
Heidelberg University SS 2025

Quantum field theory in curved spacetime
Assignment 2 – May 5

Exercise 4: Conformally coupled scalar field

Motivation: In the lecture, we saw that nonminimally coupled scalar fields are not produced in an FLRW background

if they are conformally coupled. But why those specific coupling values? Here, we’ll work out precisely what

conformal coupling means.

Consider a scalar field � non-minimally coupled with gravity. It is described by the following
action (Note that in the original sheet there was a minus sign missing in front of the

kinetic term of the scalar)
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(a) Consider the conformal transformation

gµ⌫(x, t) ! ⌦2(x, t)gµ⌫(x, t), (4.2)
�(x, t) ! ⌦�1(x, t)�(x, t). (4.3)

Calculate the value of ⇠ under which the action is invariant under this conformal transfor-
mation (possibly up to a total divergence).

(b) Show that the energy-momentum tensor T
µ⌫ is expressed as

T
µ⌫ = r

µ
�r

⌫
��

1

2
g
µ⌫
r

⇢
�r⇢�+

1

2
g
µ⌫
m

2
�
2
� ⇠

✓
R

µ⌫
�

1

2
g
µ⌫
R

◆
�
2

+ ⇠
⇥
g
µ⌫
r

↵
r↵(�

2)�r
µ
r

⌫(�2)
⇤
. (4.4)

(c) Show that T ⌫
⌫ = 0 when m = 0 and ⇠ = 1/6.

(a) From here on on barred quantities denote the transformed metric such that ḡµ⌫ = ⌦2
gµ⌫ . The

inverse metric transforms as ḡµ⌫ = ⌦�2
g
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where we use the notation
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where ⇤ = g
µ⌫
rµr⌫ . Finally, the Ricci scalar reads
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At the same time, the determinant of the metric transforms as

ḡ ⌘ ✏
µ1...µ4 ḡ1µ1 . . . ḡ4µ4 = ⌦8

g. (4.10)

Together with the transformation of the scalar, we obtain

S =

Z
d4
x
p
�ḡ
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ḡ
µ⌫
r̄µ�̄r̄⌫�̄�

m
2

2
�̄
2
�

⇠

2
R̄�̄

2

◆
, (4.11)

=

Z
d4
x
p
g


�
1

2
g
µ⌫
rµ�r⌫�+ �rµ�g

µ⌫
r⌫⌦

⌦
�

1

2
�
2
g
µ⌫
rµ⌦r⌫⌦

⌦2
�

m
2

2
�
2⌦2

�
⇠

2
�
2

✓
R� 6

⇤⌦

⌦

◆�
,

(4.12)

=

Z
d4
x
p
g


�
1

2
g
µ⌫
rµ�r⌫��

m
2

2
�
2⌦2

�
⇠

2
�
2
R + 3

✓
⇠ �

1

6

◆
�
2⇤⌦

⌦

�
, (4.13)

where we used partial integration to obtain the equality
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Thus, the action is invariant if m = 0 and ⇠ = 1/6.
(b) The energy-momentum tensor is defined as
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We, thus, have to vary the action with respect to the inverse metric. Let us start with the metric
determinant. We start with the trick

g = e
tr log gµ⌫

. (4.16)

Then, the variation becomes
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with the trace tr. Thus, the variation of the root of the negative determinant reads
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As a result, the minimally coupled part becomes
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The nonminimal coupling is slightly more involved. We start as
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where hereafter we abbreviate
R
x
=

R
d4
x
p
�g. Here, we can use the identity (you can find it, for

example, in Eq. 4.60 of S. Carroll’s notes on relativity)
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Partially integrating, we obtain for the remaining part
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To obtain the variation of the Christoffel symbols, we use the following shortcut: Construct (Riemann)
normal coordinates around a point p. Then, the first derivatives of the metric at that point vanish.
Thus, the variation of the Christoffel symbols in that coordinate system reads
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where in the last step we used that in normal coordinates, the Christoffel symbols at p vanish so that
rµ|p = @µ. Note now that we could have done this at any point p and that, contrary to �⇢

µ⌫
, ��⇢

µ⌫
is

a tensor (the difference of Christoffel symbols transforms as a tensor) such that Eq. (4.26) is a tensor
equation. This implies that Eq. (4.26) holds not only at a point and in normal coordinates, but at all
points and every system of coordinates, i. e.
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The contracted form of the variation of the Christoffel symbol reads
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Thus, we can rewrite the remaining part as
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Finally, the variation of the metric can be obtained from
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Thus, we can express the variation of the Ricci tensor as
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After all of this tedious algebra, we finally obtain the result
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https://arxiv.org/pdf/gr-qc/9712019


Let’s go touch some grass.
(c) The trace of the stress-energy tensor reads
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But the scalar also satisfies its field equation
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which we can plug in such that
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This clearly vanishes when ⇠ = 1/6 and m = 0.

Exercise 5: Electromagnetic fields on curved backgrounds

Motivation: Non-conformally coupled scalars are copiously produced in FLRW spacetimes. But how about photons?

In other words, is the universe covered in “light” of horizon wavelength?

The Maxwell action on a curved background reads
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with the field-strength tensor
Fµ⌫ = rµA⌫ �r⌫Aµ, (5.2)

and the gauge field Aµ. Instead of going through the whole derivation of particle creation again,
we take a shortcut.

(a) Try to do this sub-exercise before reading the remaining ones.

Work smarter, not harder. Before doing any calculation, think it through: Should Maxwell
theory be Weyl invariant in curved spacetime? Why? What does this tell us about photon
production in an FLRW background?

Let’s now work through the details step by step.

(b) The gauge field transforms trivially under Weyl transformations, i. e. Aµ ! Aµ. Calculate
how the Maxwell action transforms under Weyl rescalings. Is it invariant?

(c) If we rescale the FLRW metric to remove the scale factor, how do Maxwell’s equations
change? What does this mean for the electromagnetic vacuum in an FLRW background? Is
the universe covered in “light” of horizon wave length?

Finally, let’s explore how Weyl invariance shows up in the structure of the energy-momentum
tensor.



(d) Compute the energy-momentum tensor T
µ⌫ of the gauge field and show that T

µ

µ
= 0.

(e) Bonus exercise: What does the tracelessness of the energy-momentum tensor have to do
with Weyl invariance? (Hint: How does the matter Lagrangian change under a small Weyl
rescaling? What would this imply for T

µ

µ
?)

(a) Weyl invariance is the invariance under local scale transformations. Thus, if the theory is
supposed to be the same at all scales, it cannot introduce absolute scales like dimensionful coupling
constants. In other words, the only possible terms which can contribute to a Weyl invariant theory
are those with dimensionless couplings. For electromagnetism, there are no minimal-coupling terms
with couplings of vanishing dimension which are also gauge invariant (verify that no contractions of one
Riemann tensor and one electromagnetic field strength could be viable). Thus, there is no wiggle room
for a minimal coupling which may have to be added to render the theory locally Weyl invariant as for
the scalar.

This does not imply that the theory is Weyl invariant yet. We can get there keeping in mind
that electromagnetism has no scale and is therefore scale invariant in flat space. At the same time, the
Maxwell action is made up of two contracted field strength tensors (which are defined with indices down).
Their contraction requires two inverse metric tensors, whose behaviour under scale transformations
balances exactly the one from the metric determinant. In other words, in flat space, the gauge field
transforms trivially under scale transformations.

Recall that in exercise 4 the derivatives in the kinetic term of the scalar spoiled local Weyl invariance
by introducing derivatives of the conformal factor. This cannot happen for the electromagnetic field
(whose kinetic term is exactly the Maxwell action) because the field strength transforms trivially. Thus,
the Maxwell action has to be locally Weyl invariant.

If we take seriously what we learned in the lecture, this indicates that the electromagnetic field does
not “see” the cosmological evolution. This would indicate that there can be no photon production in
cosmology.

(b) We know that Aµ ! Aµ. Besides, the covariant derivatives in field strength receive no gravita-
tional contributions because
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is indeed invariant.
(c) Maxwell’s equations in a curved background read
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Recall that the Christoffel symbols transform under Weyl transformations as given in Eq. (4.5), implying
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where we used the antisymmetry of the field strength tensor. Thus, as expected, they remain unchanged.
Thus, the mode equation for photons is equivalent to the one in flat space. Then, there is a unique

vacuum. The universe is therefore not filled with light.
(d) The energy-momentum tensor is defined in Eq. (4.15). We have to vary the Maxwell action with

respect to the inverse metric. We thus have
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There is no contribution from the variation of the field strength because due to Eq. (5.3) it is independent
of the metric. Then, the energy-momentum tensor reads

Tµ⌫ = Fµ⇢F
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Contracting the two indices, we obtain the trace

T
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µ
= 0. (5.15)

(e) Consider some matter action Lmatter(gµ⌫ ,�a), with some set of matter fields �a, where the index
a enumerates the fields. These can be vectors, spinors, scalars, apples . . . If we apply an infinitesimal
Weyl transformation such that ⌦2 = 1 + �!, the action changes as
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Applying the equations of motion, removing total derivatives and plugging in �g
µ⌫ = �g
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�!, we obtain
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Hence, the change in the action vanishes iff T
µ

µ
= 0. In plain English, a theory is Weyl invariant if the

energy-momentum tensor has vanishing trace.

Exercise 6: Impact of general nonminimal coupling on particle production

Motivation: Last week, we found that minimally coupled scalars are generically produced in FLRW backgrounds.

This does not happen for conformally coupled scalars. Here we estimate what happens for general nonminimal

coupling.

Consider a nonminimally coupled massive scalar whose action is given by Eq. (4.1).



(a) Compute the equation of motion for the scalar in an FLRW background, and redefine the
field � ! � = a(⌘)� such that the friction term (⇠ �

0) disappears. You should obtain that
the nonminimal coupling gives you an additional contribution to the effective mass.
Sanity check: What happens in the limit ⇠ ! 1/6, m ! 0?

(b) Assume that the background is changing slowly and consider modes with small wavelength.
Find out when these two assumptions are actually equivalent.

(c) Start in the adiabatic vacuum at some conformal time ⌘ = ⌘0, namely |0ad,⌘0i, and look at
the resulting state at a time ⌘ = ⌘0 +�⌘. Try to get at some qualitative properties of the
average particle-number density h0ad,⌘0 |nk|0ad,⌘0i(⌘0 + �⌘) without calculating it. Sketch
how you expect the particle-number density to depend on ⇠. (Hint: Keep in mind that
particles are not produced if the background is static, and that in terms of some complex
time-dependent Bogolyubov parameter �k(⌘)

h0ad,⌘0 |nk|0ad,⌘0i(⌘) = |�k(⌘)|
2
. (6.1)

You can find inspiration in exercise 1.)

The scalar satisfies the equation of motion
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2 + ⇠R)� = 0. (6.2)

Specifying to a flat FLRW spacetime in the conformal slicing (with conformal time ⌘ as time) and a
field
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where we used that in spatially flat FLRW R = 6a00/a3. Therefore, we find a modification to the effective
mass, which, including nonminimal coupling, now reads
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When ⇠ = 1/6, m = 0, the effective mass vanishes and the field equation for � becomes that of a massless
scalar in Minkowski spacetime.

(b) If the background is changing slowly, we have (see exercise 3)
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Thus, for its time derivative, we obtain
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Thus, for the adiabatic approximation not to apply to small-wavelength modes, the scale factor has to
satisfy
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over the whole evolution (here H = a
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/a). Thus, (neglecting unexpected cancellations) either H � k
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2
. In other words, some

derivatives of the scale factor have to be very large, while others have to be very small. Unless this is
the case (which is rarely so, especially when evolving over longer times), large modes experience a slowly
varying background.

(c) Let’s start with the hint: The expected number density will be the squared norm of some complex
Bogolyubov coefficient �k. We have to estimate that coefficient. There is no particle creation if there is
no time evolution. Thus, �k at first order has to be a function of !0

k
/!

2
k
, the first kind of correction in the

adiabatic approximation. Besides, it has to have an oscillating component which stems from the mixing
of positive- and negative-frequency modes. According to the WKB-approximation, oscillating phases
generically have arguments proportional to

R
!k(⌘0)d⌘0. Inspired by Eq. (1.4), we take the oscillating

function to be a sinus. Besides, the particle density is the integrated number of created particles (they
don’t just disappear from one moment to the other) – by dimensional analysis the integral has to be
balanced by an additional power of !k. Thus, we arrive at the estimate for the Bogolyubov coefficient
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for a complex coefficient a and a real coefficient b, both of which are expected to be of order 1 in absolute
value. Note how close this estimate is to Eq. (1.4) even though the evolution there is not adiabatic (the
box-like behaviour produces delta-functions in !

0
k

which definitely break the adiabatic approximation).
At large k, we obtain
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Say �⌘ is small enough such that the adiabatic approximation holds integrated over the whole evolution
(see Eq. (3.30)). Then, we can take the effective mass out of the integral and obtain
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The number density then reads

h0ad,⌘0 |nk|0ad,⌘0i = 4|a|2
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Note that, here, the oscillating function was a choice. Depending on the specific situation, it can be
more complicated. However, the qualitative behaviour (oscillating, proportional to |m

20
e↵ |

2
/k

4) is rather
robust, unless a = 0 which would imply that the corrections are of higher order. In particular, at a fixed
moment in time, the scaling with the nonminimal-coupling parameter is like

h0ad,⌘0 |nk|0ad,⌘0i ⇠ |6⇠ � 1 + const linear in m
2
|
2
. (6.16)

Thus, the number density scales quadratically with ⇠. Of course, if m = 0, the particle-number density
vanishes for ⇠ = 1/6. As an example we plot the scaling |6⇠ � 1 + 6m2

| in fig. 1.



Figure 1: Exemplary scaling of number density with nonminimal-coupling parameter and mass. The
exact value of hnki as it is plotted here has no physical meaning because we did not derive an exact
result.


