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0 Preliminaries

Literature

These lecture notes combine material from several sources. Some topics in these lecture notes are
treated in all books listed below; for some, a particular book or selection of books is better suited.
In this case, this will be indicated in the corresponding chapter.
In particular, you might find it useful to also read up on the topics in the following books as well
as lecture notes (available online):

• Srednicki, Quantum Field Theory

• Ryder, Quantum Field Theory

• Gelis, Quantum Field Theory

• Schwartz, Quantum Field Theory and the Standard Model

• Peskin/Schröder, Quantum Field Theory

• Nastase, Quantum Field Theory

• Fradkin, Quantum Field Theory

• There are many other books on QFT and it is often a matter of personal taste, which one is
most useful.

• Lecture notes on QFT by D. Tong (Cambridge University), A. Hebecker (Heidelberg Univer-
sity), T. Weigand (from the QFT courses at Heidelberg University)

Many topics are treated to the greatest level of depth in the QFT books by Weinberg. However,
for a first encounter with a topic, the books are usually not useful, but rather become helpful later
on, when one has already learned about a topic and wants to come back to it to learn more about
it.
There is also the book “Quantum field theory in a nutshell” by Zee, which focuses more on some
conceptual aspects rather than technical points and it can be a useful addition to the above list of
literature.

Mini-exercises

The best way to learn quantum field theory is to do calculations yourself, and think and discuss
about concepts yourself. Therefore, each lecture has at least one “mini-exercise”, which you will
work on during the lecture. This gives you the opportunity to engage more actively with the
material and notice when you have questions. You will likely not always have time to finish the
mini-exercise during class. Therefore, solutions will not only be provided on the blackboard, but
are also available in the back of the lecture notes. They will be made available in the update of
the lectures notes that will be made online after each lecture.
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1 Introduction

1.1 Motivation: Why quantum field theory?

Quantum mechanics is a non-relativistic theory. This results in a question, namely:

Ñ What happens to systems in which quantum effects and relativistic effects are important?
There is a heuristic argument that points us towards how relativistic quantum physics dif-
fers from quantum mechanics. From the standard Heisenberg uncertainty principle, one can
motivate an uncertainty relation between energy E and time t, namely ∆E∆t ě ℏ

2 . In a
relativistic setting, we can combine this with E “ mc2, which we know from special relativity.
“ñ We expect that particle number is never fixed in a system, because, for short enough
time durations, energy is not constant, but fluctuates and these fluctuations in energy trans-
late into fluctuations in particle number. We call these fluctuations “virtual” particles.
“ñ We cannot work with a wavefunction for a fixed number of particles, as we did in quan-
tum mechanics. Instead, we need a formalism in which the particle number can change in a
system over time, and in which the presence of virtual particles is accounted for.

We can also see the incompatibility between special relativity and quantum mechanics in a
different way:

Ñ Special relativity requires that two measurements that are done at spacelike separation,
must be independent in order not to violate causality. In Quantum Mechanics, independence
of measurements is encoded in commuting operators. However, the notion that spacelike
separated operators commute is not naturally built into QM.

“ñ We need to adapt our formalism.

How should the new formalism look like?
To go beyond wavefunctions for fixed numbers of particles, we need a (mathematical) quantity
that is more fundamental than particles, i.e., particles should be a derived notion.
We take inspiration from electrodynamics, because electrodynamics can be formulated in a rela-
tivistic way. At the same time, we know from the photo-electric effect, that there are particles in
electrodynamics, namely photons. Thus, it is a useful guide to point us to the type of formalism
that we should develop. Electrodynamics is a field theory, i.e., the fundamental quantity is a field,
i.e., a quantity that takes on values at each spacetime point.
From experiments, we already know that photons (the corresponding particles) are derived from
the field, in fact, they correspond to (quantized) excitations of the field. This can, e.g., be seen
in laser experiments, in which the power incident on a screen is recorded. As the intensity of the
laser is lowered, the power arrives in discrete, “quantized packages”, the photons.
In order to be compatible with special relativity, we need to build a theory which has Lorentz
invariance built into it, just like the relativistic formulation of electrodynamics has.

What will this type of theory be able to describe?

• elementary particles and their interactions, in particular the Standard Model of particle
physics.
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• any setting in which particle number is not conserved, e.g., condensed-matter-systems in
which we are interested in effective (not fundamental) excitations, such as, e.g., phonons, or
Cooper-pairs in superconductivity.

• if the energy of the system is low enough, the formalism that we are developing is even
sufficient to understand the quantum properties of gravity.

Note: in our current understanding of cosmology, the origin of all structures in the universe
(galaxies, galaxy clusters . . . ) are quantum fluctuations of the fundamental fields in the early
universe. Ultimately, we thus owe our existence to the physics of QFT!

1.2 Why learning quantum field theory is hard

Quantum field theory is not an easy subject. This has several reasons. First, the quantities that we
are dealing with are often abstract and more difficult to develop an intuitive understanding of than,
for instance, systems in classical mechanics. Second, we need to develop an entirely new formalism
to describe quantum fields, in which we bring together classical field theory and quantum theory.
In other words, we are learning a (mathematical) language in which to describe the systems that
we are interested in, and, just like with any other new language, learning it can be hard and it
takes some time until the concepts start to feel familiar and intuitive.
However, you should not feel discouraged by this or think about giving up. Rather, if you have
questions and/or doubts, bring them up with the lecturer (either after the lecture, or by email
to eichhorn@thphys.uni-heidelberg.de) or to your tutor, or to the head tutor, Zois Gyftopolous
(gyftopolous@thphys.uni-heidelberg.de). The whole team of lecturer and tutors is here to support
you in learning and understanding quantum field theory!

1.3 Why learning quantum field theory is absolutely worth it

Quantum field theory provides the framework for the most advanced and deepest understanding of
fundamental physics that we have. Therefore, it is like a key with which we can unlock fascinating
insights into elementary particles and their properties. Thus, some of the highlights that await us
this term are:

• understanding how powerful symmetries are and how we can deduce properties of elementary
particles from an understanding of the Lorentz group and how we can deduce the existence
of the electromagnetic field from thinking about symmetries

• understanding were the Pauli principle for Spin-1/2-particles comes from

• understanding why antiparticles must exist in order for causality to not be violated

• understanding that the vacuum is not a boring state of “nothing”, but is a highly non-trivial
state which results in a force between conducting plates (“Casimir force”) or the scattering of
photons off each other (unlike in classical electrodynamics, in which the equations of motion
for the gauge field are linear and electromagnetic waves do not interact)

• and much more!
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1.4 Classical field theory

We have already emphasized the role and importance of symmetries, so we will spend some more
time developing the mathematics of symmetries, namely groups and their representations. First,
however, we need to establish some of the notions that form the basis of this course, namely fields
and their classical description.

A field takes a value at each spacetime point. Examples that you may already know include

• the E- and B-field, Epx⃗, tq, Bpx⃗, tq, which are 3-vectors.

• the density in hydrodynamics, ρpx⃗, tq, which is just a one-component function.

• the gauge field Aµpx⃗, tq in electrodynamics, which is a 4-vector.

To describe their dynamics, we start from an action S, which is a functional, i.e., its argument is
a function (and it maps to the real numbers).
For instance, in the relativistic way of writing electrodynamics, we have

SrAs “
1
4

ż

d4xFµνF µν , (1)

“

ż

d4xLED, Fµν “ BµAν ´ BνAµ.

We denote functionals with square brackets around their arguments, which are functions. LED is
the Lagrange density. It is not a functional, because it does not depend on the full function (in
this case, the field at all spacetime points), but is just a function of the spacetime-coordinates,
through its dependence on the field at a point.
To establish some of the key notions, we will use a scalar field, conventionally denoted by ϕpx⃗, tq.
An example for scalar fields relevant in nature is the Higgs field in the Standard Model; hypo-
thetical scalar fields include the inflaton field (that drives the (conjectured) inflationary phase in
the early universe), and proposals for dark matter (e.g., the axion, which is, to be more precise, a
pseudoscalar). Scalars that can be collective degrees of freedom also play a role in many condensed-
matter systems, starting from the Ising model.
The Lagrange density L depends on the field ϕpx⃗, tq and its derivatives, Bµϕpx⃗, tq, BµBνϕpx⃗, tq

. . . and is a priori completely arbitrary. We will make two assumptions:

• the Lagrange density is local, i.e., it depends on fields and their derivatives at one point and
it only depends on a finite number of derivatives. (We call this local, because a derivative
always compares a field at a point to its (infinitesimally removed) neighboring point. An
infinitely high power of derivatives thus involves fields a finite distance apart.)
This has two motivations: First, observationally, local interactions seem to describe nature
very well; e.g., in the LHC detectors, one can see that particles interact locally. Second,
non-local interaction may get into conflict with causality, because non-localities may mean
interactions at spacelike distances.

• We assume that the Lagrange density does not have higher than second derivatives in time.
The reason is Ostrogradsky’s theorem, which is a theorem in classical mechanics and states
that, (under a non-degeneracy condition), a Hamiltonian that contains higher-than-second-
order time derivatives is unbounded from below. This may- but need not!- make the the-
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ory dynamically unstable. Because this theorem implicitly underlies the formulation of La-
grangians in many settings (classical mechanics, classical field theory, quantum field theory),
we will take a closer look at it in the exercises.1

The Lagrangian
L “

ż

d3xL, (2)

is the spatial integral of the Lagrange density. We will often work with L, because it makes the
equal treatment of space and time, that we want in a relativistic theory, manifest. It is often called
“the Lagrangian” in a slight abuse of naming conventions.
L consists of two parts, a kinetic part, T , that depends on derivatives, and a potential, V ,

L “ T ´ V. (3)

We will often focus on
T “

1
2BµϕBµϕ, (4)

and
V “

1
2m2ϕ2 ` λϕ4, (5)

where in V we assumed that we can Taylor-expand V pϕq around a minimum ϕ0 and we can set
ϕ0 “ 0 and V pϕ0q “ 0 without loss of generality. We further assume a symmetry ϕ Ñ ´ϕ, so
that there is no ϕ3 present, which would render V pϕq unbounded from below. We call m the
mass, because we will see that the equations of motion imply p2 “ m2 for the square of the
four-momentum, if the term m2ϕ2 is present in the Lagrangian. The quartic term, λϕ4 leads to
non-linear equations of motion, i.e., it describes interactions of the field (and the corresponding
particles) with itself. The strength of these interactions is parameterized by the coupling λ. In the
next few lectures, we focus on just the mass term.
Our choice of T requires a bit more justification: The kinetic part describes how the field changes
in space and time, thus it must contain a derivative, and Bµϕ is the building block to use. In
order to have a Lorentz-invariant expression, we must contract the open index and the only other
4-vector we have is another derivative. Thus, up to rescalings of the term, we have a unique lowest
order action in ϕ

S “

ż

d4x

ˆ

1
2Bµϕ Bνϕ ηµν ´

m2

2 ϕ2
˙

, (6)

where ηµν “ diagp1, ´1, ´1, ´1q in our conventions, which most QFT books use. Many GR books
use ηµν “ diagp´1, 1, 1, 1q. The overall sign is pure convention; the difference in signs between the
time part and the spatial part is physics.

Mini-Exercise 1.1. We made the statement that we can set a constant and a linear term
in L to zero without loss of generality. For the constant term, this is because the equations
of motion follow from minimizing the action and the field value that minimizes S does not
depend on whether or not there is a constant shift in S.

1You have probably encountered or will encounter many examples where the Lagrangian does not have higher
than second order time derivatives. Electrodynamics is one example, General Relativity another, and classical
mechanics is full of examples. Note however that there are subtleties and there are counterexamples to the intuition
that a Hamiltonian that is unbounded from below leads to instabilities.
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For the linear term, we can always remove it by a change of our field variable (which you can
think of as analogous to a change in coordinates in class. mech.)
Show this! Start with

L “
1
2BµϕBµϕ ´ Cϕ ´

1
2m2ϕ2. (7)

Define φ “ ϕ ` γ. What is the choice of γ, such that

L “
1
2BµφBµφ ´

1
2m2φ2 ` const ? (8)

The equations of motion follow from extremizing the action, i.e., we perform a variation of the
action (i.e., a variation of the field, ϕ Ñ ϕ`δϕ, by some arbitrary amount δϕ). We set the variation
of the action to zero, just like, when we are searching for the minimum of a function, we are setting
its first derivative (analogous to the variation of the argument of the function) to zero:

0 “ δS “ δ

ż

d4x

ˆ

1
2BµϕBµϕ ´

1
2m2ϕ2

˙

“

ż

d4x
`

pBµϕqηµνpBνδϕq ´ m2ϕδϕ
˘

“

ż

d4x
`

´pBνBµϕqηµνδϕ ´ m2ϕδϕ
˘

“

ż

d4x
`

´pBνBµϕqηµν ´ m2ϕ
˘

δϕ, (9)

where in the second-to-last step we used partial integration and where we assume that δϕ “ 0 at
x Ñ ˘8. Because δϕ is an arbitrary variation, to satisfy Eq. (9), the factor ´BνBνϕηµν ´ m2ϕ

must be zero.
This is the Klein-Gordon equation,

B2ϕ ` m2ϕ “ 0, (10)

with B2 “ BµBνηµν . The Klein-Gordon equation is a relativistic, massive wave equation.
For the Lagrangian, δS “ 0 translates into the Euler-Lagrange equations

BL
Bϕ

´ Bµ

ˆ

BL
Bµϕ

˙

“ 0. (11)

The solutions to the equations of motion are spanned by plane waves,

ϕpxq “ ϕ0 cospkxq, passuming ϕpxq “ ϕp´xqq (12)

with the shorthand kx “ kµxµ and the relativistic, massive dispersion-relation kµkµ “ k2 “ m2.

Later on, a starting point for one quantization scheme (path-integral quantization) will be the
action, but the starting point for another quantization scheme (canonical quantization) will be the
Hamiltonian.
Just as in classical mechanics, where we define p “ BL

B 9q , the canonically conjugate momentum,
and Hpp, qq “ p 9q ´ L, in quantum field theory we define πpx⃗q, the canonically conjugate field.
(Note: it is the canonically conjugate field to ϕ, but has nothing to do with the momentum of the
particles that we will describe. It is sometimes called the (canonically conjugate) momentum field,
because it arises in the generalization of the Hamiltonian formalism to QFT and it generalizes the
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momentum of a particle, which is the canonically conjugate variable to the position.) Its definition
is

πpx⃗q “
δL

δ 9ϕpx⃗q
, (13)

which is a functional derivative, i.e., a derivative with respect to a function. Just like Bx
Bx “ 1, we

have
δϕpx⃗q

δϕpy⃗q
“ δ3px⃗ ´ y⃗q. (14)

Thus, for the Lagrangian in Eq. (6), we obtain

πpx⃗q “
δ

δ 9ϕpx⃗q

ż

d3y

¨

˚

˚

˚

˝

1
2

9ϕ2 ´
1
2

´

∇⃗ϕ
¯2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
BµϕBµϕ

´
1
2m2ϕ2

˛

‹

‹

‹

‚

“

ż

d3y
´

9ϕ δ3px⃗ ´ y⃗q

¯

“ 9ϕpx⃗q. (15)

Thus, to calculate the Hamiltonian, we can use that 9ϕ can be substituted by π. We obtain the
Hamiltonian of the system as

H “

ˆ
ż

d3x π 9ϕ

˙

´ L

“

ż

d3x

ˆ

π2 ´

ˆ

π2

2 ´
1
2

´

∇⃗ϕ
¯2

´
m2

2 ϕ2
˙˙

“
1
2

ż

d3x

¨

˚

˚

˝

π2 `

´

∇⃗ϕ
¯2

` m2ϕ2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
2H

˛

‹

‹

‚

“

ż

d3x H, (16)

where we defined the Hamiltonian density H.
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2 The importance and the mathematics of symmetries

Useful literature for this chapter is the following: There are books on group theory in physics
and more specifically particle physics, e.g., “Group theory in physics” by Wu-Ki Tung and “Lie
algebras in particle physics” by Howard Georgi.
QFT books also cover discussions of symmetry groups, for instance: Schwartz, chapter 2, covers
the basics of Lorentz transformations, and group theory basics for the Lorentz group are discussed
in 10.1. The Lorentz group and its Lie algebra generators are also discussed in Srednicki, chapter
2. Gelis (chapter 7.1) summarizes Lie groups and Lie algebras.
Symmetries are one of the most important foundational elements in QFT. This becomes obvious
from many examples:

i) In particle physics, the various mesons and baryons are organized into sets, e.g., the eight
lightest mesons are grouped into the meson octet according to the “eightfold way” which is
based on a so-called “SUp3q flavor symmetry”. Historically, this type of organization into
sets according to symmetries was central in predicting new particles.

ii) You might have heard that the Standard Model is an SUp3q ˆ SUp2q ˆ Up1q gauge theory.
Specifying this symmetry already fixes a large part of the Standard Model particle content
and the allowed interactions between particles.

iii) In condensed matter, phase transitions are associated with spontaneous breaking of symme-
tries. For instance, in a ferromagnet, at high enough temperature, there is no macroscopic
magnetization, which means that there is full rotational symmetry for each of the microscopic
spin vectors. At low temperature, in the magnetized phase, rotational symmetry is broken,
because the macroscopic magnetization spontaneously selects one spatial direction. More
generally, by knowing the symmetries that the degrees of freedom in a condensed-matter
system obey, we can already figure out which phases and phase transitions there could be.

iv) Lorentz symmetry (or its generalization, Poincaré symmetry, which adds translations (in
space and in time)) determine much of the properties of elementary particles and their
interactions and much of the mathematical structure of QFT.
For instance, the fact that we characterize elementary particles by their mass and their spin
is a direct consequence (as we will work out) follows from considering the Poincaré group.

v) . . .

This motivates us to dive into the mathematics of symmetries, because this appears to be the
language in which large parts of nature can be described.

2.1 Symmetries are described by groups

It turns out that there exists a mathematical structure that is exactly adapted to formalizing
symmetries, and that is a group.
Definition of a group:

A group G is a set of elements Gi P G, together with a “multiplication” ¨ , such that

Gi ¨ Gj “ Gk, Gk P G @ Gi, Gj P G. (17)
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This means that we can combine two elements of the group by the multiplication and
we obtain another element of the group. The multiplication law satisfies

• associativity

pGi ¨ Gjq ¨ Gk “ Gi ¨ pGj ¨ Gkq @ Gi, Gj , Gk P G. (18)

• D identity element E, s.t.

Gi ¨ E P G @ Gi and E P G. (19)

• inverse element
@ Gi P G D G´1

i P G, s.t. Gi ¨ G´1
i “ E. (20)

Note that the identity element is unique, as is the inverse for each element.
Let’s parse this definition and the intuition behind the various requirements in physics language,
using rotations as an example and thinking of a spherically symmetric system:

• Two rotations can be performed consecutively, yielding a third rotation (about a different
axis). This is the multiplication law which allows us to combine group elements into new
group elements.

• When three rotations are performed, either the 1st and 2nd or 2nd and 3rd can be combined,
such that the consecutive execution of the three of them is equal in any of the two combina-
tions. (Note that we must not reverse the order of the three rotations, because the group is
not commutative.)

• There is an identity element, namely rotation by 0˝ (or no rotation).

• For each rotation, we can reverse the sense of rotation to rotate back, such that the combi-
nation of rotation and inverse rotation yields no rotation.

You may already know that rotations can be represented by matrices, such that, e.g., the identity
is the unit matrix and the inverse element is the inverse matrix.

We will encounter two mathematically distinct sets of groups that encode symmetries in QFT:

1) discrete groups (with a finite set of elements), for instance reflections about a plane (has
three elements: the reflection, its inverse, and the identity).

2) continuous groups, which are Lie groups. The rotation group is an example. It is continuous,
because it has infinitely many group elements (rotations by different angles) and “neighbor-
ing” rotations only differ infinitesimally.

We will also encounter three physically distinct types of groups2

2There is a theorem, the Coleman-Mandula theorem, that says that, under some assumptions, there are no
symmetry groups that mix spacetime symmetry transformations with internal symmetry transformations. The
realization that, by violating the assumptions, one can get around this theorem, and is then required to introduce
so-called “super-partners” led to the development of supersymmetry, which we will not treat in this course, but
which is a very interesting mathematical developments worth understanding. In nature, supersymmetry is realized
in some low-dimensional settings in condensed-matter theory, but does not appear to be realized in particle physics.
It is, however, instrumental in one approach to quantum gravity, namely in string theory.
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a) spacetime symmetry groups, which can either be continuous (like the Lorentz group, SOp1, 3q),
or discrete (like time-reversal symmetry which maps the time t to ´t)

b) internal symmetry groups, where “internal” here means that the symmetry does not act on
space and time (like, e.g. the Lorentz group), but only on the field. These come in two
different versions:

i) global internal symmetries (like the Z2-symmetry ϕ Ñ ´ϕ that we imposed on scalar
field theory to ensure that there is no ϕ3 term in the scalar potential, or the SOp3q

symmetry that is imposed on the scalar field in the Heisenberg model that describes
phase transitions in certain materials).
Global means that the symmetry transformation is the same for the field at all spacetime
points.

ii) local internal symmetries (like the Up1q gauge symmetry of electromagnetism).
Local here means that the symmetry transformation can be different at different space-
time points (even if it doesn’t act on the spacetime itself).

Some of these notions may seem a little abstract at the moment. They will become clearer as we
develop our understanding of group theory and come up with examples.
The most relevant groups for us will be Lie Groups.

2.2 Lie groups

These are groups in which the group elements form not just a set, but a differentiable manifold
(which is a collection of points such that each point has an open neighborhood that is equivalent
to Rn and which can be covered by coordinate charts that overlap partially).
This means that the group is continuous, such that you can always find a group element infinitesi-
mally close to any given element. Intuitively, we can see directly that the group of rotations should
be such a continuous group, because we can always rotate by an arbitrarily small amount and thus
find rotations which are only infinitesimally different from each other.
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everything inbetween is also 
an element of the group

⑳
Examples:

• Up1q is the group of all unitary 1 ˆ 1 matrices, i.e.,

G “ eiα, α P C. (21)

The corresponding manifold is the circle (of radius 1) in the complex plane.
As a global symmetry, the phase α of the transformation does not depend on the spacetime
point. As a local symmetry, α is upgraded to a function αpxµq. We will explore the con-
sequences of this soon. In fact, this group determines the properties of photons and their
interactions with charged particles.

• SUp2q is the group of 2ˆ2 unitary matrices with determinant 1. The corresponding manifold
is the 3-sphere, S3.
To see this, we write

U :U “ 1 “ñ U “

˜

a b

´b˚ a˚

¸

with |a|
2

` |b|
2

“ 1 for a, b P C (22)

(Check:

U : “

˜

a˚ ´b

b˚ a

¸

and U :U “

˜

|a|
2

` |b|
2

(((((a˚b ´ ba˚

(((((b˚a ´ ab˚ |a|
2

` |b|
2

¸

“ 1q (23)

Now we write both complex numbers in terms of real and imaginary part,

a “ x ` iy, b “ z ` it (24)

“ñ |a|
2

` |b|
2

“ |x|
2

` |y|
2

` |z|
2

` |t|
2

“ 1 parametrizes the group manifold SUp2q, where
x, y, z, t P R.
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This is the equation defining a unit 3-dimensional sphere embedded in 4-dimensional space,
i.e., S3.
SU(2) is the symmetry group determining the properties of the weak gauge bosons (W `, W ´

and Z) and their interactions with the fermions in the Standard Model.

With a Lie group comes a Lie algebra g, LiepGq “ g. Knowing about the Lie algebra is useful,
because all properties of the Lie group follow from knowing the so-called generators of the Lie
algebra and their commutation relations.
A Lie algebra is a vector space g with a bilinear, antisymmetric map:

g ˆ g Ñ g, pa, bq ÞÑ ra, bs “ ´rb, as (25)

(that we suggestively write in the same notation that we use for the commutator) that satisfies
the Jacobi identity

ra, rb, css ` rb, rc, ass ` rc, ra, bss “ 0. (26)

We will only need matrix groups and matrix algebras. For matrix Lie groups, the relation between
group and algebra is given through the exponential map: For ai P g,

Gi “ exppaiq, (27)

(defined through its Taylor series) is a group element. Each group element (in the so-called identity
component of G) can be written in such a way. For 0 P g, 1 “ expp0q P G.
We can find a basis in g and these elements of the Lie algebra are called the generators. Having
this basis of generators, we can construct every group element through the exponential map.
Example: Rotation group SOp3q

SOp3q is the group of special orthogonal 3x3 matrices, i.e., matrices which are orthogonal, so
Rot RotJ

“ 1, where RotJ denotes the transposed matrix, and special, i.e., their determinant is
+1. They describe rotations, because we can check that the requirement that a rotation leaves the
length of a vector invariant requires Rot RotJ

“ 1. To check this, consider a spatial vector, with
components xi. Under a rotation, it is mapped to

xi Ñ xi1

“ Roti
k xk. (28)

We require that its length stays invariant, so that

xi xj δij “ xi1

xj1

δij “ Roti
k Rotj

l xk xlδij . (29)

Thus, 1 “ Roti
k Rotj

l δij “ RotT Rot. This is in particular realized by matrices of the form

Rotx “

¨

˚

˝

1 0 0
0 cos θ ´ sin θ

0 sin θ cos θ

˛

‹

‚

, (30)

and analogously for rotations about the y and the z-axis.
Claim: LiepGq “ tantisymmetric 3 ˆ 3 matricesu
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Mini-Exercise 2.1. Check that Rot RotJ
“ 1, as required for Rot P SOp3q, is realized by

Rot “ exppT q, if Tij “ ´Tji.

Let’s see how we can reconstruct the group elements, i.e., the Rot matrices, from the Lie algebra
generators. An antisymmetric 3 ˆ 3 matrix with real components (so that Rot is real), has 3
independent components, so we have three basis elements

Tx “

¨

˚

˝

0 0 0
0 0 ´1
0 1 0

˛

‹

‚

, (31)

and analogously for the other two generators of the Lie algebra. Now we can write a rotation
about the x-axis as

Rotx “ exp pθ Txq “ 1 ` θ

¨

˚

˝

0 0 0
0 0 ´1
0 1 0

˛

‹

‚

` Opθ2q “

¨

˚

˝

1 0 0
0 1 ´θ

0 θ 1

˛

‹

‚

` Opθ2q, (32)

which is clearly the infinitesimal version of the rotation matrix given above.

What will be crucial in our construction of QFT is the notion of representations of groups and
algebras. For instance, we will construct the spin-0, spin-1/2 and spin-1 representations of the
Lorentz group to describe the Higgs field, the electron and the photon in the Standard Model, or
various excitations in condensed-matter systems.
Intuitively, a representation is a set of objects which satisfy the same multiplication rules as the
abstract group elements, i.e., they are often matrices, for which the multiplication satisfies the
combination rules that the group elements satisfy.
More formally, a representation R of a group is a map G

R
Ñ́ GLpVq (where GLpVq are the general

linear transformations on a vector space), such that Rp1q “ 1 and Rpghq “ RpgqRphq. (In other
words, R is a group homomorphism from G to GLpVq.) Loosely speaking, we find matrices which
represent the symmetry operators.
Examples: representations of the rotation group SOp3q

• trivial representation: on scalar quantities RpRotq “ 1, no rotation.

• vector representation: on a vector, V “ R3, RpRotq “ Rot. This is the so-called fundamental
representation, in which the rotation matrices take the form that defines the group, namely
3x3 orthogonal matrices with unit determinant.

• tensor representation: on a tensor, V “ R3 ˆ R3, RpRotq “ Rot b Rot, because Tij ÞÑ

R k
i R l

j Tkl.

Similarly, Lie algebras have representations and from a representation of a Lie algebra, we can
always construct the associated representation of the group (by using the exponential map). Thus,
we will sometimes be a bit sloppy and switch back and forth between algebra and group.
Let’s make all of this more concrete by looking at the Lorentz and the Poincaré groups as our exam-
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ples. These are our most important examples, because these encode the fundamental symmetries
of spacetime, on which we are constructing our quantum field theory.

2.3 Lorentz transformations and the Lorentz group

Lorentz transformations, abstractly denoted by Λ, act on 4-vectors that denote the spacetime
location of an event 3, i.e.,

xµ “

˜

t

x⃗

¸

(33)

as
x1µ “ Λµ

νxν , (34)

where the defining equation for a Lorentz transformation is

Λµ
ρηµν Λν

σ “ ησρ . (35)

This equation says that the Minkowski metric is left invariant under Lorentz transformations, which
implies that scalar products built with this metric are invariant under Lorentz transformations.
Because η is the Minkowski metric, the Lorentz group is SOp3, 1q, and contains boosts and spatial
rotations, instead of being SOp4q, the group of rotations of 4-dimensional space (which Eq. (35)
would define for ηµν Ñ δµν).
From Eq. (35), we have that Λ µ

ν “ ηµκηλνΛλ
κ is the inverse Lorentz transformation. This is

easiest to see by writing Eq. (35) in matrix notation, where it reads

ΛT ηΛ “ η, (36)

where the first Λ is transposed, in order for the index contraction in Eq. (35) to match index
contraction for matrix multiplication. From Eq. (36), we then have that

Λ´1 “ η´1ΛT η, (37)

which, in index notation, becomes

`

Λ´1˘µ

ν
“ ηµκ

`

ΛT
˘ λ

κ
ηλν “ ηµκΛλ

κηλν “ Λ µ
ν . (38)

When acting on 4-vectors, Λ are in their fundamental representation, which you can think of as
the representation that is used to define the group. How is the associated Lie algebra sop3, 1q

characterized?
We use that we can expand the exponential map to first order in the Lie algebra elements, if we
consider an infinitesimal transformation. For the fundamental representation

Λµ
ν “ δµ

ν ` ωµ
ν ` Opω2q (39)

for an infinitesimal transformation. Eq. (35) then implies a property of the ω’s:

3Note that we use units in which c “ 1.
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Mini-Exercise 2.2. What holds for ωµ
ν , such that (35) holds?

It holds that
ωµν “ ´ωνµ, (40)

i.e., ωµν is an antisymmetric 4 ˆ 4 matrix and therefore has 6 independent components that can
be nonzero. Depending on which components we choose to be nonzero, we obtain a different group
element of the Lorentz group.
Let us consider an example: We choose ω12 “ ´ω21 “ θ and set all other components of ω to zero.
Note that we have to be careful with the upper and lower indices on ω, so there will be an ηµν

that will make an appearance below. We obtain that

Λµ
ν “ δµ

ν ` ωµρηρν

“ 1 `

¨

˚

˚

˚

˚

˝

0 0 0 0
0 0 ´θ 0
0 θ 0 0
0 0 0 0

˛

‹

‹

‹

‹

‚

. (41)

We observe that this generates nothing but a (infinitesimal) rotation of the four-vector xµ about
the z-axis by an angle θ. We also note that the contraction ωµρηρν essentially flips the sign, i.e.,
ω1

2 “ ´ω12 and similarly ω2
1 “ ´ω21.

Similarly, if we choose ω01 “ ´ω10 “ θ, we obtain

Λµ
ν “ 1 `

¨

˚

˚

˚

˚

˝

0 θ 0 0
θ 0 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‹

‹

‚

, (42)

which we can recognize as an infinitesimal boost along the x-axis, with θ being the rapidity,
tanh θ “ v{c. In this case, we have used that ω0

1 “ ω01η11 “ ´ω01 and ω1
0 “ ω10η00 “ ´ω10.

These examples help us to see that the six entries in ωµν which can be nonzero, select, which
among the six possible “basis” transformations (3 rotations along the 3 spatial axis, and 3 boosts
along these axis), can be performed and by which amount the physical system is rotated and/or
boosted. If we choose more than one component of ωµν to be non-zero, we get the corresponding
combination of these “basis” transformations.
For a general representation UpΛq of the Lorentz transformation Λ, we have that

Up1 ` ωq “ 1 `
i

2ωµνMµν ` Opω2q. (43)

In this expression, the ωµν still selects, which transformation is performed and determines the
“amount” of the transformation, but the “basis transformations” are now encoded in the Mµν .
The Mµν are called the generators of the Lorentz group, and there are six of them, representing
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the three independent rotations and three independent boosts. We have that

J i “
1
2ϵi

jkM jk generates rotations

Ki “ M i0 generates boosts,

where ϵijk is the Levi-Civita symbol, which is fully antisymmetric under permutations of its indices
and ϵ123 “ 1. Thus, M12, M13 and M23 generate rotations (along the z-, y- and x-axis, respectively)
and M01, M02 and M03 generate boosts along the x-axis, y-axis and z-axis, respectively.
A Lorentz transformation can act on many different objects, not just on four-vectors. In particular,
we will later in the course encounter spinors, which are objects that have spinor indices. These are
indices, i.e., a spinor is a collection of functions, but they are not spacetime indices. Therefore,
to have a Lorentz transformation act on a spinor, the Mµν need to carry the appropriate indices,
i.e., each of the six Mµν ’s, such as M01, M12 etc., must be a matrix with indices in the space that
it acts on.
This is somewhat abstract at this moment, so in order to make it less abstract, we consider the
case in which the Lorentz transformation acts on a four-vector. We already know that we can
write this in the form of Eq. (39), but now we want to understand how to write it in the form
Eq. (43), in which the generators appear explicitly. In fact, for the fundamental representation of
the Lorentz group, we have that

pMµνqκλ “ ´i pηµκηνλ ´ ηνκηµλq . (44)

By plugging this into Eq. (43), we get back Eq. (39).
While it seems unnecessarily complicated to introduce the M ’s for the action on 4-vectors, the
main point about Eq. (43) is that it is general; it describes the action of a Lorentz transformation
on any object.
The defining property of the generators of the Lorentz group is that they satisfy a commutation re-
lation. The abstract definition of the Lie algebra of the Lorentz group is through this commutation
relation:
The Lie algebra of the Lorentz group SOp3, 1q, is defined by the commutator relation of its gener-
ators, which is

rMµν , Mρσs “ ipηµρ Mνσ ´ ηνρ Mµσq ´ ipηµσ Mνρ ´ ηνσ Mµρq. (45)

You will derive this commutation relation in the exercises. You can think of the Lorentz group
as being defined by this commutation relation. When we talk about different elementary particles
and different fields, they all arise from thinking about different representations of the Lorentz
group, i.e., many properties of elementary particles follow from this commutation relation above.
At this stage, this is still a rather abstract notion, but over the course of this course, we will see
the commutation relation Eq. (45) “unfold its power”.

2.4 Poincaré group and why we classify particles by their mass and spin

We classify elementary particles by their mass and spin, plus quantum numbers associated to
internal symmetries. For instance, we describe the electron as a particles with rest-mass 511 keV
and spin-1/2 (and electric charge ´1). Why do we do so? Is it just a conventional choice and
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we could be using some completely different characteristics? The answer is no. There is a deep
mathematical reason and it has to do with the structure of the Poincaré-group - a generalization
of the Lorentz group - and its so-called Casimir-operators.
The Poincaré group is an extension of the Lorentz group which, in addition to boosts and rotations,
contains translations, under which xµ ÞÑ xµ ` aµ. A transformation by an element of the Poincaré
group can be written as xµ ÞÑ Λµ

νxν ` aµ.
This is the full symmetry that 3+1-dimensional Minkowski spacetime enjoys.
An infinitesimal translation in a general representation can be written as

Upaq “ 1 ` iaµP µ, (46)

where P µ is the generator of translations. By Noethers theorem, P µ will be identified as the
4-momentum in the corresponding representation. Its commutation relations with the other gen-
erators of the Poincaré group are

rP µ, Mρσs “ ipηµσP ρ ´ ηµρP σq (47)

rP µ, P νs “ 0. (48)

Now let us consider some state of n particles, which transforms under actions of the Poincaré
group. Under such transformations, its properties, such as its 4-momentum, change.
However, the Poincaré group has two Casimir invariants. These are (in the simplest case) quadratic
combinations of generators, which commute with all other generators. Therefore, their eigenvalues
are unchanged under the action of group elements and they provide invariant characterizations of
particles.
P 2 “ PµP µ is the first Casimir invariant and W 2 “ WµW µ, with Wµ “ ´ 1

2 ϵµνρσMνρP σ the
Pauli-Lubanski-pseudovector, is the second.

Mini-Exercise 2.3. Show that P 2 commutes with all generators of the Poincaré group.

P 2 acting on a state with some 4-momentum yields the eigenvalue m2, i.e., because P 2 is a Casimir
operator of the Poincaré group, we label elementary particles by their rest mass.
But what is the physical meaning of W 2?

W 2 “ WµW µ “
1
4ϵµνρσMνρP σϵµ

χλτ MχλP τ . (49)

Let’s consider this in a massive particles rest frame (massless particles are a separate case and we
will get to them later).
Then P Ñ pm, 0⃗q and W 0 “ 0. This holds, because ϵ is totally antisymmetric and because the
only non-zero component of P is P 0.

W i “ ´
1
2ϵi

µν0MµνP 0, (50)

here µ, ν must be spatial indices, but ­“ i. Therefore, ϵi
jk0 “ ϵi

jk, the 3d Levi-Civita symbol.
Thus,

W i “ ´J iP 0 “ ´mJ i “ñ W 2 “ m2J⃗ ¨ J⃗ . (51)

Now we need to interpret which angular momentum it is that shows up here. Which angular
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momentum does an elementary particle have? Intrinsic angular momentum, i.e., spin. You might
remember from QM, that the eigenvalues of J⃗2 are sps ` 1q, with s the spin.
“ñ Because W 2 is the 2nd Casimir operator of the Poincaré group, we label massive elementary
particles by their spin.

We have thus come to our first concrete result from our more abstract consideration of group
theory:
We have learned that there is a reason why we label elementary particles by mass and spin. This
is not an arbitrary choice, but a direct consequence of the fundamental symmetry-structure of
Minkowski spacetime and the properties of the underlying Poincaré group.

Next, we may wonder, what spin values4 are allowed? Can we have elementary particles with spin
0? spin 1{2? Spin 1? What about non-half-integers? Is there a particle with spin 2{3? or spin M?
To figure this out, we will classify the representations of the Lorentz group. This will determine
what type of fields we will focus on for the rest of the course.5 Generally, for a field with a
general Lorentz index A (could be a 4-vector index, or two 4-vector indices, such that the field is
a tensor, but we’ll also encounter spinor indices, which label the components of a spinor, but are
not spacetime indices), ϕapxq, we have

ϕ1
apxq “ L b

a pΛqϕbpΛ´1xq. (52)

The matrices L b
a pΛq form a representation of the Lorentz group, i.e.,

L b
a p1 ` ωq “ δ b

a `
i

2ωµνpMµνq b
a (53)

where pMµνq b
a are representation matrices of the sop3, 1q Lie algebra, so that

rMµν , Mρσs “ ipηµρ Mνσ ´ ηνρ Mµσq ´ ipηµσ Mνρ ´ ηνσ Mµρq. (54)

To understand which spins elementary particles can have, we must find all possible (finite-dimensional)
matrices Mµν

ab that obey these commutation relations, in order to finite the possible fields that we
can write down. This sounds like a challenging problem, but it turns out that we are lucky if we
know something about the representation of the Lie algebra SUp2q 6.
From QM, we know that rJi, Jjs “ iϵijkJk, which is the SUp2q Lie algebra, is satisfied by sets of 3
hermitian matrices of size p2j ` 1q ˆ p2j ` 1q, where the eigenvalues of J3 are ´j, ´j ` 1, . . . , `j.

4All in units of ℏ, which we set to 1.
5In the current discussion, we are switching back and forth between considering particles and fields. In this, we

are already using a result that we will see a little later in the course, namely that elementary particles show up as
excitations of fields. Therefore, it is to some extent equivalent to talk about particles or about the associated fields,
because the properties of the particles follow from the properties of the fields. However, let us highlight that there
is a difference when it comes to representations of the Poincaré group: fields transform in the finite-dimensional
representations of the group, i.e., they are constructed from a finite set of components. In contrast, particles
transform in the infinite-dimensional representation of the Poincaré group. Physically, this is, loosely speaking
because if you have a particle with some four-momentum pµ, then there are infinitely many other four-momenta pµ1

that are related to pµ by a boost. The choice of an infinite-dimensional representation is also necessary, because no
finite-dimensional representation is unitary, and we would like to have probabilities (or scalar products of a state
with itself) to be preserved under Poincaré transformations. Therefore, the representation that a field transforms in
is not the same one as the particles that it gives rise to transform in. However, for our purposes at the present, we
do not yet need to know this, as we will now simply focus on the representations that the fields can transform in.

6Note that the Lie algebras for SOp3q and SUp2q are identical. For the groups, there are some subtle differences,
which need not directly concern us.
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(If you would like a “refresher” on this, a good place to read up on it is, e.g., Sakurai “Modern
Quantum Mechanics”.)

Our luck lies in the fact that upon introducing

Ni “
1
2 pJi ´ iKiq premember : Ji “

1
2ϵijkMjk and Ki “ Mi0q (55)

and
Mi “

1
2 pJi ` iKiq (56)

(Note: Ji, Ki are hermitian; Ni is not; in fact Mi “ N :

i .) we find that

rNi, Njs “ iϵijkNk, rMi, Mjs “ iϵijkMk, rNi, Mjs “ 0. (57)

The Lie algebra of SOp3, 1q is nothing but two separate SUp2q Lie algebras!
Thus, we can build the representations of the SOp3, 1q Lie algebra from representations of the
SUp2q Lie algebra!
“ñ Each irreducible (i.e., not give by a product of two smaller representations) representation
of the SOp3, 1q Lie algebra is specified by two integers or half-integers n1 and n, which are the
eigenvalues of M3 and N3.
We label these representations by n and n1 or by the number of components in each representation,
p2n ` 1q and p2n1 ` 1q.
To understand the corresponding spin of the field (and the particles that are the excitations of the
field), we go back to the Pauli-Lubanski pseudovector and the associated Casimir operator, in the
rest-frame, W 2 “ m2J⃗ ¨ J⃗ and also use that Ji “ Mi ` Ni. Thus,

pn, n1q
`

2n ` 1, 2n1 ` 1
˘

spin name of the field
p0, 0q p1, 1q 0 scalar (singlet)
` 1

2 , 0
˘

p2, 1q 1
2 left-handed spinor

`

0, 1
2

˘

p1, 2q 1
2 right-handed spinor

` 1
2 , 1

2
˘

p2, 2q 1 vector (this has 2 ¨ 2 “ 4 components,
which is the right number for a 4-vector)

Therefore, we now have a clear idea which fields we are going to consider. Rather than guessing
that maybe there could be elementary particles with spin 2{3 (or other non half-integer values) out
there, and somehow trying to come up with ideas for what the corresponding fields could be, we
already know that such fields/particles do not exist and we do not need to spend our time trying
to find a description for them, because our considerations, based on symmetries, tell us that such
an effort is futile.
To sum up, by considering the fundamental symmetry of Minkowski spacetime, that a theory of
fields and associated particles living on that spacetime has to satisfy, we have developed a com-
prehensive list of possible fields that can exist. Thus, rather than proceeding by trial-and-error, we
have found a systematic structure that the rest of this course (and Quantum Field Theory) will
follow. This structure is very restrictive and only allows us to consider fields which are associated
to integer or half-integer spins. It is therefore not an accident that all elementary particles have
integer or half-integer spin; there are no other options for them, based on the underlying symmetry
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group, the Poincaré group.
We will work our way through the spin 0, 1{2 and 1 cases in the course, because, as it turns out,
they are all part of the Standard Model of particle physics.
Higher spins (3{2, 2) do not correspond to detected elementary particles, although spin 3/2 plays
a role in supergravity, where a spin 3/2 particle is the superpartner of the graviton. The graviton,
which is the expected quantum of the gravitational field, has spin 2.

2.5 Noether’s theorem

Symmetries not only help us to understand the building blocks of our theory (i.e., which fields
there may be and how we characterize particles), they also imply conserved quantities and thus
determine dynamical processes. The link between symmetries and conserved quantities is at the
heart of Noether’s theorem, just as in classical mechanics.

Noether’s theorem in QFT states that:
Every continuous symmetry of the action implies a conserved current density and a conserved

charge.

This is similar to Noether’s theorem in classical mechanics with the key difference being the conser-
vation of the current. To derive the theorem, we will consider a scalar field; the theorem generalizes
to non-zero spin fields, such as the gauge field and spinor fields.

As an example of a continuous spacetime symmetry, consider a translation x Ñ x1 “ x ` d. How
does ϕ Ñ ϕ1 look like? Note that we will take the active point of view, where we are assuming
that the physical field configuration changes (in contrast to the passive point of view, where the
coordinates change). It should hold that the transformed field at the transformed point is equal
to the untransformed field at the original point, because, if we are shifting the field, but then also
shift all points, the system remains unchanged. Thus

ϕ1px1q “ ϕpxq, (58)

which is shown in Fig. 1.
Thus, ϕ1pxq is defined by applying the inverse transformation to the argument, i.e.,

ϕ1pxq “ ϕpx ´ dq. (59)

When we generalize to a Lorentz transformation x1 “ Λx, we have the same behavior: the scalar
field is evaluated at a point that corresponds to the inverse of the transformation.

ϕ1pxq “ ϕpΛ´1xq. (60)

We can also consider internal symmetries, e.g., for a complex scalar field ϕpxq taking values in C
instead of in R, we can write an action that has a Up1q symmetry:

SUp1q complex scalar “

ż

d4x

ˆ

1
2Bµϕ˚Bµϕ ´

1
2m2ϕ˚ϕ

˙

, (61)

which is invariant under ϕpxq Ñ eiαϕpxq, and, accordingly ϕ˚pxq Ñ e´iαϕ˚pxq. The infinitesimal
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shift of field

shift of points:

net result:
Figure 1: We show a field configuration ϕpxq in the upper panel. In the central panel, we have
shifted the field by a distance d (active transformation) and in the lower panel, we have then
additionally shifted the coordinates by the same distance d, so that x1 “ x ` d.

version of this transformation is

ϕ1pxq “ ϕpxq p1 ` iα ` ...q . (62)

We will consider this example in much more detail later in the lecture.
To derive Noether’s theorem, we assume some continuous symmetry, but we do not need to specify
whether it is a spacetime symmetry or an internal symmetry. Noether’s theorem holds for both.
Because we are assuming a continuous symmetry, there is an infinitesimal version of this transfor-
mation of the field

ϕpxq Ñ ϕ1pxq “ ϕpxq ` εχpxq. (63)

(For a discrete symmetry, there are only finite transformations, e.g. a Z2-symmetry under which
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ϕpxq Ñ ´ϕpxq has no infinitesimal version. This is why all that follows holds for continuous, but
not for discrete symmetries.)

For instance, for an infinitesimal translation, we can write the right-hand side in terms of a Taylor
expansion

ϕ1pxq “ ϕpxq `
Bϕ

Bxµ
dµ ` ..., (64)

“ ϕpxq ` ϵµχµpxq, (65)

where we consider dµ to be an infinitesimal shift and we defined Bµϕdµ “ ϵµχµpxq. When we
perform a translation in a single direction in spacetime, this reduces back to the form ϵµχµ Ñ ϵ χ.
We denote the difference between the transformed and the untransformed field

δεϕ – ϕ1 ´ ϕ. (66)

Under this change in the field, the Lagrangian changes as follows:

δεL “ L1 ´ L “ Lpϕ1, Bϕ1q ´ Lpϕ, Bϕq (67)

“
BL
Bϕ

δεϕ `
BL

BpBµϕq
δεBµϕ, (68)

where δεBµϕ “ Bµϕ1 ´ Bµϕ. (Note that we’re slightly abusing naming conventions, as advertised,
because this is the Lagrangian density, but we are referring to it as the Lagrangian. This is very
common practise in QFT.)
Because we assume that the transformation corresponds to a symmetry of the action, the action
must stay invariant under it. Thus, the Lagrangian may at most change by a total derivative, so
we can write

δεL “ εBµF µpϕ, Bϕ, B2ϕ, xq, (69)

where, depending on the symmetry F µ may actually be zero, so that even the Lagrangian is
invariant under the symmetry.
We know that δεL „ ε, because δεL Ñ 0 for ε Ñ 0. In principle, F µ “ F µpϕ, Bϕ, B2ϕ, xq can have
dependencies on x and on B2ϕ, etc., even if L does not.
Now we want to derive the conserved current. BµF µ is a good starting point, because it already
has the required form for a conservation law, Bµjµ “ 0.

εBµF µ “ δεL “
BL
Bϕ

δεϕ `
BL

BpBµϕq
δεBµϕ. (70)

In the next step we use the equations of motion,

BL
Bϕ

´ Bµ
BL

BpBµϕq
“ 0, (71)

to rewrite the 1st term into a form that also has a partial derivative in front, as needed to derive
a conservation law. Note that this will mean that everything that follows only applies for field
configurations which satisfy the equations of motion. (In QFT, these are often called ”on-shell”
configurations. In a few weeks, when we talk about the path integral quantization, we will explicitly
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see the difference to the ”off-shell” configurations.) We obtain

“ñ εBµF µ “

ˆ

Bµ
BL

BpBµϕq

˙

δεϕ `
BL

BpBµϕq
δεBµϕ (72)

“ Bµ

ˆ

BL
BpBµϕq

δεϕ

˙

. (73)

Thus,
Bµ

´

F µ ´
BL

BpBµϕq
χ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
jµ

¯

“ 0. (74)

jµ is a conserved current.

Example: Energy-momentum tensor and its conservation

In classical mechanics, the symmetry-transformation underlying energy-momentum conservation
is a space-time-translation:

xµ Ñ x1µ “ xµ ´ ϵµ. (75)

(These are really 4 symmetries packaged into one.)
The resulting transformation of the field is, as we wrote above,

ϕ1pxq “ ϕpx ` εq (76)

“ñ δεϕ “ ϕpx ` εq ´ ϕpxq “ εν Bνϕpxq
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

χν

(77)

Eq. (76) means that the new field at x is the same as the old one at x`ε, because the shift is by ´ε,
and we are again using the active view on transformations. In Eq. (77), χ has an index, because
there are 4 symmetries. Eq. (77) is to 1st order in ε, because we can Taylor expand ϕpx ` εq.
Thus, if we focus on the dependence of L on x (through its dependence on ϕ),

L1pxq “ Lpx ` εq (78)

“ñ δεL “ Lpx ` εq ´ Lpxq (79)

“ εµBµLpxq (to 1st order in εq (80)

“ ενBµp δµ
ν L

²
– F µ

ν .

q (81)

Now we can use the general expression we derived before to get the conserved currents. Because
we are looking at 4 symmetries at the same time, we will have 4 conserved currents, each of which
is a 4-vector. In Eq. (81), you can think of the index µ as the index that belongs to a conserved
current (which is a four-vector) and the index ν as the one that labels the four distinct currents
that there are for the four distinct translations. Which translation is performed, is selected by the
non-zero components of ϵν .
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To “package” the four conserved currents into one expression, we write

jµ
ν “

BL
BpBµϕq

χν ´ F µ
ν (82)

“
BL

BpBµϕq
Bνϕ ´ δµ

ν L. (83)

This conserved tensor is usually written as

T µν “
BL

BpBµϕq
Bνϕ ´ ηµνL. (84)

It is conserved, BµT µν “ 0, and called the energy-momentum (or stress-energy) tensor.
Side-note: This is an entry-point into General Relativity, because, if we promote ηµν Ñ gµν ,
then T µν acts as a source for spacetime curvature in the Einstein equations. The physical meaning
behind that is that any form of energy or momentum sources spacetime curvature.

From the conservation of the current, we can also derive the conservation of a charge:

Qptq “

ż

d3x j0pt, x⃗q. (85)

It holds that
9Q “

d
dt

Qptq “ 0, (86)

if we assume that all fields and their derivatives vanish at |x| Ñ 8, i.e., we only consider nonzero
field configurations away from spatial infinity. This is reasonable to describe all realistic physical
situations that we are interested in (e.g., particle physics experiments at CERN, phonons in the
Bose-Einstein-Condensates of our experimental friends in Neuenheimer Feld, or superconducting
Cooper-pairs in superconductors in various labs, all of which are described by QFT.)
We can show 9Q “ 0 as follows:

9Q “
d
dt

ż

d3x j0pt, x⃗q “

ż

d3x
`

B0j0pt, x⃗q
˘

(87)

“

ż

d3x Bij
ipt, x⃗q pby conservation of the currentq (88)

“

ż

dxdydzpBxjx ` Byjy ` Bzjzq (89)

“

ż

dydz jx

ˇ

ˇ

ˇ

ˇ

xÑ˘8

`

ż

dxdz jy

ˇ

ˇ

ˇ

ˇ

yÑ˘8

`

ż

dxdy jz

ˇ

ˇ

ˇ

ˇ

zÑ˘8

(90)

“ 0, (91)

if fields and derivatives vanish at |x| Ñ 8, so that j vanishes there.
Let us highlight that the conservation of a current is stronger than the conservation of the charge,
because it implies that the charge is conserved locally, i.e., changes of the charge in a (finite) volume
in time must be accounted for by a current flowing though the surface of the volume. To see this,
write:

dQV

dt
“ ´

ż

V

d3x ∇⃗ ¨ j⃗ “ ´

ż

A“BV

j⃗ ¨ dS⃗. (92)

QV is the charge in a volume V . In the last step we used Gauss’ law.
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Example: the conserved charges following from the conservation of the energy-momentum tensor
are:

ż

d3x T 00 “

ż

d3x

ˆ

BL
B 9ϕ

9ϕ ´ L
˙

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
We recognize this

as the Hamiltonian!

“ H “: P 0 (93)

The other conserved charges are the spatial momenta, so P ν “
ş

d3x T 0ν is conserved.

Noether’s theorem also applies to continuous internal symmetries. We’ll consider an example later
in the course.

Mini-Exercise 2.4. Take
L “

1
2BµϕBµϕ ´

1
2m2ϕ2. (94)

What is P i?

We note that the conserved quantities in turn are the generators of the associated symmetry.
This closes our considerations of symmetries. We have learned that symmetries are encoded in
groups. Continuous symmetries of interest in physics are Lie groups, for which each symmetry
transformation can be generated by the generators of the Lie algebra. In turn, Noether’s theorem
tells us that each symmetry leads to a conserved quantity. This conserved quantity is the generator
that generates this symmetry.
If we did not know about the Lie group associated to a symmetry, we could therefore learn about
it from the action of the symmetry and the resulting conserved quantities.
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A Solutions to Mini-exercises

Chapter 1

Solution A.1.1.

L “
1
2BµφBµφ ´ Cpφ ´ γq ´

1
2m2pφ ´ γq2

“
1
2BµφBµφ ´ Cφ ` Cγ ´

1
2m2φ2 ` m2φγ ´

1
2m2γ2

Define γ “ C
m2 :

Ñ
1
2BµφBµφ `

C2

m2 ´
1
2m2φ2 ´

1
2m2 C2

m2 .

Chapter 2

Solution A.2.1.
R RJ

“ exppT q expp´T q “ 1,

because
RJ

“ pexppT qq
J

“ exp T J “ expp´T q.

Solution A.2.2.

`

δµ
ρ ` ωµ

ρ

˘

ηµνpδν
σ ` ων

σq
!

“ ησρ

ηρσ ` ωσρ ` ωρσ ` Opω2q “ ησρ “ñ ωρσ “ ´ωσρ.

Solution A.2.3.

rP 2, Mµνs “ rP ρPρ, Mµνs

“ P ρrPρ, Mµνs ` rP ρ, MµνsPρ

“ P ρpiηρνPν ´ iηρµPνq ` piηρνPµ ´ iηρµPνqP ρ

“ ipPνPµ ´ PµPν ` PµPν ´ PνPµq

“ 0.
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