which have to anticommute, thus violating the con-
nection between spin and statistics. As a result of this construction a local
Lagrangian, (36), is obtained which contains fully dynamical fields and has a
non-degenerate quadratic part, forming the point of departure for developing
a renormalized perturbation expansion. Moreover, this Lagrangian satisfies
the BRST symmetry, which involves all fields entering and acts as local gauge
symmetry on the non-ghost fields. For the inductive construction and the
proof of renormalizability relativistic covariance and locality appear essen-
tial; there are non-covariant gauges, like the temporal gauge A0 = 0, which
would dispense from introducing ghost fields.

The full state space of the covariantly constructed quantum gauge field
theory has an indefinite metric - thus not conform with Wightman postulate
W1, see sect. 0.3.1. It contains, however, a subspace selected by subsidiary
conditions, as indicated in sect. 0.4.2. The physical states have positive
norm and the related physical S-matrix is unitary. The dynamical evolution
encoded in this S-matrix, however, involves all fields entering the theory.

The unphysical degrees of freedom are essential parts of the mathemat-
ical structure of renormalized perturbative gauge field theory. In the facets
of quantum field theory which concentrate on the foundational basis, local
gauge symmetry is not dealt with and therefore the problem of unphysical
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states does not arise. In lattice gauge theory ghost fields do not occur. The
integration over the gauge fields, indicated in (18), extends over a compact
domain, the parameter space of the unitary matrices u(xi, xj) of the gauge
group, see sect. 0.4.3. Therefore the integration over all elements of the class
representing the same physical configuration leads to a finite result and no
selection of a particular representative is necessary. It is evident that this is a
particular feature of the discretized theory because only there the integration
over all representatives leads to a finite result.

We now discuss the implications of these specific constructions for the
standard model of particle physics. A short glance on certain aspects of the
history of weak interactions shows the constructive character of theory devel-
opment and how the unity of the facets was an ideal goal, but not necessarily
realized de facto. Even in an early state of quantum field theory the spe-
cial problems connected with the ultraviolett divergences of a four-fermion
interaction were recognized. This problem together with the other infinities
encountered in the first attempts of perturbation theory led to the widespread
belief that at high energies local quantum field theory breaks down and e.g. a
fundamental length has to be introduced (see e.g. Heisenberg (1943)). After
the establishment of renormalized perturbation theory in QED the construc-
tion of such a theory for weak interactions was a prominent goal. It was
clear that the range of interaction for weak decays is very short, therefore
an intermediate field mediating weak interaction had to be very massive. A
massive vector field without additional symmetry requirements leads however
to a non-renormalizable theory. Nevertheless many theories were constructed
based on the exchange of massive vector fields and efforts were made to find
the corresponding “intermediate bosons” experimentally. After the invention
of the Higgs-Kibble mechanism, see sect. 0.4.4, Weinberg (1967) proposed in
1967 the mass generation of the intermediate boson by spontaneous breaking
of a gauge symmetry. Based on this mechanism he could even make rough
predictions for the masses of the gauge bosons, they were more than an order
of magnitude larger than those of any particle known up to then. Weinberg
acknowledged that there was no proof for the renormalizability of the the-
ory, it was t’Hooft and Veltmann (’t Hooft (1971b); 1971a); ’t Hooft and
Veltman (1972b), see also the article of Veltman in (Hoddeson and others
(1997)), p. 145ff. who undertook the formidable task of proving renormal-
izability of gauge theories with spontaneous symmetry breaking. This was
an important achievement in the facet of renormalized perturbation theory,
independently of its phenomenological applications. The positive theoretical
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result had also practical consequences: it was an additional encouragement,
see the article of Perkins in (Hoddeson and others (1997)), p. 432 for the
experimentalists who undertook the formidable task of finding the very rare
events induced by neutral currents, characteristic for the theory. After the
positive results one had enough information to predict the masses of the in-
termediate bosons with an accuracy of few percent and to establish them in
a dedicated experiment (Arnison and others (1983a); 1983b)).

The renormalizability of a theory involving massive vector fields is based
on the Higgs mechanism within a renormalizable gauge field theory. We
have discussed this mechanism of mass generation and the renormalization
procedure for an Abelian gauge theory in sect. 0.4.4 and the application to
the Standard Model in sect. 0.5.3. Here we summarize the features indicating
the constructive character of the theory. We shortly direct our attention
to the peculiar features of the SU(2) gauge theory and concentrate on the
part of the Lagrangian analogue to (41), the problems of mixing with the
electromagnetic field and the coupling to fermions will be discussed later.
As classical precursor theory acts a SU(2) gauge theory with a doublet of
complex scalar fields as matter fields, the latter one in addition subject to
a specific self-interaction. The energy density of this locally gauge invariant
model shows the degeneracy of a sphere S3. Spontaneous symmetry breaking
is generated by selecting arbitrarily a particular minimum by a corresponding
constant shift of the scalar doublet analogous to (43). This operation keeps
the local SU(2) gauge symmetry but breaks the originally a fortiori present
global SU(2) symmetry, and most important, provides all three gauge fields
with a mass. The renormalized perturbation expansion developed from this
point of departure has a state space with an indefinite metric. This total state
space corresponds to the three vector fields, a scalar field, three Goldstone
scalar fields, and ghost fields, the latter due to covariant gauge fixing; all these
fields are massive. The “physical” state space is again singled out analogously
to the procedure indicated in sect. 0.4.2. The particle states appearing in
the physical state space are three vector mesons with three polarizations each
and one scalar meson, which are identified with the observed charged vector
bosons W±, the Z0-meson (after mixing with the photon) and the Higgs
meson, still to be established experimentally.

The incorporation of this mechanism into the U(1)× SU(2) gauge sym-
metry of electroweak interactions (see sect. 0.5.3) poses further tasks, (Si-
bold (2000)). The unbroken symmetry U(1) has to be established jointly
in the process of renormalization and the photon has to be kept massless
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in mixing with one of the gauge fields of SU(2) to form the Z0 meson. As
mentioned, the specific coupling of the gauge fields to fermions according
to (50),(51)leads to anomalies, which destroy renormalizability of the purely
leptonic sector.

In the perturbative treatment of the Higgs mechanism the vacuum expec-
tation value ρ, breaking the global symmetry, see (43), plays a decisive role.
It is the main ingredient for the mass generation of the gauge bosons. This
expansion of a classical Lagrangian at an arbitrarily chosen point of a degen-
erate minimum provides a new classical Lagrangian, which itself forms the
point of departure for the construction of a perturbative quantum field theory.
Gauge fixing breaking the local gauge symmetry then appears mandatory in
this endeavour. In the lattice regularized version of a gauge theory gauge
invariance can be strictly kept, and in a special model (Elitzur (1975)) and
more general in (De Angelis et al. (1978)) it was shown that the expectation
value of the scalar field vanishes and thus the parameter ρ is equal to zero.
This situation clarifies the symbolic nature of the concepts: Even if in the
future the continuum limit could be rigorously shown to exist and even if
quantitative results in lattice calculations could be achieved which are com-
parable in precision and reliability to those of perturbation theory, this would
certainly not invalidate renormalized perturbation theory. It shows however
that the expectation value of the scalar field is a quantity which makes only
sense in the theoretical frame it is used and where it plays an essential role.

The observation of more and more strongly interacting particles, espe-
cially in the sense of definition 1 in sect. 0.2.1, led very early to the idea,
that some of them correspond to fundamental fields and some are compos-
ite states of those. As early as 1949 Fermi and Yang (1949) discussed the
possibility that for instance the mesons are bound states of nucleons and
their antiparticles which were at that time not yet detected. But soon the
opinion that quantum field theory was of little use in strong interactions (see
e.g. Chew (1961)) was widely accepted and the search for fundamental fields
seemed obsolete.

Today the theory of strong interactions, QCD, is based on fundamen-
tal fields; it is a renormalizable gauge theory of quark fields. But whereas
the search for consistency was the driving force in shaping of the theory of
electroweak interactions, the construction of QCD was largely driven by the
goal to deal with phenomenological peculiarities. Objects which turned out
later to give rise to the fundamental matter fields, the quarks, were intro-
duced independently with different motivations. Gell-Mann (1964), using
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the method of current algebra found that many properties of hadrons, espe-
cially concerning their weak and electromagnetic interaction could heuristi-
cally be explained by assuming the existence of fundamental fields with pecu-
liar quantum numbers (e.g. fractional charge and baryon number). Already
in his original paper, however, he suggested that no asymptotic particles cor-
respond to these fields and he called the quarks “mathematical particles”
(see also Gell-Mann’s comments in (Hoddeson and others (1997)), p. 625ff.)
Independently, Zweig (1964) was investigating regularities and seeming para-
doxes in strong interactions and came to the conclusion that they could be
explained by the assumption that hadrons consist of fundamental particles,
with the same peculiar quantum numbers as the quarks of Gell-Mann. The
plausibility especially of Zweig’s results led to an intensive search for these
constituting particles. The outcome was negative and the present experimen-
tal and theoretical situation favours indeed strongly the original suggestion of
Gell-Mann that no observable asymptotic states correpond to quark fields.
For quite some time “quark models” in strong interactions were in a very
heuristic state and relied on a more or less adventurous mixture of elements
of perturbative quantum field theory, quantum mechanics and simplifying
assumptions, an “effective field theory” in the widest sense.

As mentioned above the electroweak theory was in a theoretically much
better state. Even before the proof of renormalizability of its perturbation
expansion in 1972, there existed with Weinberg’s Lagrangian at least the
basis for a well defined theory which could be renormalizable and could serve
as a basis for the inclusion of strongly interacting fields. It seemed therefore
plausible to include also quark fields into the electroweak gauge theory in
order to describe electroweak interactions of hadrons, though there was at
that time no reliable field theoretical scheme to treat strongly interacting
quark fields There was, however, a serious obstacle to the incorporation of
quarks into the electroweak gauge theory, namely the absence (or extreme
smallness) of flavour-changing weak neutral currents. By introducing a quark
field with a new quantum number (called charm) as the weak isospin partner
of the strange quark, Glashow, Iliopoulos, and Maiani (Glashow et al. (1970))
managed to suppress these contributions. After the detection of hadrons with
this quantum number it was clear that these “charmed” quark fields had also
to be taken into account in a theory of strong interactions.

The leptonic theory augmented by corresponding terms with quark fields
opened not only the possibility to explain some weak decays of hadrons at
least qualitatively, but it was also essential for the internal consistency, since
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it is free of anomalies! Hence quark fields played an essential role in the
renormalized perturbation theory of electroweak interactions, that is in a
consistent facet of quantum field theory. But the inclusion of quark fields
made it necessary to extend the state space of leptons, to which asymptotic
particles correspond and which therefore justly can be called physical space
by fictious “physical states” of quarks, which have not been observed as
asymptotic particles. On top of the real and fictitious physical states there
occur in the full state space of perturbation theory also the unphysical states
necessary for covariant gauge fixing.

When Gell-Mann, Fritzsch and Leutwyler (Gell-Mann (1972); Fritzsch et
al. (1973)) proposed QCD, i.e. the non-Abelian SU(3) gauge theory with
quarks as matter fields as the fundamental theory of strong ineractions, em-
phasis was more on certain phenomenological aspects than on consistency.
But the peculiar property of asymptotic freedom (see sect. 0.5.2) opened
the way to use renormalized perturbation theory also in strong interactions.
The corresponding state space is spanned by the “fictitious physical” states,
quarks and transverse gluons and the “unphysical” states, namely longitudi-
nal and timelike gluons and ghosts, all occuring in the propagators.

One of the most characteristic features of strong interaction, the rich
hadron spectrum, is inherently unaccessible to a treatment by perturbation
theory. For heavy quarks one can however take recourse to the consistent
formalism of quantum mechanics. Here, after introducing a phenomenologi-
cal potential, the hadronic states emerge consistently as bound states of two
heavy quarks, perturbative QCD corrections can be included. In the Hilbert
space of quantum mechanics only those states which are colour singlets are
observable.

Lattice gauge theory is much closer to relativistic quantum field theory
theory. Here, as mentioned in sect. 0.5, numerical results have been obtained
for the lowest lying hadrons with given quantum numbers. To obtain higher
excited states is difficult, since the extraction of the particle content from a
numerically given Schwinger function is delicate. Stable particles correspond
to poles in the Wightman functions and therefore in the Schwinger functions
to correlation lengths (see sect. 0.4.3). In order to select a smaller correla-
tion length (higher mass) one has to subtract the terms with the bigger ones.
Furthermore it is unclear how an unstable particle, corresponding to a pole
in the complex plane, can be treated consistently in the Euclidean theory.
In order to get some information on decays one has to proceed analogously
to perturbation theory, namely to calculate the transition probabilities and
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then calculate the width semiclassically. Numerical lattice calculations have
also been performed to test certain aspects of effective theories which try to
explain confinement, most notably the t’Hooft-Mandelstam model (Mandel-
stam (1976); ’t Hooft (1978)) which is based on vortex lines in a condensate of
magnetic monopoles. Another important domain of numerical lattice gauge
calculations is the investigation of quantum field theories at finite temper-
atures, notably the transition to phases without confinement and without
chiral symmetry breaking.

In the course of the last decades growing importance has been attached
to the concept of effective quantum field theories (sect. 0.6), based on ef-
fective Lagrangians29. An early example of a Lagrangian, which now would
be called effective, is the Euler-Heisenberg Lagrangian (Euler (1936)), and
also Fermi’s theory of four-fermion interaction can now be considered as an
effective Lagrangian for the weak sector of the standard model; both lead to
non-renormalizable theory. After the appearance and the phenomenological
success of renormalized perturbation theory Lagrangians which did not lead
to a renormalizable theory came in disrepute. When Weinberg proposed in
1968 such a “phenomenological” Lagrangian (Weinberg (1968)) he took care
to state that it was only an auxiliary device to obtain easily results for pion
scattering and production, which were in accordance with those obtained by a
theory considered to be more fundamental, namely current algebra. Because
of the lack of renormalizability, higher order corrections were considered to
be meaningless.

The attitude changed, according to Weinberg (2009), in the second half
of the seventies. He was influenced by Wilson, who investigating critical
phenomena in statistical physics had introduced a variable ultraviolett cut-
off, but had changed the “bare couplings” in the Lagrangian as to keep the
physical quantities strictly cutoff independent. But even if the underlying
theory is renormalizable, one also has to introduce additional “insertions”
which are marginal, see sect. 0.6.1. Taken as interactions these terms would
make the theory non-renormalizable. This formal development somewhat
changed the view on the renormalizable theories. Since the occurence of
fields with a high mass30 outside the reach of present experiments can never
be excluded, it is always possible that a renormalizable theory is only an

29These effective Lagrangians have to be distinguished from the effective action obtained
by formal functional transformations of the original action

30massive fields are fields with a renormalized mass, they may or may not correspond
to asymptotic particles
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effective theory of a more extensive one with additional very heavy fields.
An experimental hint to that would be the existence of processes which are
forbidden in the effective theory through its genuine interaction terms, but
possible through the insertions necessitated by the high masses. Proton de-
cay, a much searched process, is an example of such a process. But also
the attitude to non-renormalizable theories changed. The occurrence of for-
mally non-renormalizable terms opened the way to consider Lagrangians with
non-renormalizable terms as the basis of a dynamical theory, that is also to
calculate higher orders with closed loops, provided more and more terms are
introduced in order to ensure the independence of the observable results from
the regulator, see sect. 0.6.2.

It is evident that from our point of view, from which theories are seen
as symbolic constructions to explain phenomena, and not as faithful repre-
sentations of an underlying reality, each theory can be called effective. We
nevertheless admit that there are certain hierarchies in effective theories.
Even if the chiral symmetry breaking through the QCD Lagrangian is by no
means proven, QCD is certainly the more embracing theory and in lattice
gauge theory one has started to calculate numerically the constants occurring
in chiral perturbation theory. On the other hand one cannot obtain infor-
mation on the small quark masses by renormalized perturbation theory of
QCD, since the masses are much smaller than the scale where perturbative
QCD can be applied. Therefore the information on the small quark masses is
obtained by a mixture of chiral perturbation theory, perturbation theory and
nonperturbative approaches. The large quark masses however can be identi-
fied through perturbation theory, where they give an important contribution
due to their presence in the propagators.

0.7.3 The Symbolic Character of Quantum Field The-
ory Seen in a Historical Context

At several instances we have put forward arguments to view the achievements
of quantum field theory in an epistemological perspective as symbolic con-
structions. In such a construction, based on a concept, the symbols entering
the mathematical structure are not related directly to the phenomena, but
only the relations obtained from this structure. The ghost fields in renormal-
izable (covariant) perturbation theory are examples.

The electromagnetic field, seen autonomously, exempt from a material

54



carrier, was perhaps the first example of such a symbolic construction. It is
thus no accident that Heinrich Hertz is one of the most outspoken and clearest
protagonists of a symbolic view of natural sciences. Hertz made not only a
great contribution to electromagnetism by discovering and detecting radio
waves, but also was one of the first to emphasize the autonomous character
of Maxwell’s equations31. In insisting on the primacy of the equations he had
freed the theory of Maxwell of ether mechanics, which with hindsight might
be regarded as “ontological ballast”.

In the introduction to his Mechanics Hertz makes some very concrete and
lucid remarks on the task and the possibility of natural science. He considers
as principal aim of conscious natural science (bewusster Naturerkenntnis) to
foresee future experiences. In order to reach that he proposes a ‘sign theory’
for which he gives a set of rules, both formative and descriptive ,(Hertz
(1894), pp. 1f).

We form for us inner simulacra or symbols of the things and in
such a way that the logical consequences of the symbols are always
pictures of the physically necessary consequences of the depicted
objects32.

He does not take it for granted that such a procedure is possible, but
notes that experience tells us, that it can be achieved. Hertz emphasizes the
symbolic character of the theoretical entities (Hertz (1894), p. 2.):

The images we speak of are our imaginations of the things; they
have with the things the one essential correpondence which lies
in the fulfillment of the above mentioned postulates.33

He also points out that by the congruence requirement the construction
is by no means unique, but that different pictures can be distinguished ac-
cording to their ‘admissibility’ (Zulässigkeit), ‘correctness’ (Richtigkeit) and

31The importance of Hertz in the development of the electromagnetic theory becomes
evident by the fact that Einstein e.g. referred to Maxwell’s theory as Maxwell-Hertz
theory.

32‘Wir machen uns innere Scheinbilder oder Symbole der äusseren Gegenstände, und
zwar machen wir sie von folgender Art, dass die denknotwendigen Folgen der Bilder stets
wieder Bilder seien von den naturnotwendigen Folgen der abgebildeten Gegenstände.’

33‘Die Bilder, von welchen wir reden, sind unsere Vorstellungen von den Dingen; sie
haben mit den Dingen die eine wesentliche Übereinstimmung, welche in der Erfüllung der
genannten Forderung liegt.’
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‘appropriateness’ (Zweckmäßigkeit). Pictures are admissible if they do not
contradict logic (laws of thought), and admissible pictures are correct if ‘their
essential relations do not contradict the relations between external objects’.
However, admissible and correct pictures can (and normally will) differ in
their appropriateness which comes in two guises; namely as ‘distinctness’
(Deutlichkeit) and ‘simplicity’ (Einfachheit). A picture which mirrors more
of an object’s essential relations is called a clearer one, and amongst equally
clear pictures the one with the less vacuous relations (i.e. relations which
occur in the picture but not in the external world) is the simpler one. Such
competing pictures normally occur if one is simplifying certain aspects of a
more complete theory in models. Also, if one could obtain a direct dynamical
development of local observables without recurse to local fields, this would
be a simpler construction.

It is remarkable that already before the rise of quantum physics the
philosopher Ernst Cassirer saw the forthcoming change in the epistemologi-
cal attitude, namely away from science as mainly concerned with substances
and their properties as fundamental objects towards the investigation of rela-
tions. This is clearly elaborated in his work Substance and Function (Cassirer
(1910)). In his Philosophy of Symbolic Forms, where he expounds symbolic
representation in all forms of human endeavour to grasp the world, he notes
that indeed natural science was first to be aware of its symbolic character
and he quotes intensively Hertz and Helmholtz (Cassirer (1923 1929), vol. I,
p. 5 f, vol III, p. 522 ff).

The epistemologigal position to view a physical theory as a symbolic con-
struction is distinctly opposed to both positivism, which advocates a mere
descriptive role of the theory, and entity realism, according to which the
mathematical entities of the theory express ultimate elements in nature.
The concentration on Maxwell’s equation and discarding ether mechanics
could at first sight be viewed as a typical move to positivism. Indeed, the
younger Planck, who was an adherent of Ernst Mach, expresses in 1899
(Planck (1958), 1, p. 604) the view that the success of Maxwell’s theory is
also a triumph of Mach’s positivism. But reducing the formalism to a kind
of shorthand notation for tables connecting experimental data, as extreme
positivism does, would not do justice to the wealth of relations generated
by the involved mathematical quality of these equations. Hertz recognized
this power very clearly. He writes admiringly on Maxwell’s equations : “One
cannot read this beautiful theory without sometimes feeling as if those math-
ematical formulæ had their own life and intelligence, as if those were more
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clever than we, even more clever than their inventor, as if they would yield
more than was put into them at the time” (Hertz (1889), p. 11).

From the mathematical form of a theory may follow startling predic-
tions of novel phenomena. This applies particularly to quantum field theory.
Perhaps the most spectacular triumph was the prediction of anti-matter by
Dirac34. Other examples are the prediction of the charm quark field and the
mass of the top quark. Those who advocate entity realism, take the suc-
cessful predictions of certain theories as a strong argument for their view.
One of the strongest arguments against this realism is the pessimistic meta-
induction: In the past all theories have turned out to be wrong if applied
generally, i.e. not restricted to a limited domain, so present theories most
probably will suffer the same fate.

We shall not go here in a general discussion, but concentrate on quantum
field theory. First we shall in some detail show that quantum field theory,
viewed as a faithful image of the “real world”, leads to serious problems.
From a realistic point of view one could argue that the infinities occurring
in a naive application of perturbation theory are only due to a extrapola-
tion of an effective theory into domains where it is not applicable and where
new effects do occur. Therefore on should deduce the terms in the pertur-
bative series in a direct way, but limit the integration range of the multiple
momentum space integrals (see sect. 0.3.4) by a large, but fixed and finite
cutoff. In this way all terms of the (formal) power series are well defined. By
choosing this fixed cutoff large enough and by adjusting the constants in the
classical Lagrangian, i.e. the bare constants, one obtains expressions which
are arbitrarily close to the observations as are the results of renormalized
perturbation theory.

But an important point in favour of the interpretation of quantum field
theory as a symbolic construction rather than a faithful representation of
reality is the problem of the cosmological constant, see e.g. (Straumann
(1999); Trodden and Carroll (2004)). The vacuum expectation value of the
contracted energy momentum tensor is proportional to the energy density
of the vacuum, ρvac = 1

4
(Ω, TµνΩ)gµν and hence contributes to the Einstein

equations of gravity as a contribution to the cosmological constant. From
astronomical data one deduces a limit on the energy density of the universe
ρvac ≤ 10−46 GeV4. In a naive treatment of perturbative quantum field theory

34The first hint was given by relativistic quantum mechanics, but a consistent description
could only be given in quantum field theory, and most notably through the CPT theorem
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calculation of the energy momentum tensor leads to one of the bewildering
infinities, even in free field theory. It is to be avoided in a renormalized
theory. Since in relativistic quantum field theory excluding gravity, only
energy differences are observable, one can choose the renormalized vacuum
energy density to be zero or any finite number. From a realistic point of
view, as the one described above, one has however no such freedom, the
energy density of the vacuum can be calculated and is proportional to the
4th power of the cutoff. Since the validity of the standard model, as it stands,
extends certainly far into the GeV region, the cutoff has to be at least of this
order of magnitude. The thus obtained cosmological constant is at least 50
orders of magnitude larger than the phenomenological one35. Adopting a
realistic view one has to postulate an up to now unknown mechanism which
compensates the vacuum energy from quantum field theory to an accuracy
of more than 50 orders of magnitude!

We have stressed several times that the notion of a “particle” is not
independent of the theoretical frame. This holds to some extend even for the
electron, which seems a well established stable particle. In no experiment it
does show up as an isolated state, but always together with (in principle an
unlimited number of) soft photons.

There is however an apparent degree of concreteness of the categories of
“particles”. It can be easily accounted for in the frame of symbolic con-
structions (theories). The electron can – and for certain purposes even must
– be considered as a charged classical particle, subject to the laws of me-
chanics, subject to force fields given by classical electrodynamics. It also
appears in the well defined and closed theory of non-relativistic quantum
mechanics, as a fundamental constituent of matter. Remarkably the numeri-
cal values for mass and charge are the same there as in the frame of classical
mechanics. Heavy quarks can also be incorporated into the frame of non-
relativistic quantum mechanics or more ambitiously of non-relativistic QCD.
In a stringent theoretical frame light quarks and gluons have to be consid-
ered as fundamental fields in relativistic quantum field theory, both in its
perturbative and nonperturbative facet. In lattice gauge theory they are ba-
sic fields generating hadrons dynamically. In perturbation theory the quark
and gluon fields are directly related to physical particle states. The values

35In supersymmetric theories the cosmological constant is zero to any order of per-
turbation theory, since the fermionic contributions are cancelled by bosonic ones. Since
supersymmetry is not observed, it is, if it prevails, certainly broken in the TeV range and
therefore does not cure the problem
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of the masses and charges in quantum field theory are on a quite different
footing than in classical physics or quantum mechanics, since they have to be
fixed via the choice of renormalization conditions. For those particles which
also occur as asymptotic particles the renormalized quantities can be related
to the classical quantities, but for quarks, e.g., the mass is only an internal
parameter, occurring e.g. in the field propagator. The ghost fields finally
only appear in (covariant) renormalized perturbation theory but they do not
correspond to states in the physical subspace. Whereas the notation “par-
ticle” is often used loosely, the statement that a certain field is a necessary
element of a given symbolic construction is unambiguous.

The view of a symbolic construction leaves aside attempts to attribute
to the mathematical symbolism an ontological status. Instead, its criterion
is the usefulness of the concept inherent in the construction in accounting
for a significant empirical domain - in short, as clearly formulated by Hertz,
to make correct predictions. This moderate position acknowledges in the
large the coexistence of autonomous closed physical theories, like classical
mechanics, electrodynamics, quantum mechanics,..., accounting for a respec-
tive large class of phenomena. Moreover, this position meets the possibility
- actually the norm, seen historically - that the full mathematical range of a
theory is (much) larger than its physical domain of validity.

Already before Hertz, Helmholtz in his considerations on the role of signs,
still related to sensual impressions recognized: the most important feature
of the signs is that they map the law of what is happening. Helmholtz
and Hertz could speak of “the laws”, since they could not yet know that the
application of both Newtonian mechanics and classical electrodynamics have
only a limited domain of validity even in their proper fields of application.
Henri Poincaré however saw the dawn of unlimited applicability of Newtonian
mechanics, but nevertheless he stresses the importance of the formalism on
the expense of the underlying signals. Famous is the account of the validity
of Fresnel’s formulae of inflection and refraction (Poincaré (1927), X, p. 190.)

[. . . ] the aim of Fresnel was not to find out whether there really is
an ether, whether it is or it is not formed of atoms, whether these
atoms really move in this or that sense; . . . these appellations
were only images substituted for the real objects which nature
will eternally hide from us. The true relations between these
real objects are the only reality we can attain to, and the only
condition is that the same relations exist between these objects
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as between the images by which we are forced to replace them.
If these relations are known to us, what matter if we deem it
convenient to replace one image by another.36

The constructive character becomes even clearer in the following passage
near the end of The Value of Science (Poincaré (1905), XI, p. 296.):

In summary, the only objective reality are the relations between
the things from which the universal harmony starts. Doubtless
these relations, this harmony, would not be conceived outside a
mind who conceives or feels them. But they are nevertheless
objective since they are, become, or stay common to all thinking
beings.37

This (relative) stability of the relations has given rise to structural real-
ism, which by Cao and Schweber (1993)38 has been advocated as the adequate
epistemological position with regard to quantum field theory. This position
is certainly much closer than positivism and entity realism to the view of
symbolic constructions. We nevertheless consider the view of symbolic con-
struction more adequate, as we have elaborated in some detail in (Dosch et
al. (2005)). There special emphasis was given to a semiotic interpretation,
which accepts the different facets of quantum field theory as different codes.

36‘[. . . ] le but de Fresnel n’était pas de savoir s’il y a réellement un éther, s’il est ou
non formeé d’atomes, si ces atomes se meuvent réellement dans tel ou tel sense; c’était
de prévoir les phénomènes optiques. Or, cela, la théorie de Fresnel le permet toujours,
aujourd’hui aussi bien qu’avant Maxwell. Les équations differentielles sont toujours vraies;
[. . . ] Elles nous apprennent, après comme avant, qu’il y a tel rapport entre quelque chose
et quelque autre chose; seulement, ce quelque chose nous l’appelions autrefois mouvement,
nous l’appelons maintenant courant électrique. Mais ces appelations n’étaient que des
images substituées aux objets réels que la nature nous cachera éternellement. Les rapports
véritables entre ces objets réels sont la seule réalité que nous puissions atteindre, et la seule
condition, c’est qu’il y ait les mêmes rapports entre ces objets qu’entre les images que nous
sommes forcés de mettre à leur place. Si ces rapports nous sont connus, qu’importe si nous
jugeons commode de remplacer une image par une autre.’

37‘En résumé, la seule réalité objective, ce sont les rapports des choses d’où résulte
l’harmomie universelle. Sans doutes ces rapports, cette harmonie ne sauraient être conçus
en dehors d’un esprit qui les conçoit ou qui les sent. Mais ils sont néanmois objectifs parce
qu’ils sont, deviendront, ou resteront communs à tous les êtres pensants.’

38Epistemological considerations concerning quantum field theory are the subject of
several books and conferences, e.g. Auyang (1995); Cao (1996); 1999)
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In the Standard Model of particle physics the concept of gauge symmetry
has reached its climax; it seems appropriate to conclude with a quotation of
the founder of this concept, Hermann Weyl (Weyl (1949))39:

[. . . ] it is the free in symbols acting spirit which constructs himself
in physics a frame to which he refers the manifold of phenomena.
He does not need for that imported means like space and time
and particles of substance; he takes everything from himself40

Acknowledgements. The authors gratefully acknowledge valuable sug-
gestions made by the referees. One of us (HGD) wants to thank John Stachel
for interesting discussions and suggestions.

39The symbolic constructivism of Weyl is a principal subject of Sieroka (2010)
40‘[. . . ] dass es der freie, in Symbolen schaffende Geist ist, der sich in der Physik ein

objektives Gerüst baut, auf dass er die Mannigfaltigkeit der Phänomene ordnend bezieht.
Er bedarf dazu keiner solchen von aussen gelieferten Mittel wie Raum, Zeit und Substanz-
partikel; er nimmt alles aus sich selbst’.
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K. Hepp. Théorie de la renormalisation. Springer, Berlin, 1969.
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