
Heidelberg University SS 2025

Quantum field theory in curved spacetime
Assignment 5/Exam 1 – May 28

Please hand in this assignment before the tutorial at 11h15AM on May 28. In total, you need to
obtain 40% of the combined points from this and the second exam.

Exercise 12: Particle creation in an expanding universe – 30pts.

Motivation: Back to square one. Let’s compute the number of particles created in a more realistic scenario than

before.

Consider a spatially flat universe which starts out changing adiabatically, then undergoes a rapid
phase of expansion, to finally end up in another adiabatic phase. Such a universe is given by the
scale factor
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with the dimensionless parameters a1 and a2, and the quantity ⌘0 which has units of time. Prop-
agating in this universe, consider a conformally coupled, massive scalar field according to the
action
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(a) Plot the scale factor. What do the parameters a1, a2 and ⌘0 stand for? Ignoring the flat
asymptotic regions (large |⌘|), what part of the universe’s history could the intermediate
evolution be a toy model for?

(b) Show that the scale factor Eq. (12.1) results in the squared effective mass
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for the scalar.

(c) Having applied the usual rescaling � ! � = a�, the field satisfies the usual mode equation
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Show that the mode equation can be solved by the following two linearly independent mode
functions
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where we defined
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and 2F1 denotes a common type of hypergeometric function.
Hint: Try to recover the differential equation defining the hypergeometric function f =

2F1(a, b; c; z), namely
z(1� z)f 00 + [c� (1 + a+ b)z]f 0

� abf = 0. (12.8)

(d) Show that the mode functions asymptote to Minkowski-like positive-frequency solutions at
early and late times
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Discuss why the mode equation has solutions with these asymptotics. Conclude that vk

defines a natural in-vacuum, and uk a natural out-vacuum. Why?
Hint: The hypergeometric function has the limit limz!0 f(a, b; c; z) = 1 for all a, b, c.

Thus, the field can be expanded in modes as

� =
1
p
2

Z
d3
k

(2⇡)3/2

⇣
akvk + a

†
kv

⇤
k

⌘
, (12.11)

where ak defines the in-vacuum via ak|0ini = 0. We can write down a similar mode expansion,
namely
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where bk defines the out-vacuum via bk|0outi = 0, and b
†
k constructs particle states at late times.

Clearly vk 6= uk. Thus, the two have to be related as
vk = ↵kuk + �ku
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with the Bogolyubov coefficients ↵k, and �k.

(e) Demonstrate that the Bogolyubov coefficients equal
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Hint: The hypergeometric function 2F1 satisfies the identities

2F1(a, b; c; z) =
�(c)�(c� a� b)

�(c� a)�(c� b)
2F1(a, b; a+ b� c+ 1; 1� z)

+ (1� z)c�a�b
�(c)�(a+ b� c)

�(a)�(b)
2F1(c� a, c� b; c� a� b+ 1; 1� z),

(12.16)

2F1(a, b; c; z) =(1� z)c�a�b
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(f) Assume that the field is in the vacuum state at early times. Show that the particle number
density at late times equals
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Exercise 13: Hawking radiation from non-singular black holes – 20pts.

Motivation: Black-hole solutions in GR are singular; it is expected that a more complete (quantum) theory of gravity

can resolve this. We will consider whether regularity leaves any imprints in the Hawking temperature.

In this exercise, work with the Hayward metric. This is a metric that is not a solution to the
Einstein equations (at least not for an energy-momentum tensor that satisfies the standard energy
conditions). You can think of it as a phenomenological model for black holes beyond GR. The
line-element in Schwarzschild-type coordinates is given by
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with f(r) = 1� 2GM r
2

r3+2GM `2
, with ` a parameter with units of length. All (non-derivative) curvature

invariants remain finite in the limit r ! 0, as long as ` > 0.

(a) What is the limit ` ! 0?

(b) For spherically symmetric, static metrics in Schwarzschild-like coordinates, the event horizon
is determined by the equation g

rr = 0. Find the location of the event horizon. If there is a
qualitative (not just quantitative) difference to the Schwarzschild case, discuss it.

(c) Is the vector ⇠ = @t a Killing vector? If yes, is there a Killing horizon?

(d) Determine the surface gravity for a metric of the form Eq. (13.1) for an unspecified function
f(r); then insert f(r) for the Hayward metric and discuss the difference to a Schwarzschild
black hole.

(e) What are the implications of your previous results for the Hawking temperature of the
Hayward black hole?


