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Quantum field theory in curved spacetime
Assignment 1 – Apr 28

Exercise 1: Quantum fields in an expanding universe

Motivation: In this first exercise, we’ll follow how the vacuum state of a scalar evolves in a toy model of an
expanding universe. Even though the setup is simple, it already reveals a key feature of quantum fields in curved
spacetime: the vacuum isn’t as empty as it seems.

Consider a real massive scalar field χ (minimally coupled) in an expanding universe. Its classical
action is

S =
1

2

∫
d4x

(
χ′

2 − (∂iχ)2 −m2
effχ

2
)
, (1.1)

where i denotes spatial indices and prime corresponds to derivative with respect to conformal
time. The effective mass m2

eff is written as

m2
eff = m2a2 − a′′

a
, (1.2)

with a, the scale factor. Assume that m2
eff is given by

m2
eff(η) =

{
m2

0 , η < 0 and η > η1 ,
−m2

0 , 0 < η < η1 ,
(1.3)

with m0 a constant.

(a) Solve the equations of motion for χ.

(b) Construct the early (“in”) and late (“out”) time vacuum states.

(c) Prove that in the “out” region (η > η1), the state |0in〉 (the vacuum in the “in” region) contains
particles. In other words, if we initially start in the vacuum the background evolution has
created particles.

(d) Show that the mean particle number density in a mode k is given by

nk =
m4

0

|k4 −m4
0|

∣∣∣sin(η1

√
k2 −m2

0

) ∣∣∣2. (1.4)

Sanity check: What happens in the limit η1 → 0? Why is this the result we expect?

(e) Discuss the regimes k � m0 and k � m0. What is the physical meaning of these limits?

(a) We express the scalar field in terms of its spatial Fourier transform

χk(t) =

∫
d3xχeikx, (1.5)



which satisfies the equation of motion

χ′′k + (m2
eff + k2)χk = 0. (1.6)

We solve the equation of motion for the three cases η < 0, 0 < η < η1, η > η1 individually, obtaining
the mode expansions

χk =


ake

−iωk,+η + a†−ke
iωk,+η , η < 0 ,

bke
−iωk,−η + b†−ke

iωk,−η , 0 < η < η1 ,

cke
−iωk,+η + c†−ke

iωk,+η , η > η1 ,

(1.7)

with the amplitudes ak, bk and ck and the two dispersion relations

ωk,± =
√
k2 ±m2

0. (1.8)

Note that ωk,− is imaginary for the modes satisfying m2
0 > k2. In order to obtain a valid solution, the

scalar field has to be continuous and differentiable. This allows us to express the amplitudes bk and ck
in terms of ak by requiring continuity and differentiability at η = 0 and η = η1. Making the ansatz

bk = αbak + βba
†
−k, (1.9)

we obtain the constraints
αb + β∗b =

ωk,−
ωk,+

(−αb + β∗b ) = 1, (1.10)

which have the solution

αb =
ωk,+ + ωk,−

2ωk,−
, βb =

ωk,+ − ωk,−
2ωk,−

. (1.11)

Similarly, with the ansatz
ck = αcbk + βcb

†
−k, (1.12)

we obtain the constraints

αce
−iωk,+η1 + β∗c e

iωk,+η1 = e−iη1ωk,− ,
ωk,+
ωk,−

(−αce−iωk,+η1 + β∗c e
iωk,+η1) = e−iωk,−η1 , (1.13)

which have the solution

αc =
ωk,+ + ωk,−

ωk,+
e−i(ωk,+−ωk,−)η1 , βc =

ωk,+ − ωk,−
ωk,+

ei(ωk,++ωk,−)η1 . (1.14)

Altogether, we find

ck ≡αacak + βaca
†
−k (1.15)

=
1

4ωk,+ωk,−

(
(ωk,+ + ωk,−)2e−i(ωk,−−ωk,+)η1 − (ωk,+ − ωk,−)2e−i(ωk,−+ωk,+)η1

)
ak (1.16)

+
i

2

ω2
,+ − ω2

,−

ωk,+ωk,−
sin(η1ωk,−)ei(ωk,+)η1a†−k. (1.17)

(b) When quantising the scalar, we promote the amplitudes to operators such that

[ak, a
†
k′ ] = (2π)3δ(3)(k′ − k), [ck, c

†
k′ ] = (2π)3δ(3)(k′ − k). (1.18)



The vacuum states |0in〉 and |0out〉 (for η < 0 and η > η1, respectively) vanish when the corresponding
annihilation operators act on them, i. e. they satisfy

ak|0in〉 = 0, ck|0out〉 = 0, (1.19)

for all k.
Note: We are working in the Heisenberg picture. So if we start out in the in-vacuum, we also end up
in the in-vacuum.

(c) To see whether there are particles in the in-vacuum at late times, we act on it with the annihilation
operator at late times. If the result is nonzero, there are particles in that state. We obtain

ck|0in〉 =(αacak + βacak)†|0in〉, (1.20)

=βaca
†
−k|0in〉, (1.21)

=
i

2

ω2
,+ − ω2

,−

ωk,+ωk,−
sin(η1ωk,−)ei(ωk,+)η1a†−k|0in〉, (1.22)

where we used Eq. (1.17). This state is clearly non-zero.
(d) We define the number-density operator at late times as

nout =
c†kck
V

, (1.23)

with the volume of space V. In the in-vacuum state, the mean number density equals the expectation
value of the number-density operator. Thus, we obtain

nk =〈0in|nout|0in〉 (1.24)

=V −1〈0in|c†kck|0in〉, (1.25)
=V −1||ck|0in〉||2, (1.26)

=
(ω2

k,+ − ω2
k,−)2

4ωk,+ωk,−V
| sin(ωk,−η1)|2||a†−k|0in〉||2, (1.27)

=
m4

0

|k4 −m4
0|
| sin(ωk,−η1)|2 δ

(3)(0)

V
. (1.28)

Oops, δ(3)(0) incoming. But don’t despair! That’s just the volume of space that we divide by anyway.
This is why, in field theory on unbounded backgrounds, it is just more useful to consider densities. Thus,
by a slight of hand δ(3)(0)/V = 1 and we obtain

nk =
m4

0

|k4 −m4
0|
| sin(ωk,−η1)|2. (1.29)

(e) The modes which satisfy k � m0 have very large energies and thus probe very small distances.
At small distances, spacetime is approximately Minkowskian. In our toy model, the change in the mass
is of order m0, which estimates the scale of background curvature we model. Thus, if k � m0 the
particles approximately see Minkowski spacetime, and particle creation is negligible. Indeed, we infer
from Eq. (1.29) that limk→∞ nk = 0.

If, in turn, k � m0 the wave length of the modes is much larger than background-curvature length
scales. Therefore, particle creation is maximal. We see this in the number density

n0 = sinh2(m0η1), (1.30)

which grows exponentially with m0η1.



Exercise 2: Bogolyubov transformations

Motivation: We’ve seen that one person’s vacuum can be filled with particles from another person’s point of view.
Now we derive general rules that relate the vacua of different observers.

Given a set of mode functions vk(η) (with conformal time η and k = |k|), a scalar field on a
cosmological background can be expanded as

χ =
1√
2

∫
dk3

(2π)3/2

(
v∗kake

ikx + vka
†
ke
−ikx

)
, (2.1)

where
[ak, a

†
k′ ] = δ(3)(k′ − k). (2.2)

Let us define a new set of mode functions as a linear combination

uk = αkvk + βkv
∗
k. (2.3)

The numbers αk and βk are called Bogolyubov coefficients. They are related as

|αk|2 − |βk|2 = 1. (2.4)

Given the new set of mode functions, we can equivalently expand the scalar as

χ =
1√
2

∫
dk3

(2π)3/2

(
ukbke

ikx + u∗kb
†
ke
−ikx

)
, (2.5)

where again
[bk, b

†
k′ ] = δ(3)(k′ − k). (2.6)

Then, we can express the different classes of creation and anihilation operators as linear combi-
nations, e. g.

bk = αkak − βka†−k (2.7)

In class, you have derived the average particle number density of modes associated with the
operator a† in the b-vacuum. Now, we go a step further and explicitly express the b-vacuum
state in terms of creation and anihilation operators of the state a acting on the a-vacuum. The
b-vacuum state for a pair of modes (k,−k) satisfies

bk|0(b)
k,−k〉 = b−k|0(b)

k,−k〉 = 0. (2.8)

(a) Expand the b-vacuum in terms of a-particle states.

(b) Use the properties of |0(b)
k,−k〉 to obtain the expansion coefficients.

(c) Normalize the resulting state. You should obtain the result

|0(b)
k,−k〉 =

1

|αk|
e
βk
αk
a†ka
†
−k |0(a)

k,−k〉. (2.9)

(d) Write down the full b-vacuum state in terms of the mode-specific |0(b)
k,−k〉.

(e) Let’s have a closer look at the expansion. What kind of state is the b-vacuum in terms of
a-particle states?



(a) We can introduce a partition of unity in the Fock space describing modes of wave number ±k
such that

1k,−k =
1

|N |

∞∑
n,m=0

|m(a)
−k, n

(a)
k 〉〈m

(a)
−k, n

(a)
k |, (2.10)

with some normalizing factor |N |. Then, the vacuum state of particle b can be expanded as

|0(b)
k,−k〉 =

1

|N |

∞∑
n,m=0

〈m(a)
−k, n

(a)
k |0

(b)
k,−k〉|m

(a)
−k, n

(a)
k 〉, (2.11)

=
1

|N |

∞∑
n,m=0

cnm|m(a)
−kn

(a)
k 〉. (2.12)

(b) Eq. (2.8) tells us that the vacuum is invariant under parity transformations (k → −k). This
implies the constraint

cnm = cmn. (2.13)

Besides, it has to be anihilated by the operator bk which shifts Using Eq. (2.7), we obtain the relation

bk|0(b)
k,−k〉 =

1

|N |

∞∑
n,m=0

cnm(αkak − βka†−k)|m(a)
−kn

(a)
k 〉 (2.14)

=
1

|N |

∞∑
n,m=0

cnm(
√
nαk|m(a)

−k(n− 1)
(a)
k )〉 −

√
m+ 1βk|(m+ 1)

(a)
−kn

(a)
k )〉 (2.15)

=
1

|N |

∞∑
n,m=0

(cn+1,m

√
n+ 1αk − cn,m−1

√
mβk)|m(a)

−kn
(a)
k 〉 (2.16)

=0. (2.17)

Every coefficient of this linear combination has to vanish individually. Thus, we obtain the iterative
relations

cn+1,m

√
n+ 1αk − cn,m−1

√
mβk = 0. (2.18)

Let’s express everything in terms of c0,0. Then, immediately cn,0 = c0,n = 0 for all n > 0. But then,
again, cn,1 = c1,n = 0 for all n > 1 and so on. Thus, we find that

cnm ∝ δmn. (2.19)

For the diagonal elements, we obtain

cn+1,n+1 =
βk
αk
cn,n. (2.20)

Thus, we obtain the relation

cn,n =

(
βk
αk

)n
c0,0. (2.21)

Note that from the recurrence relation given in Eq. (2.18) alone one could think that c0,0 = 0, setting
n = −1 and m = 0. However, n = −1 is not contained in the sum in Eq. (2.16) – thus, n = −1 is not
applicable and c0,0 6= 0.



Given our solution to the recurrence relation, we can expand the b-vacuum in the mode k as

|0(b)
k,−k〉 =

1

|N̄ |

∞∑
n=0

(
βk
αk

)n
|n(a)
−kn

(a)
k 〉 (2.22)

=
1

|N̄ |

∞∑
n=0

(
βk
αk

)n (a†k)n(a†−k)n

n!
|0(a)

k,−k〉 (2.23)

=
1

|N̄ |
e
βk
αk
a†ka
†
−k |0(a)

k,−k〉, (2.24)

where we absorbed c0,0 into N̄ and discarded a global phase.
(c) The norm of our state reads

|||0(b)
k,−k〉||

2 =
1

|N̄ |2
∑
n,m

(
βk
αk

)n(
β∗k
α∗k

)m
〈m(a)
−km

(a)
k |n

(a)
−kn

(a)
k 〉 (2.25)

=
1

|N̄ |2
∑
n

(
|βk|2

|αk|2

)n
(2.26)

=
1

|N̄ |2
|αk|2

|α|2 − |βk|2
(2.27)

=
|αk|2

|N̄ |2
. (2.28)

Thus, we finally obtain

|0(b)
k,−k〉 =

1

|αk|
e
βk
αk
a†ka
†
−k |0(a)

k,−k〉. (2.29)

Hooray.
(d) For different wave numbers, the states live in different Hilbert spaces. Thus, we can just take

their tensor product for all values of k

|0(b)〉 =
∏
k

1

|αk|
e
βk
αk
a†ka
†
−k |0(a)

k,−k〉. (2.30)

(e) Expressed in terms of a-particle states, the b-vacuum is a two-mode squeezed coherent state.
That’s a mouthful. Let’s break it down:

• That its coherent means that it saturates the uncertainty relation. It is, thus, as classical as it
can get. Note that a squeezed coherent state is not necessarily a coherent state (an eigenstate of
the anihilation operator), indeed the one we are dealing with is exactly such an example. That’s
a terminology trap right there!

• That its two-mode squeezed means that it comes in pairs – in this case with opposite wave numbers
(k,−k). More generally, it comes in pairs with exactly opposite quantum numbers, i. e. particle-
antiparticle pairs. This has to be the case because quantum numbers have to be conserved.

Exercise 3: Instantaneous vacuum

Motivation: Every mode function allows to construct a different vacuum. What could be a sensible definition of
vacuum then? Let’s find out!



Ordinarily, we define the vacuum as the lowest-energy state. In cosmology, however, the Hamilto-
nian is time dependent. Energy is not conserved. This creates particles. Thus, the lowest-energy
state at one time (the instantaneous vacuum), may not be the lowest-energy state at a different
time. Let’s see, how this comes about.
As above consider a real massive scalar field, whose dynamics are characterized by the action
given in Eq. (1.1). This results in the Hamiltonian

H =
1

2

∫
x

(
π2 + (∂iχ)2 +m2

effχ
2
)
, (3.1)

with the momentum conjugate π. Assume that the field possesses a mode expansion as in Eq. (2.1).

(a) Express the Hamiltonian in terms of creation and anihilation operators. You should obtain
something of the form

H =
1

4

∫
d3k

[
aka−kF

∗
k + a†ka

†
−kFk + (2a†kak + δ(3)(0))Ek

]
(3.2)

for some Ek, Fk.

(b) Compute the mean energy density in the a-vacuum.

(c) Assuming that ω2
k = k2+m2

eff > 0, find initial conditions for the mode function that minimize
the mean energy density at conformal time η0. (Hint: Normalize the mode functions.)
What is the corresponding Hamiltonian at conformal time η0? You should obtain that the
Hamiltonian is diagonal in this case.

(d) Compute the initial conditions for the mode function after an infinitesimal time shift, i. e. at
conformal time η0 + δη. Compare these initial conditions to the ones derived in the previous
exercise. How do we interpret this result? (Hint: Have in mind exercise 2.)

(e) Imagine that you could find a vacuum state which diagonalizes the Hamiltonian at all times.
Which equation would the mode functions have to satisfy? Is this equation compatible with
the equations of motion?

In specific situations, it can happen that the lowest-energy state at one time η0 amounts to an
infinite number density at a different time η1, even if the geometry changes slowly compared to the
time difference that is characteristic of the problem one would like to answer (i. e. adiabatically).
This casts serious doubts on the physical interpretation of the instantaneous vacuum.
However, adiabatic evolution allows us to (at least approximately) define a different vacuum state
with interesting properties: The adiabatic vacuum. If the energy density is changing slowly during
the considered time interval, the equations of motion allow for the approximate solutiona

vWKB
k (η) =

e
i
∫ η
η0
ωk(η′)dη′

√
ωk

. (3.3)

We can define the adiabatic vacuum |0ad(η0)〉 at a time η0 by finding exact mode functions which
satisfy the initial conditions

vk(η0) = vWKB
k (η0), v′k(η0) = vWKB′

k (η0), (3.4)

and constructing the vacua relative to the corresponding anihilation operator.



(f) Quantify how adiabatic a general background evolution yielding ωk(η) is. Which condi-
tion should an adiabatically evolving background satisfy if the quantum-field evolution is
considered in a finite-time interval ∆η = η1 − η0?

(g) Compute the energy density of the adiabatic vacuum in general. Is it minimal?
aThis approximation is called WKB (Wentzel–Kramers–Brillouin) approximation, a standard method in quan-

tum mechanics in general.

(a) Given the mode expansion in Eq. (2.1), the conjugate momentum reads

π(x) = ∂ηχ =
1√
2

∫
d3k

(2π)3/2

(
v′∗k ake

ikx + v′ka
†
ke
−ikx

)
. (3.5)

Thus, it’s square contributes

π(x)2 =
1

2

∫
d3kd3k′

(2π)3

(
v′∗k ake

ikx + v′ka
†
ke
−ikx

)(
v′∗k′ak′e

ik′x + v′k′a
†
k′e
−ik′x

)
, (3.6)

=
1

2

∫
d3k

(
v′∗2k aka−k + |v′k|2(aka

†
k + a†kak) + v′2k a

†
ka
†
−k

)
, (3.7)

Similarly, the gradient of the scalar has the square

(∇χ)2 =
1

2

∫
d3kk2

(
v∗2k aka−k + |vk|2(aka

†
k + a†kak) + v2

ka
†
ka
†
−k

)
. (3.8)

Then, the Hamiltonian reads

H =
1

4

∫
d3k

[
(v′∗2k + ω2

kv
∗2
k )aka−k + (v′2k + ω2

kv
2
k)a
†
ka
†
−k + (|v′k|2 + ω2

k|vk|2))(aka
†
k + a†kak)

]
, (3.9)

=
1

4

∫
d3k

[
F ∗kaka−k + Fka

†
ka
†
−k + Ek(2a†kak + δ(3)(0))

]
, (3.10)

where we defined

Fk = v′2k + ω2
kv

2
k, Ek = |v′k|2 + ω2

k|vk|2. (3.11)

(b) The only nonvanishing contribution to the expectation value of the Hamiltonian in the a-vacuum
reads

〈0(a)|H|0(a)〉 =
δ(3)(0)

4

∫
d3kEk. (3.12)

The factor δ(3)(0) amounts to the infinite volume of space. Therefore, we define the mean energy density
as

ρ ≡ 〈0
(a)|H|0(a)〉
δ(3)(0)

=
1

4

∫
d3kEk. (3.13)

(c) We have to minimize the energy density for each mode individually. Thus, we should minimize
Ek(η0). Note that the normalization condition for the mode functions reads

v′kv
∗
k − v′∗k vk = 2i. (3.14)

We can shift the phase of the mode function by a constant vk → eiλvk without changing the physics.
Such a shift implies v′k → eiλv′k. By such a shift, we can make vk(η0) real. Thus, the normalization
condition, Eq. (3.14), at time η0 reads

vk(η0) =
1

Im(v′k)(η0)
. (3.15)



Thus, we have to minimize the quantity

Ek(η0) = [Re(v′k)(η0)]2 + [Im(v′k)(η0)]2 +
ω2
k(η0)

[Im(v′k)(η0)]2
, (3.16)

with respect to both x = Re(v′k)(η0) and y = Im(v′k)(η0) individually. Thus, we have to minimize the
functions x2, yielding x = 0, and y2 + ω2

k(η0)/y2, yielding y =
√
ωk(η0). We obtain the solution

vk(η0) =
1√
ωk(η0)

, v′k(η0) = i
√
ωk(η0) = iωk(η0)vk(η0). (3.17)

Here, we had to assume that that ω2
k(η0) > 0 – otherwise the manifestly real quantity Im(v′k)(η0)

would have been imaginary. This was expected, because the energy of modes with negative ω2
k is

unbounded from below, thus not allowing for a minimal energy density.
Eq. (3.17) implies that Fk(η0) = 0, while

Ek(η0) = 2ωk(η0). (3.18)

As a result, the Hamiltonian at conformal time η0 is diagonal (i. e. a function of the number operator
Nk ≡ a†kak only), reading

H(η0) =

∫
d3kωk(η0)

[
Nk +

δ(3)(0)

2

]
. (3.19)

Note: The corresponding vacuum energy density

ρ(η0) =
1

2

∫
d3kωk(η0), (3.20)

is divergent, and has to be renormalized. Simply subtracting it away, as one usually does it in flat space,
does not work because it is time dependent.

(d) The initial conditions for the mode functions defining the instantaneous vacuum at conformal
time η0 + δη read

uk(η0 + δη) =
1√

ωk(η0 + δη)
, u′k(η0 + δη) = i

√
ωk(η0 + δη). (3.21)

Expanding in the infinitesimal δη,

uk(η0) + u′k(η0)δη ' 1√
ωk(η0)

− 1

2

ω′k(η0)δη

ω
3/2
k (η0)

, u′k(η0) + u′′k(η0)δη = i

(√
ωk(η0) +

1

2

ω′k(η0)δη√
ωk(η0)

)
. (3.22)

Thus, the mode functions u and v can only be equal if

ω′k(η0) = −2iω2
k(η0), u′′k(η0) =

1

2

ω′k(η0)√
ωk(η0)

. (3.23)

The first of these two equalities provides an initial condition for the background at η0. The second
equality is an additional initial condition for the mode, which together with the equation of motion
yields

u′′k(η0) + ω2
k(η0)uk(η0) = 2

(
i

2
ω′k(η0)

)3/4

= 0. (3.24)

Thus, u and v are equal iff ω′k(η0) ∝ m2′
eff(η0) = 0, i. e. the background should not evolve at time η0.



Thus, using the language from exercise 2, the operators ak and bk are related by a nontrivial Bo-
golyubov transformation, and the a-vacuum is filled with b-particles. In other words, even after an
infinitesimal shift in conformal time, the state of minimal energy density is not the state of minimal
energy density any more, unless the background is static during that time.

(e) In order to diagonalize the Hamiltonian, the mode function has to satisfy the differential equation

Fk = v′2k + ω2
kv

2
k = 0. (3.25)

Taking a derivative with respect to conformal time, we obtain

v′′k = i(ω′kvk + ωkv
′
k) = (iω′k − ω2

k)vk. (3.26)

At the same time, the equations of motion require that

v′′k = −ω2
kvk. (3.27)

Thus, the Hamiltonian can only be diagonalized by one mode function in a way consistent with the
equations of motion if

ω′k = 0, (3.28)

i. e. in a non-evolving background. In other words, in a cosmological setting it is impossible to diagonalize
the Hamiltonian for all times.

(f) Being an energy, ωk(η) has an associated characteristic frequency and with that an associated
characteristic period

∆η =
2π

ωk(η)
. (3.29)

For ωk to be slowly changing, it then has to satisfy∣∣∣∣ω(η + ∆η)− ω(η)

ω(η)

∣∣∣∣� 1. (3.30)

Expanding in ∆η (which we should be allowed to do if ωk is slowly changing), we obtain∣∣∣∣ω′k(η)∆η

ωk(η)

∣∣∣∣ = 2π

∣∣∣∣ω′k(η)

ω2
k(η)

∣∣∣∣� 1. (3.31)

(g) The initial conditions for the mode functions defining the adiabatic vacuum (derived from
Eq. (3.4)) are

vk(η0) =
1√
ωk(η0)

, v′k(η0) = i
√
ωk(η0)

[
1 +

i

2

ω′k
ω2
k

]
. (3.32)

These deviate from the minimal-energy-density initial conditions by a term proportional to ω′k/ω2
k, which

as we derived in the previous exercise is small for slowly changing backgrounds. Thus, we expect to be
close to the minimal energy density. Indeed, we obtain

ρ =
1

4

∫
d3kEk =

1

2

∫
d3kωk

(
1 +

1

16

∣∣∣∣ω′kω2
k

∣∣∣∣2
)
. (3.33)

Considering that the corrections are quadratic in a very small number, this is indeed very close to
minimal energy density.
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Exercise 4: Conformally coupled scalar field

Motivation: In the lecture, we saw that nonminimally coupled scalar fields are not produced in an FLRW background
if they are conformally coupled. But why those specific coupling values? Here, we’ll work out precisely what
conformal coupling means.

Consider a scalar field φ non-minimally coupled with gravity. It is described by the following
action (Note that in the original sheet this exercise was written in the “wrong” metric
signature (+−−−). To be consistent with the rest, it has been modified to (−+ ++))

S =

∫
d4x
√
−g
(
−1

2
gµν∂µφ∂νφ−

m2

2
φ2 − ξ

2
Rφ2

)
. (4.1)

(a) Consider the conformal transformation

gµν(x, t)→ Ω2(x, t)gµν(x, t), (4.2)
φ(x, t)→ Ω−1(x, t)φ(x, t). (4.3)

Calculate the value of ξ under which the action is invariant under this conformal transfor-
mation (possibly up to a total divergence).

(b) Show that the energy-momentum tensor T µν is expressed as

T µν = ∇µφ∇νφ− 1

2
gµν∇ρφ∇ρφ−

1

2
gµνm2φ2 + ξ

(
Rµν − 1

2
gµνR

)
φ2

+ ξ
[
gµν∇α∇α(φ2)−∇µ∇ν(φ2)

]
. (4.4)

(c) Show that T ν ν = 0 when m = 0 and ξ = 1/6.

(a) From here on on barred quantities denote the transformed metric such that ḡµν = Ω2gµν . The
inverse metric transforms as ḡµν = Ω−2gµν (recall that ḡµν ḡνρ = δµρ ). As a result, the Christoffel symbol
transforms as

Γ̄ρµν = Γρµν +
gρσ

Ω

(
2gσ(ν∇µ)Ω− gµν∇σΩ

)
, (4.5)

where we use the notation
gρ(ν∇µ) =

1

2
(gρν∇µ + gρµ∇ν) . (4.6)

Then, the Ricci tensor reads

R̄µν =∂ρΓ̄
ρ
µν − ∂νΓ̄ρρµ + Γ̄ρρσΓ̄σµν − Γ̄ρµσΓ̄σνρ, (4.7)

=Rµν − 2
∇µ∇νΩ

Ω
− gµν

�Ω

Ω
+ 4
∇µΩ∇νΩ

Ω2
− gµν

gρσ∇ρΩ∇σΩ

Ω2
, (4.8)



where � = gµν∇µ∇ν . Finally, the Ricci scalar reads

R̄ =
R

Ω2
− 6

�Ω

Ω3
. (4.9)

At the same time, the determinant of the metric transforms as

ḡ ≡ εµ1...µ4 ḡ1µ1 . . . ḡ4µ4 = Ω8g. (4.10)

Together with the transformation of the scalar, we obtain

S =

∫
d4x
√
−ḡ
(
−1

2
ḡµν∇̄µφ̄∇̄νφ̄−

m2

2
φ̄2 − ξ

2
R̄φ̄2

)
, (4.11)

=

∫
d4x
√
g

[
−1

2
gµν∇µφ∇νφ+ φ∇µφg

µν∇νΩ

Ω
− 1

2
φ2gµν

∇µΩ∇νΩ

Ω2
− m2

2
φ2Ω2 − ξ

2
φ2

(
R− 6

�Ω

Ω

)]
,

(4.12)

=

∫
d4x
√
g

[
−1

2
gµν∇µφ∇νφ−

m2

2
φ2Ω2 − ξ

2
φ2R + 3

(
ξ − 1

6

)
φ2�Ω

Ω

]
, (4.13)

where we used partial integration to obtain the equality∫
d4x
√
−gφ

2

2
gµν
∇µΩ∇νΩ

Ω2
=

∫
d4x
√
−g
[
φ2

2

�Ω

Ω
+ φ∇µφg

µν∇νΩ

Ω

]
. (4.14)

Thus, the action is invariant if m = 0 and ξ = 1/6.
(b) The energy-momentum tensor is defined as

Tµν ≡ −
2√
−g

δS

δgµν
. (4.15)

We, thus, have to vary the action with respect to the inverse metric. Let us start with the metric
determinant. We start with the trick

g = etr log gµν . (4.16)

Then, the variation becomes

δg =etr log gµνδ[tr log gµν ], (4.17)
=gtr[gµνδg

µν ], (4.18)
=ggµνδg

µν , (4.19)

with the trace tr. Thus, the variation of the root of the negative determinant reads

δ
√
−g = −1

2

√
−ggµνδgµν . (4.20)

As a result, the minimally coupled part becomes

Tµν |ξ=0 = ∇µφ∇νφ−
1

2
gµν∇ρφ∇ρφ−

1

2
gµνm

2φ2. (4.21)

The nonminimal coupling is slightly more involved. We start as

δSnonminimal = −1

2

∫
x

ξφ2

[
gρσδRρσ(x) +

(
Rµν −

1

2
Rgµν

)
δgµν(x)

]
, (4.22)



where hereafter we abbreviate
∫
x

=
∫

d4x
√
−g. Here, we can use the identity (you can find it, for

example, in Eq. 4.60 of S. Carroll’s notes on relativity)

δRµν = ∇ρδΓ
ρ
µν −∇νδΓ

λ
λµ. (4.23)

Partially integrating, we obtain for the remaining part

− 1

2

∫
x

ξφ2gρσδRρσ(x) =
1

2

∫
x

ξgµν
(
∇ρ(φ

2)δΓρµν −∇ν(φ
2)δΓλµλ

)
. (4.24)

To obtain the variation of the Christoffel symbols, we use the following shortcut: Construct (Riemann)
normal coordinates around a point p. Then, the first derivatives of the metric at that point vanish.
Thus, the variation of the Christoffel symbols in that coordinate system reads

δΓρµν |p =
1

2
gρσ(2∂(µδgν)σ − ∂σδgµν)|p, (4.25)

=
1

2
gρσ(2∇(µδgν)σ −∇σδgµν)|p, (4.26)

where in the last step we used that in normal coordinates, the Christoffel symbols at p vanish so that
∇µ|p = ∂µ. Note now that we could have done this at any point p and that, contrary to Γρµν , δΓ

ρ
µν is

a tensor (the difference of Christoffel symbols transforms as a tensor) such that Eq. (4.26) is a tensor
equation. This implies that Eq. (4.26) holds not only at a point and in normal coordinates, but at all
points and every system of coordinates, i. e.

δΓρµν =
1

2
gρσ(2∇(µδgν)σ −∇σδgµν). (4.27)

The contracted form of the variation of the Christoffel symbol reads

δΓνµν =
1

2
gνρ∇µδgνρ. (4.28)

Thus, we can rewrite the remaining part as

−1

2

∫
x

ξφ2gρσδRρσ(x) =− 1

2

∫
x

ξ

2
gµν
(
2δgρ(ν∇µ)∇ρ(φ2)− δgµν∇ρ∇ρ(φ2)− gνρδgνρ∇µ∇ν(φ

2)
)
, (4.29)

=− 1

2

∫
x

ξ
(
∇µ∇ν(φ2)− gµν∇ρ∇ρ(φ2)

)
δgµν (4.30)

Finally, the variation of the metric can be obtained from

δ(δµν ) = δ(gµρgνρ) = δgµρgνρ + gµρδgνρ = 0 (4.31)

such that
δgµν = −gµρgνσδgρσ. (4.32)

Thus, we can express the variation of the Ricci tensor as

−1

2

∫
x

ξφ2gρσδRρσ(x) =− 1

2

∫
x

ξ
(
gµν∇ρ∇ρ(φ2)−∇µ∇ν(φ

2)
)
δgµν . (4.33)

After all of this tedious algebra, we finally obtain the result

Tµν = ∇µφ∇νφ−
1

2
gµν∇ρφ∇ρφ− m2

2
gµνφ

2 + ξ

(
Rµν −

1

2
Rgµν

)
φ2 + ξ

[
gµν∇ρ∇ρ(φ2)−∇µ∇ν(φ

2)
]
.

(4.34)

https://arxiv.org/pdf/gr-qc/9712019


Let’s go touch some grass.
(c) The trace of the stress-energy tensor reads

T νν =−∇νφ∇νφ− 2m2φ2 − ξRφ2 + 6ξ(φ�φ+∇νφ∇νφ), (4.35)

=6

(
ξ − 1

6

)
∇νφ∇νφ+ 2m2φ2 + ξφ(6�φ−Rφ). (4.36)

But the scalar also satisfies its field equation

(�− ξR−m2)φ = 0, (4.37)

which we can plug in such that

T νν =6

(
ξ − 1

6

)
∇νφ∇νφ− 2m2φ2 + ξφ

[
6

(
ξ − 1

6

)
Rφ+ 6m2φ

]
, (4.38)

=6

(
ξ − 1

6

)(
∇νφ∇νφ+ ξRφ2

)
+ 2m2φ2 (3ξ − 1) . (4.39)

This clearly vanishes when ξ = 1/6 and m = 0.

Exercise 5: Electromagnetic fields on curved backgrounds

Motivation: Non-conformally coupled scalars are copiously produced in FLRW spacetimes. But how about photons?
In other words, is the universe covered in “light” of horizon wavelength?

The Maxwell action on a curved background reads

S = −1

4

∫
d4x
√
−gFµνF µν , (5.1)

with the field-strength tensor
Fµν = ∇µAν −∇νAµ, (5.2)

and the gauge field Aµ. Instead of going through the whole derivation of particle creation again,
we take a shortcut.

(a) Try to do this sub-exercise before reading the remaining ones.

Work smarter, not harder. Before doing any calculation, think it through: Should Maxwell
theory be Weyl invariant in curved spacetime? Why? What does this tell us about photon
production in an FLRW background?

Let’s now work through the details step by step.

(b) The gauge field transforms trivially under Weyl transformations, i. e. Aµ → Aµ. Calculate
how the Maxwell action transforms under Weyl rescalings. Is it invariant?

(c) If we rescale the FLRW metric to remove the scale factor, how do Maxwell’s equations
change? What does this mean for the electromagnetic vacuum in an FLRW background? Is
the universe covered in “light” of horizon wave length?

Finally, let’s explore how Weyl invariance shows up in the structure of the energy-momentum
tensor.



(d) Compute the energy-momentum tensor T µν of the gauge field and show that T µµ = 0.

(e) Bonus exercise: What does the tracelessness of the energy-momentum tensor have to do
with Weyl invariance? (Hint: How does the matter Lagrangian change under a small Weyl
rescaling? What would this imply for T µµ?)

(a) Weyl invariance is the invariance under local scale transformations. Thus, if the theory is
supposed to be the same at all scales, it cannot introduce absolute scales like dimensionful coupling
constants. In other words, the only possible terms which can contribute to a Weyl invariant theory
are those with dimensionless couplings. For electromagnetism, there are no minimal-coupling terms
with couplings of vanishing dimension which are also gauge invariant (verify that no contractions of one
Riemann tensor and one electromagnetic field strength could be viable). Thus, there is no wiggle room
for a minimal coupling which may have to be added to render the theory locally Weyl invariant as for
the scalar.

This does not imply that the theory is Weyl invariant yet. We can get there keeping in mind
that electromagnetism has no scale and is therefore scale invariant in flat space. At the same time, the
Maxwell action is made up of two contracted field strength tensors (which are defined with indices down).
Their contraction requires two inverse metric tensors, whose behaviour under scale transformations
balances exactly the one from the metric determinant. In other words, in flat space, the gauge field
transforms trivially under scale transformations.

Recall that in exercise 4 the derivatives in the kinetic term of the scalar spoiled local Weyl invariance
by introducing derivatives of the conformal factor. This cannot happen for the electromagnetic field
(whose kinetic term is exactly the Maxwell action) because the field strength transforms trivially. Thus,
the Maxwell action has to be locally Weyl invariant.

If we take seriously what we learned in the lecture, this indicates that the electromagnetic field does
not “see” the cosmological evolution. This would indicate that there can be no photon production in
cosmology.

(b) We know that Aµ → Aµ. Besides, the covariant derivatives in field strength receive no gravita-
tional contributions because

Fµν = 2∇[µAν] = 2∂[µAν] − Γρ[µν] = 2∂[µAν], (5.3)

where we used that the Levi-Civita connection is torsionless (aka that Γρµν is symmetric in (µ, ν)). As
a result, we find that Fµν → Fµν . At the same time gµν → Ω−2gµν and g → Ω8g. So the action

S = −1

4

∫
d4x
√
−ggµρgνσFµνFρσ = −1

4

∫
d4x
√
−ḡḡµρḡνσFµνFρσ (5.4)

is indeed invariant.
(c) Maxwell’s equations in a curved background read

∇νFµν = 0. (5.5)

For the covariant derivative, we have

∇νFµν = ∂νFµν − gνσΓρµσFρν − gνσΓρσνFµρ. (5.6)

Recall that the Christoffel symbols transform under Weyl transformations as given in Eq. (4.5), implying

Γ̄ρµν − Γρµν =
2δρ(µ∇ν)Ω− gµν∇ρΩ

Ω
. (5.7)



δ (∇νFµν) =∇̄νF̄µν −∇νFµν , (5.8)

=−
2∇(σΩF σ

µ) − Fρµ∇ρΩ

Ω
+

2Fµρ∇ρΩ

Ω
, (5.9)

=
−Fµσ∇σΩ + Fρµ∇ρΩ + 2Fµρ∇ρΩ

Ω
, (5.10)

=0, (5.11)

where we used the antisymmetry of the field strength tensor. Thus, as expected, they remain unchanged.
Thus, the mode equation for photons is equivalent to the one in flat space. Then, there is a unique

vacuum. The universe is therefore not filled with light.
(d) The energy-momentum tensor is defined in Eq. (4.15). We have to vary the Maxwell action with

respect to the inverse metric. We thus have

δS =− 1

4

∫
d4xδ

(√
−ggµρgνσFµνFρσ

)
, (5.12)

=− 1

4

∫
d4x
√
−g
[(

2FµρF
ρ
ν −

1

2
gµνFρσF

ρσ

)
δgµν

]
. (5.13)

There is no contribution from the variation of the field strength because due to Eq. (5.3) it is independent
of the metric. Then, the energy-momentum tensor reads

Tµν = FµρF
ρ
ν −

1

4
gµνFρσF

ρσ. (5.14)

Contracting the two indices, we obtain the trace

T µµ = 0. (5.15)

(e) Consider some matter action Lmatter(gµν ,Φ
a), with some set of matter fields Φa, where the index

a enumerates the fields. These can be vectors, spinors, scalars, apples . . . If we apply an infinitesimal
Weyl transformation such that Ω2 = 1 + δω, the action changes as

δS =

∫
d4x
√
−g
(
−1

2
Tµνδg

µν +
δLmatter

δΦa
δΦa + total derivatives

)
. (5.16)

Applying the equations of motion, removing total derivatives and plugging in δgµν = −gµνδω, we obtain
the transformation

δS =
1

2

∫
d4x
√
−gT µµδω. (5.17)

Hence, the change in the action vanishes iff T µµ = 0. In plain English, a theory is Weyl invariant if the
energy-momentum tensor has vanishing trace.

Exercise 6: Impact of general nonminimal coupling on particle production

Motivation: Last week, we found that minimally coupled scalars are generically produced in FLRW backgrounds.
This does not happen for conformally coupled scalars. Here we estimate what happens for general nonminimal
coupling.

Consider a nonminimally coupled massive scalar whose action is given by Eq. (4.1).



(a) Compute the equation of motion for the scalar in an FLRW background, and redefine the
field φ→ χ = a(η)φ such that the friction term (∼ φ′) disappears. You should obtain that
the nonminimal coupling gives you an additional contribution to the effective mass.

Sanity check: What happens in the limit ξ → 1/6, m→ 0?

(b) Assume that the background is changing slowly and consider modes with small wavelength.
Find out when these two assumptions are actually equivalent.

(c) Start in the adiabatic vacuum at some conformal time η = η0, namely |0ad,η0〉, and look at
the resulting state at a time η = η0 + ∆η. Try to get at some qualitative properties of the
average particle-number density 〈0ad,η0|nk|0ad,η0〉(η0 + ∆η) without calculating it. Sketch
how you expect the particle-number density to depend on ξ. (Hint: Keep in mind that
particles are not produced if the background is static, and that in terms of some complex
time-dependent Bogolyubov parameter βk(η)

〈0ad,η0|nk|0ad,η0〉(η) = |βk(η)|2. (6.1)

You can find inspiration in exercise 1.)

The scalar satisfies the equation of motion

(�−m2 − ξR)φ = 0. (6.2)

Specifying to a flat FLRW spacetime in the conformal slicing (with conformal time η as time) and a
field

φ =

∫
d3k

(2π)3/2
φk(η)e−ikx, (6.3)

the equation of motion takes the form

φ′′k + 2
a′

a
φ′ +

(
k2 +m2a2 + ξR

)
φk = 0. (6.4)

Defining a new field χ ≡ φa, and correspondingly χk = φka, we obtain field equation

χ′′k +

[
k2 + a2m2 + 6a2

(
ξ − 1

6

)
R

]
χk ≡ χ′′k + ω2

k(η)χk = 0, (6.5)

where we used that in spatially flat FLRW R = 6a′′/a3. Therefore, we find a modification to the effective
mass, which, including nonminimal coupling, now reads

m2
eff = a2

[
m2 + 6

(
ξ − 1

6

)
R

]
. (6.6)

When ξ = 1/6, m = 0, the effective mass vanishes and the field equation for χ becomes that of a massless
scalar in Minkowski spacetime.

(b) If the background is changing slowly, we have (see exercise 3)

ω′k
ω2
k

� 1. (6.7)

For modes with small wavelength k2 � m2
eff during the whole evolution considered such that

ωk ' k +
m2

eff

2k
. (6.8)



Thus, for its time derivative, we obtain
ω′k
ω2
k

' (m2
eff)′

2k3
. (6.9)

Thus, for the adiabatic approximation not to apply to small-wavelength modes, the scale factor has to
satisfy

a2(m2 + (6ξ − 1)R)� k2, 2Ha2(m2 + (6ξ − 1)R) + a2(6ξ − 1)R′ ≥ k3 (6.10)

over the whole evolution (here H = a′/a). Thus, (neglecting unexpected cancellations) either H � k
or a2R′ ∼ H′′ + 2H′H ≥ k3/a2, while at the same time a2R ∼ H′ + H2 � k2. In other words, some
derivatives of the scale factor have to be very large, while others have to be very small. Unless this is
the case (which is rarely so, especially when evolving over longer times), large modes experience a slowly
varying background.

(c) Let’s start with the hint: The expected number density will be the squared norm of some complex
Bogolyubov coefficient βk. We have to estimate that coefficient. There is no particle creation if there is
no time evolution. Thus, βk at first order has to be a function of ω′k/ω2

k, the first kind of correction in the
adiabatic approximation. Besides, it has to have an oscillating component which stems from the mixing
of positive- and negative-frequency modes. According to the WKB-approximation, oscillating phases
generically have arguments proportional to

∫
ωk(η

′)dη′. Inspired by Eq. (1.4), we take the oscillating
function to be a sinus. Besides, the particle density is the integrated number of created particles (they
don’t just disappear from one moment to the other) – by dimensional analysis the integral has to be
balanced by an additional power of ωk. Thus, we arrive at the estimate for the Bogolyubov coefficient

βk =a

∫ η0+∆η

η0

dη̄
ω′k(η̄)

ωk(η̄)
sin

[
b

∫ η̄

η0

dη̃ωk(η̃)

]
, (6.11)

for a complex coefficient a and a real coefficient b, both of which are expected to be of order 1 in absolute
value. Note how close this estimate is to Eq. (1.4) even though the evolution there is not adiabatic (the
box-like behaviour produces delta-functions in ω′k which definitely break the adiabatic approximation).
At large k, we obtain

βk ' a

∫ η0+∆η

η0

dη̄
m2′

eff(η̄)

k2
sin

[
b

∫ η̄

η0

dη̃ωk(η̃)

]
. (6.12)

Say ∆η is small enough such that the adiabatic approximation holds integrated over the whole evolution
(see Eq. (3.30)). Then, we can take the effective mass out of the integral and obtain

βk 'a
m2′

eff(η0)

k2

∫ η0+∆η

η0

dη̄ sin [b(η̄ − η0)ωk(η̃)] , (6.13)

'am
2′
eff(η0)

k3
[1− cos(b∆ηωk(η0))] . (6.14)

The number density then reads

〈0ad,η0|nk|0ad,η0〉 = 4|a|2 |m
2′
eff |2

k4
sin4(b∆ηωk(η0)/2). (6.15)

Note that, here, the oscillating function was a choice. Depending on the specific situation, it can be
more complicated. However, the qualitative behaviour (oscillating, proportional to |m2′

eff |2/k4) is rather
robust, unless a = 0 which would imply that the corrections are of higher order. In particular, at a fixed
moment in time, the scaling with the nonminimal-coupling parameter is like

〈0ad,η0|nk|0ad,η0〉 ∼ |6ξ − 1 + const linear in m2|2. (6.16)

Thus, the number density scales quadratically with ξ. Of course, if m = 0, the particle-number density
vanishes for ξ = 1/6. As an example we plot the scaling |6ξ − 1 + 6m2| in fig. 1.



Figure 1: Exemplary scaling of number density with nonminimal-coupling parameter and mass. The
exact value of 〈nk〉 as it is plotted here has no physical meaning because we did not derive an exact
result.
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Exercise 7: Uniformly accelerated observers aka Rindler space

Motivation: Before we explore how the Minkowski vacuum appears to uniformly accelerated observers, we first need
to understand the dynamics of accelerated motion in special relativity. As we’ll find out, this brings up some of the
exciting concepts usually reserved for general relativity.

First things first: For this and the following exercise, we do not need any general relativity.
In the end, we’ll just use a weird coordinate system to parametrize Minkowski spacetime. Don’t
believe the detractors who say special relativity can’t describe non-inertial motion!
For simplicity, let’s start in two-dimensional Minkowski space described in terms of Cartesian
coordinates such that

ds2 = −dt2 + dx2 = ηµνdx
µdxν . (7.1)

We want to describe a timelike observer moving along a uniformly accelerated trajectory. Pa-
rameterize the curve by the proper time of the observer τ. We denote their four-velocity, i. e. the
tangent vector along the curve, as uµ with norm uµuµ = −1. We can, thus, define the proper
acceleration as

aµ = uν∇νu
µ =

duµ

dτ
+ Γµνρu

νuρ, (7.2)

which we readily identify as the left-hand side of the geodesic equation. As expected, if aµ 6= 0,
motion is not geodesic/inertial.

(a) Show that the proper acceleration is spacelike. (Hint: Work in Cartesian coordinates)

(b) Assume that the acceleration is uniform. Then, the norm of the proper acceleration is
constant. Denote it as aµaµ ≡ a2 = const. Construct the unique four-velocity that yields
the correct norm for both the velocity and the acceleration. (Hint: Relative to an observer
at rest, constant acceleration is like a boost with time-dependent boost parameter.)

(c) Find a parametrization of the curve (γ(τ) = (t(τ), x(τ)), and show that uniformly accelerated
observers move on hyperbolae in spacetime, i. e. x2− t2 = a−2. (Hint: For the second part,
try to eliminate any explicit dependence on τ.)

(d) Find a coordinate system (η, ρ) such that the parabolic motion is realized by setting ρ =
a−1 = const. You should obtain

ds2 = −ρ2dη2 + dρ2. (7.3)

Show that the new coordinate system amounts to the rest frame of the accelerated particle.
(Hint: Think of an analogue of polar coordinates.)

Sanity check: Make sure that uµuµ = −1 continues to be the case in the new coordinate
system.



(e) For QFT (see next exercise), it is useful to coordinatize the space using the Rindler proper
time τ = a−1η, and the position coordinate ξ = a−1 log aρ. Show that the resulting metric
reads

ds2 = e2aξ(−dτ 2 + dξ2). (7.4)

Why could the metric be particularly interesting in this shape?

(f) Draw the Rindler trajectories in a Cartesian coordinate system for different values of a. What
happens in the limit a → ∞? Draw the corresponding limiting surface in your diagram as
well as light-cones (light rays=45◦-lines) emanating from points for which t > x. Can light
from these points reach accelerated observers? How do we interpret this result?

Bonus question: Do the Rindler coordinates cover the whole Minkowski space?

(g) How do we generalize to four dimensions? A short argument should be sufficient.

(a) In Cartesian coordinates, the Christoffel symbols vanish. Thus, we have

aµ =
duµ

dτ
. (7.5)

If we take the derivative with respect to τ of the norm of the four-velocity, we obtain

d(uµuµ)

dτ
= 2uµ

duµ

dτ
= 2uµaµ = 0. (7.6)

Thus, the proper acceleration is normal to the four-velocity. Since the four-velocity is timelike, the
proper acceleration has to be spacelike.

(b) A boost with rapidity η applied to a rest-frame four-velocity (uµ = (1, 0)) reads

uµ = (cosh η, sinh η). (7.7)

One can check that indeed uµuµ = − cosh2 η + sinh2 η = −1. Let’s make η = η(τ) time dependent to
indicate the acceleration. Then, the proper acceleration reads

aµ = η̇(sinh η, cosh η). (7.8)

Its norm reads
aµaµ = η̇2(cosh2 η − sinh2 η) = η̇2 = a2. (7.9)

In other words, up to an irrelevant integration constant η = aτ. Thus, the four-velocity reads

uµ = (cosh aτ, sinh aτ). (7.10)

(c) Integration of the four-velocity yields γ = (t(τ), x(τ)) = a−1(sinh aτ, cosh aτ). We can eliminate
any dependence on τ by considering the combination

x(τ)2 − t(τ)2 = a−2. (7.11)

This confirms that the motion traces a hyperbola. This is the Minkowski-space analogue of a circle: a
curve of constant proper distance from the origin.

(d) By analogy with spherical coordinates, we define the hyperbolic coordinates x′µ = (η, ρ), also
called Rindler coordinates,1

t = ρ sinh η, x = ρ cosh η. (7.12)

1The variable name η is chosen on purpose by a slight abuse of notation.



Then, uniformly accelerated motion simply amounts to ρ(τ) = a−1 = const. We will derive the
parametrization of η(t) below.

The Jacobian of the transformation from Cartesian coordinates to Rindler coordinates reads

∂xµ

∂x′ν
=

(
ρ cosh η ρ sinh η
sinh η cosh η

)
,

∂x′µ

∂xν
=

(
ρ−1 cosh η − sinh η
−ρ−1 sinh η cosh η

)
. (7.13)

Then, the metric reads

ds2 =gµνdx
µdxν (7.14)

=gµν
∂xµ

∂x′ρ
∂xν

∂x′σ
dx′ρdx′σ (7.15)

=g′µνdx
′µdx′ν (7.16)

=− ρ2dη2 + dρ2. (7.17)

In Rindler coordinates, the four-velocity of the uniformly accelerated observer reads

u =uµ∂µ, (7.18)

=uµ
∂x′ν

∂xµ
∂′ν |ρ=a−1,η=η(τ), (7.19)

=ρ−1 (cosh aτ cosh η − sinh aτ sinh η) ∂η

+ (cosh aτ sinh η − sinh aτ cosh η) ∂ρ|ρ=a−1,η=η(τ). (7.20)

We recover the expected form of the velocity if η(τ) = aτ such that

u = a∂η. (7.21)

Indeed, the velocity has no component along the spatial direction. In other words, this coordinate
system tracks the proper time of (this could have also been seen from η = aτ) and defines the rest frame
comoving with the uniformly accelerated observer.

The norm of the four-velocity then becomes

uµuνg′µν |ρ=a−1,η=aτ = −a2ρ2|ρ=a−1 = −1. (7.22)

(e) The differentials after the coordinate transformation read

dη = adτ, dρ = eaξdξ. (7.23)

Thus, the metric clearly reads
ds2 = e2aξ(dτ 2 − dxi2). (7.24)

In this form, the metric is conformally flat. This is useful especially when considering Weyl invariant
theories because those satisfy Cartesian-like equations of motion also for Rindler coordinates.

(f) I plot the trajectories of different Rindler observers in fig. 2. In the limit a→∞, the trajectories
asymptotically approach the light cone emanating from the origin which satisfies x = t. As light cones
do not cross in Minkowski spacetime, no light can reach the accelerated observers from points where
t > x. Such a surface is called a horizon. This resembles the event horizon of a black hole, just that
(in more than two dimensions) it’s infinitely large. Thus whatever happens to accelerating observers is
analogous to what happens to observers close to a black hole.

Having a closer look at the metric in Rindler coordinates (Eq. (7.17)), its determinant vanishes at
ρ = 0, i. e. at the horizon. This implies that there is a singularity there. As there is no singularity in
Minkowski spacetime in Cartesian coordinates, this has to be a coordinate singularity. Indeed, this is
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Figure 2: Trajectories of Rindler observers in Cartesian coordinates in two-dimensional Minkowski
spacetime. The trajectories for a = 1/n for n = 1, 2, 3, 4 are represented by blue dashed lines, while the
yellow line is approached in the limit a→∞.

the same coordinate singularity you have in the origin in polar coordinates. It also indicates that you
cannot describe Minkowski spacetime beyond the horizon in terms of Rindler coordinates as we defined
them. While it is possible to extend the coordinates to negative ρ such that the mirror image of the
region covered in fig. 2 can be described, the whole light-cone emanating from the origin requires a
modified coordinate system. In the rest of the sheet we will concentrate on the so-called Rindler patch,
i. e. the part ρ > 0.

(g) The uniformly accelerated observer is uniformly accelerated along one spatial direction. Without
loss of generality, we can assume this axis to be the z-axis (with Cartesian coordinates (t, x, y, z)) such
that the metric assumes the form

ds2 = −ρ2dη2 + dρ2 + dx2 + dy2. (7.25)

Exercise 8: Unruh effect

Motivation: Particle creation is not just an effect of curved spacetime. Accelerated observers in flat spacetime are
embedded into a thermal bath of particle-antiparticle pairs. Let’s find out how.

We want to quantize a massless Klein-Gordon field in two-dimensional Minkowski spacetime sliced
by the set of Rindler coordinates (τ, ξ), see Eq. (7.4) for the metric. The action for the massless
scalar reads

S = −1

2

∫
dx
√
−ggµν∇µφ∇νφ. (8.1)

The corresponding equation of motion for the scalar reads

�φ = gµν∇µ∇νφ = 0. (8.2)



We will quantize the solutions to this equation. This task is analogous to quantization in two-
dimensional FLRW spacetime – in FLRW you have a time-dependent conformal factor in the
metric. Now you have a position-dependent conformal factor in the metric.

(a) Express the equation of motion in Rindler coordinates (τ, ξ). The result should look analo-
gous to the equation of motion in Cartesian coordinates. Why is it so simple?

(b) Solve the equation of motion.

Next we need to define what particles and antiparticles are. By convention, we write down the
mode expansion in terms of orthonormal solutions as

φ =

∫ ∞
0

dω
(
aωvω + a†ωv

∗
ω

)
, (8.3)

where the creation and annihilation operators satisfy the usual commutation relations, and vω is
a set of orthonormal solutions of the equations of motion. We generically choose ω > 0 because
throughout this exercise, we only consider right-moving solutions. This is simpler, and including
left-movers wouldn’t change the result.
For those who haven’t done GR yet, the following may be a lot. If all this lingo
makes no sense to you, just skip to sub-exercise (d). On general curved backgrounds
(or backgrounds described by weird curvilinear coordinates), the space of solutions to the Klein-
Gordon equation possesses an inner product on hypersurfaces of constant time Σ (whatever crazy
time one may choose to work with). Given unitary time evolution along the normal vector to
the surfaces nµ (which is, of course, timelike and normalized), this inner product is conserved,
thus allowing to find orthonormal solutions for all times. The Klein-Gordon inner product for
d+ 1-dimensional backgrounds reads

(v1, v2) = −i
∫

Σ

ddx
√
h (v∗1n

µ∇µv2 − v∗2nµ∇µv1) , (8.4)

where the integral is over a surface of constant time, and h denotes the determinant of the induced
metric.

(c) Try to do this exercise before reading on: What is the dimensionality of the hyper-
surface and what are h and nµ for 1 + 1-dimensional Minkowski spacetime sliced by Rindler
time? Construct the Klein-Gordon inner product.

Orthonormal solutions vω satisfy the conditions

(vω, vω′) = δ(ω − ω′), (vω, v
∗
ω′) = 0. (8.5)

(d) The Klein-Gordon inner product you should have obtained in sub-exercise (c) reads

(v1, v2) = −i
∫ ∞
−∞

dξ(v∗1∂τv2 − v2∂τv
∗
1). (8.6)

Show that the (by convention) right-moving negative-frequency solutions

vω =
eiω(τ−ξ)
√

4πω
(8.7)

are orthonormal (recall that ω > 0). Thus, we can express the quantized field in terms of
its mode expansion

φ =

∫ ∞
0

dω√
4πω

[
aωe

iω(τ−ξ) + a†ωe
−iω(τ−ξ)] . (8.8)



The Klein-Gordon inner product helps us with more than just constructing the mode expansion.
It can also give us the overlap between modes of different mode expansions.
If you remember our last exercise sheet, distinct bases of mode functions are related by Bogolyubov
coefficients. The right-moving, negative-frequency Cartesian mode functions read

uk =
eik(t−x)

√
4πk

, (8.9)

for some k > 0 (again we only consider right-moving modes) such that the Cartesian mode
expansion reads

φ =

∫ ∞
0

dk
(
bkuk + b†ku

∗
k

)
, (8.10)

with creation and annihilation operators bk, b†k. The inertial vacuum (i. e. the vacuum from the
Cartesian mode expansion) |0inert〉 is defined such that it is annihilated by bk.
The inertial mode functions can be expressed in terms of the Rindler mode functions as

uk =

∫ ∞
0

dω (αkωvω + βkωv
∗
ω) , (8.11)

for some Bogolyubov coefficients αkω, βkω. Make sure you understand why this works. Thus,
generically they mix positive- and negative-frequency Rindler modes: The inertial vacuum is not
necessarily empty for non-inertial observers. As we learned last week, we can express the one
vacuum in terms of states of a different basis by computing the Bogolyubov coefficients. Let’s see
how this works exactly.

(e) Using the orthogonality relations in Eq. (8.5), show that

αkω = (vω, uk), βkω = (v∗ω, uk). (8.12)

(f) Last week, we found in an analogous problem that the vacuum state in one basis may be
populated with particles in a different one, and that the particle-number density depends
on the Bogolyubov coefficients. Therefore, show that

αkω =
ω

2π
√
ωka

a
iω
a k−

iω
a e

πω
2a Γ

(
iω

a

)
, (8.13)

βkω =− ω

2π
√
ωka

a−
iω
a k

iω
a e−

πω
2a Γ

(
−iω

a

)
. (8.14)

(Hint: Keep in mind that φ is a scalar field and transforms as such. You may use that the
Laplace transform of a power is related to the Gamma function as∫ ∞

0

zs−1e−λzdz = λ−sΓ(s), (8.15)

and analytically continue to complex s and λ.)

Work smarter, not harder. Do you have to compute both αkω and βkω individually or
are they somehow related?



(g) Show that the number density in the inertial vacuum can be expressed as (Note that
this expression was ordered wrongly in the original sheet. This mistake was
propagating through the exercise.)

nω = V −1〈0inert|a†ωaω|0inert〉 =

∫ ∞
0

dk|βkω|2, (8.16)

with the volume of the spacelike slice V, which as seen in earlier exercises, is required for
regularization.

(h) The integral in Eq. (8.16) is divergent and would have to be regularized. Instead of evaluating
the integral explicitly, we use a trick. First show that

nω = −1 +

∫ ∞
0

dk|αkω|2. (8.17)

Next, having a closer look at Eqs. (8.13) and (8.14), express βkω in terms of αkω. This should
allow you to compute nω without integrating to obtain

nω =
1

e
2πω
a − 1

. (8.18)

Interpret this result: What type of distribution is this?

(a) In Rindler coordinates, the equation of motion reads

(∂2
τ − ∂2

ξ )φ = 0. (8.19)

This equation is so simple just because the massless scalar is Weyl invariant in two dimensions. Thus,
we can transform away the conformal factor without implications for the scalar. This is fully analogous
to the conformally coupled scalar and the Maxwell field in four dimensions on the last sheet.

(b) Solutions to the equation of motion Eq. (8.19) are equivalent to the Cartesian solution. Thus,
the most general solution reads

φ = Aeiω(τ+ξ) +Beiω(τ−ξ) + Ce−iω(τ+ξ) +De−iω(τ−ξ), (8.20)

for some complex constants A, B, C and D. That φ is a real scalar imposes the constraints

C = A∗, D = B∗, (8.21)

such that we obtain the general solution

φ = Aeiω(τ+ξ) +Beiω(τ−ξ) + h. c. (8.22)

Note here that the direction of motion is encoded in the sign of ξ such that generically ω ≥ 0.
(c) The hypersurface is one-dimensional, i. e. a line. As shown in exercise 7 (d), the normal equals

the Rindler velocity n = u = ρ−1∂η = e−aξ∂τ , and the induced "metric" on the line is ds2
(1) = e2aξdξ2, so

h = e2aξ. Thus, the factors from the determinant of the induced metric and the normal vector cancel,
and the Klein-Gordon inner product reads

(φ1, φ2) = −i
∫ ∞
−∞

dξ(φ∗1∂τφ2 − φ2∂τφ
∗
1). (8.23)



(d) For the negative-frequency solutions Eq. (8.7), we obtain the inner products

(vω, vω′) =
ω + ω′

4π
√
ωω′

e−i(ω−ω
′)τ

∫ ∞
−∞

dξei(ω−ω
′)ξ, (8.24)

=
ω′ + ω

2
√
ωω′

e−i(ω−ω
′)τδ(ω − ω′), (8.25)

=δ(ω − ω′), (8.26)

(vω, v
∗
ω′) =

ω + ω′

4π
√
ωω′

e−i(ω+ω′)τ

∫ ∞
−∞

dξei(ω+ω′)ξ, (8.27)

=
ω′ + ω

2
√
ωω′

e−i(ω+ω′)τδ(ω + ω′), (8.28)

=0 (8.29)

as long as ω, ω′ > 0.
(e) We start on the right-hand side of Eq. (8.12) and show that it equals the left-hand side:

(vω, uk) =

∫ ∞
0

dω′ [αkω′(vω, vω′) + βkω′(vω, v
∗
ω′)] , (8.30)

=

∫ ∞
0

dω′αkω′δ(ω − ω′), (8.31)

=αkω. (8.32)

Analogously, we obtain

(v∗ω, uk) =

∫ ∞
0

dω′ [αkω′(v
∗
ω, vω′) + βkω′(v

∗
ω, v

∗
ω′)] , (8.33)

=

∫ ∞
0

dω′βkω′δ(ω − ω′), (8.34)

=βkω. (8.35)

(f) The Cartesian negative-frequency solution in Rindler coordinates reads

uk =
eia
−1keaξ(sinh aτ−cosh aτ)

√
4πk

(8.36)

=
e−ia

−1ke−a(τ−ξ)

√
4πk

. (8.37)

Thus, their overlap with the Rindler negative-frequency solutions reads

(vω, uk) =
1

4π
√
ωk

∫ ∞
−∞

dξ(ω + kea(ξ−τ))e−i(ω(τ−ξ)+ k
a
e−a(τ−ξ)), (8.38)

=
1

4π
√
ωk

∫ ∞
−∞

dV (ω + ke−aV )e−i(ωV+ k
a
e−aV ), (8.39)

where V = τ − ξ. We now introduce a new variable

z = ke−aV . (8.40)

Then, the measure becomes

− dz

az
= dV. (8.41)



Thus, we massaged the integral into the shape

(vω, uk) =
1

4π
√
ωk

∫ ∞
0

dz

az
(ω + z)

(z
k

)iω/a
e−

iz
a , (8.42)

=
k−

iω
a

4π
√
ωka

∫ ∞
0

dz
[
z
iω
a

(
1 +

ω

z

)]
e−

iz
a . (8.43)

Here, we apply the definition of the Γ-function as Laplace transform of a power law∫ ∞
0

zs−1e−λzdz = λ−sΓ(s), (8.44)

which analytically continued to λ = i/a and for s = iω/a yields∫ ∞
0

z
iω
a
−1e−

iz
a dz =

(
i

a

)− iω
a

Γ

(
iω

a

)
= a

iω
a e

πω
2a Γ

(
iω

a

)
. (8.45)

Thus, the Bogolyubov coefficient becomes

αkω =
1

4π
√
ωka

a
iω
a k−

iω
a e

πω
2a

[
ωΓ

(
iω

a

)
− iaΓ

(
1 +

iω

a

)]
, (8.46)

=
ω

2π
√
ωka

a
iω
a k−

iω
a e

πω
2a Γ

(
iω

a

)
. (8.47)

The Bogolyubov coefficient βkω is derived from v∗ω = iv−ω. Thus, keeping in mind that v∗ω appears on
the left entry of the Klein-Gordon inner product in Eq. (8.12) and is therefore complex conjugated, we
immediately obtain

βkω =− iαk−ω, (8.48)

=− ω

2π
√
ωka

a−
iω
a k

iω
a e−

πω
2a Γ

(
−iω

a

)
. (8.49)

(g) First we have to express the operators aω, a†ω in terms of the operators bk, b†k.We find this relation
by expressing

φ =

∫ ∞
0

dk
(
bkuk + b†ku

∗
k

)
, (8.50)

=

∫ ∞
0

dk

∫ ∞
0

dω
[
bk(αkωvω + βkωv

∗
ω) + b†k(α

∗
kωv
∗
ω + β∗kωvω)

]
, (8.51)

=

∫ ∞
0

dω

∫ ∞
0

dk
[
(αkωbk + β∗kωb

†
k)vω + (βkωbk + α∗kωb

†
k)v
∗
ω

]
. (8.52)

It follows that
aω =

∫ ∞
0

(
αkωbk + β∗kωb

†
k

)
dk. (8.53)

Thus, we obtain for the particle-number density

nω =V −1〈0inert|a†ωaω|0inert〉 (8.54)

=V −1

∫ ∞
0

dk

∫ ∞
0

dk′β∗kωβ
∗
k′ω〈0inert|bkb†k′|0inert〉, (8.55)

=V −1

∫ ∞
0

dk|βkω|2. (8.56)



(h) We could have equivalently expressed the number density as

nω =V −1〈0inert| − δ(0) + aωa
†
ω|0inert〉, (8.57)

=V −1

(
−δ(0) +

∫ ∞
0

dk

∫ ∞
0

dk′α∗kωαk′ω〈0inert|bkb†k′|0inert〉
)
, (8.58)

=V −1

(
−δ(0) +

∫ ∞
0

dk|αkω|2
)
. (8.59)

You should be used to the pesky δ(0)s now. Cancel infinity with infinity as if there was no tomorrow,
wave some hands, and we obtain

nω = −1 + V −1

∫ ∞
0

dk|αkω|2. (8.60)

This is fine.
We see that the Bogolyubov coefficients are related as

αkω = −e
πω
a β∗kω. (8.61)

Thus, we can express the particle number as

nω =− 1 + e
2πω
a V −1

∫ ∞
0

dk|αkω|2, (8.62)

=− 1 + e
2πω
a nω. (8.63)

If we solve for the particle-number density, we obtain (trumpets please!)

nω =
1

e
2πω
a − 1

. (8.64)

This is a Planckian distribution. Thus, the field is in a thermal state – a uniformly accelerated observer
is surrounded by a thermal bath of temperature T = a/2π (in units in which kB = 1). The vacuum,
thus, really has a temperature to non-inertial observers.

Extra material 1: Rindler approximation to horizons

The Rindler horizon can be understood as the first approximation of the geometry experienced
by an observer hovering above a general horizon. Here’s how:
Consider a general static spherically symmetric spacetime in Schwarzschild-like coordinates
(t, r, φ, θ) such that

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdφ2

)
, (9.1)

for some function f(r). Let’s assume that there is some r = rh at which f(rh) = 0, f ′(rh) 6= 0, im-
plying that there is some (coordinate) singularity indicating a non-extremal horizon. Considering
observers at r > rh, we can approximate the metric close to the horizon by choosing coordinates
ε = r − rh and expanding in ε to leading order such that

ds2 = −f ′(rh)εdt2 +
dε2

f ′(rh)ε
+ r2

h

(
dθ2 + sin2 θdφ2

)
. (9.2)

Next, we introduce a new radial coordinate ρ which trivializes the radial part of the metric (i. e.
the proper distance from the horizon) such that dρ = dε/

√
f ′(rh)ε, i. e. ρ = 2

√
ε/f ′(rh). As a



result, we obtain

ds2 = −f
′(rh)2

4
ρ2dt2 + dρ2 + r2

h

(
dθ2 + sin2 θdφ2

)
. (9.3)

Here, the (t, r)-part amounts exactly to the two-dimensional Rindler metric in terms of the proper
time (in the language of exercise 7: τ) of the uniformly accelerated observer. The acceleration
reads

a =
f ′(rh)

2
= κ, (9.4)

where κ is usually called the surface gravity of the horizon (if gravity was still a force, this would
be the force experienced on the horizon, therefore the terminology).
Schwarzschild-like time is usually defined with respect to a static observer (who is inertial only
in asymptotically flat spacetimes in the limit r → ∞). Here, we expanded close to the horizon,
so the static observer has to be statically hovering above the horizon. This requires the radial
acceleration Eq. (9.4).
In a nutshell, this means that

1. Any spacetime which is static, spherically symmetric and has a non-extremal horizon is
approximated by Rindler space in the near-horizon region.

2. The Unruh effect may also apply to other kinds of horizons (chrchrm Hawking effect
chrchrm). Indeed, consider the vacuum as seen by an inertial observer falling into a
Schwarzschild black hole. If we plug in f = 1 − 2M/r, we obtain the temperature the
hovering observer will experience, namely

T =
1

8πM
. (9.5)

We will see in a bit that this is exactly the Hawking temperature of a Schwarzschild black
hole. Indeed, this is a way to derive the Hawking temperature of a general spherically
symmetric black hole as

T =
κ

2π
=
f ′(rh)

4π
. (9.6)

3. If there is no other length scale in the model κ ∝ r−1
h (amounting to wavelengths of horizon

size), so the temperature is generically very low for large (e. g. astrophysical) black holes.

Exercise 9: Inflation

Motivation: In the lecture we were introduced to early-universe inflation. For those who have not seen inflation in
a different course yet, this exercise should be like a very short primer. For more info, see this review.

This exercise is divided into a motivational part and a computational part.
Motivational part: Why would we want a period of accelerated expansion in the very early
universe? Let’s estimate. We know that the sky is made up of N ∼ 104 patches which have never
been in causal contact during the history of the universe if we run back ordinary FLRW evolution
only with radiation and matter. If they haven’t been in causal contact, we would expect them
to be uncorrelated so their average temperature fluctuation x ≡ δT/TCMB should be random, say
Gaussian distributed around 0.
The important bit about the Gaussian is its standard deviation. Since x is dimensionless and
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there’s no physical scale to set its size, a natural guess is that its standard deviation is ∆x ∼ O(1).
In CMB measurements, correlations of x across the sky are encoded in the coefficients of the
multipole expansion of the power spectrum a`m. All of these coefficients have been measured to
satisfy

|a`m| ≤ 10−5. (9.7)
Roughly, each of the first N multipole coefficients captures independent information from each
causally disconnected patch. Thus, we can interpret the inequality Eq. (9.7) as measurements of
x across the N independent patches.

(a) Compute the probability that all of the first N multipoles satisfy the inequality Eq. (9.7) if
they are all Gaussian distributed around 0 with standard deviation ∆a`m = 1. You should
obtain something overwhelmingly tiny.

(b) This has been one of the main original arguments in favour of introducing inflation: The
probability of all this correlation being there randomly (the temperature fluctuations being
so small everywhere) is incomprehensibly small, so the patches must have been in contact
after all. Inflation brings the disconnected regions into causal contact in the past. Try to
find weaknesses of this argument.

Next we get to the technical part. The usual way to go in inflation is to propose a model
usually containing GR plus additional fields, which lead to accelerated expansion. This accelerated
expansion implies that many areas which appear not to be causally connected now actually were
during inflation. Let’s start with a single minimally coupled scalar field φ, the inflaton – the
simplest and most common type of model. The action reads

S =

∫
dx
√
−g
(
−m

2
P

2
R− 1

2
∇µφ∇µφ− V (φ)

)
, (9.8)

with the Planck mass mP, the Ricci scalar R and a potential V (φ). Inflation is usually set in an
FLRW background in comoving coordinates such that

ds2 = −dt2 + a(t)2d~x2, (9.9)

with the scale factor a(t). Then, as you have already derived, the scalar satisfies the equation of
motion

φ̈+ 3Hφ̇+ V ′(φ) = 0, (9.10)
with the Hubble parameter H = ȧ/a. Besides, the cosmological principle requires the scalar, too,
to only depend on time, i. e. ~∇φ = 0.
Slow-roll inflation occurs, when the potential energy dominates over the kinetic energy – then, the
scalar does not really change and the scalar contribution to the action is approximately constant.
Thus, like a cosmological constant it leads to de Sitter-like exponential expansion for some time
in the very early universe. Let’s make this statement more precise.

(c) Compute the stress energy tensor of the scalar. For a perfect fluid, the stress energy tensor
equals

T µν = (ρ+ p)uµuν + pgµν , (9.11)
with the energy density ρ and the pressure p and the four-velocity of the fluid u = uµ∂µ
which in comoving coordinates equals u = ∂t. Show that

ρ =
1

2
φ̇2 + V (φ), (9.12)

p =
1

2
φ̇2 − V (φ). (9.13)



The Friedmann equations read

H2 =
ρ

3m2
P

,
ä

a
= −ρ+ 3p

2m2
P

. (9.14)

Thus, we obtain accelerated expansion if the equation-of-state parameter of the perfect fluid w
satisfies

w =
p

ρ
< −1

3
. (9.15)

Let’s make precise what it means to be close to de Sitter expansion.

(d) Show that we can express the second Friedmann equation as

ä

a
= H2(1− ε), (9.16)

where

ε ≡ − Ḣ

H2
. (9.17)

(e) Express ε in terms of w to obtain

ε =
3

2
(w + 1) . (9.18)

Verify that accelerated expansion occurs for ε < 1. (Hint: Perfect fluids satisfy the continuity
equation ρ̇ = −3H(ρ+ p).)

The dimensionless ε is the first slow-roll parameter. If ε = 0, the universe is undergoing exact de
Sitter expansion (then, H is constant because w = −1 which amounts to a cosmological constant).
So for near-de Sitter expansion, we need ε� 1.

(f) Show that ε � 1 implies that φ̇2/2 � V (φ), i. e. indeed the kinetic energy is much larger
than the potential energy.

Besides, for the field to roll slowly enough, the scalar should not accelerate too strongly (ε should
not change very fast), a behaviour which is captured by the second slow-roll parameter (In an
earlier version of the assignment, the − sign was missing in the definition below.)

η ≡ − φ̈

Hφ̇
. (9.19)

In the slow-roll regime, η � 1. In the slow-roll regime, the two slow-roll parameters can be
expressed in terms solely in terms of the potential and its derivatives.

(g) Demonstrate that in the slow-roll regime, (In an earlier version of the assignment, the
Planck masses were missing in the below equation)

εV ≡
m2

P

2

(
V ′

V

)2

' ε, (9.20)

ηV ≡m2
P

V ′′

V
' η + ε. (9.21)



In the slow-roll regime, it’s sufficient to monitor εV and ηV .
Inflation ends when ε = 1. As the previous expansion was quasi exponential, it is useful to adapt
our measure of time accordingly. Therefore, we introduce the "e-fold" such that

dN = −Hdt, (9.22)

normalized such that at the end of inflation N = 0. Thus, considering that a ∼ eHt, at some N ,
the universe was smaller by a factor ∼ e−N than at the end of inflation.
Let’s get to observables. Everything that’s within the horizon at the end of inflation is gener-
ically observable to us and may leave an imprint on the CMB. This amounts to fluctuations
generated up to some N = N?, where depending on the model 40 ≤ N? ≤ 60. Observables are
generically evaluated at N? because that’s when the seeds of primordial fluctuations were sown.
The two most well-known CMB-observables area

• ∆2
s denotes the amplitude of spectrum of scalar fluctuations which has to be normalized as

∆2
s ∼ 10−9. For slow-roll inflation it reads

∆2
s '

1

24π2

V

m4
P

ε−1
V |N=N? . (9.23)

• r is the tensor-to-scalar ratio, i. e. the ratio of the amplitudes of tensor fluctuations (stem-
ming from GR’s spin-two part) and scalar fluctuations (stemming from the inflaton and
GR’s spin-zero part). Expressed in terms of the potential-derived slow-roll parameters it
reads

r = 16ε?V . (9.24)

Hereafter the superscript ? means that the respective quantity is evaluated at the effective
onset of inflation N?.

• ns is the scalar spectral index which you should have already seen in the lecture. It governs
the tilt of the power spectrum of scalar fluctuations towards red. Expressed in terms of the
potential-derived slow-roll parameters it reads (In an earlier version of the assignment
there was a wrong sign in the equation below.)

ns = 1 + 2η?V − 6ε?V . (9.25)

Now, we compute the observables for a simple example. Consider an inflaton with quadratic
potential

V =
m2

2
φ2. (9.26)

Assume that N? = 60, i. e. Inflation occurs, effectively, for 60 e-folds.

(h) Compute the value of the field at the end of inflation. From this derive φ?, i. e. the field
value at N = N?.

(i) Fix the mass m such that ∆s ∼ 10−9.

(j) Compute r and ns. Compare with constraints on r from Planck data and constraints on ns

from the latest ACT data. Is the model viable?
aYou can find the full derivation of these quantities in the review mentioned above.

https://arxiv.org/pdf/2010.01139
https://arxiv.org/pdf/2503.14452
https://arxiv.org/pdf/0907.5424


(a) The probability to obtain a value of 10−5 for the absolute value of a parameter that is Gauss
distributed around 0 with standard deviation 1 reads

p =
1√
2π

∫ 10−5

−10−5

e−
x2

2 = Erf(10−5) ∼ 10−5. (9.27)

The total probability for this to happen for 104 parameters reads

ptot = p104 = (10−5)104 , (9.28)

which is really a remarkably small number.
(b) In the preceding exercise, we assumed what we would expect would be a unbiased distribution

over completely uncorrelated patches in the sky. There are a number of problems with such arguments:

• What is an unbiased distribution? By using a Gaussian, we assume the patches to be entirely
uncorrelated. But even if they had not been in causal contact in the past, they could still be
correlated somehow. We’ve imposed a flat prior over possibilities without strong justification. In
other words, a flat probability measure is still a probability measure.

• Is this a problem of theory or initial conditions? We can find a theory like inflation, which
explains the small temperature fluctuations dynamically. Yet, the laws of physics are formulated in
terms of differential equations. Differential equations propagate initial data — they don’t generate
it. So inflation just shifts the fine-tuning problem to earlier times.

• Why exactly ∆x = 1? It’s natural to expect dimensionless quantities to be of order 1, but that’s
a guess, not a rule. If we’d assumed ∆x ∼ 10−11, the probability of the observed fluctuations
would be close to one. The argument is extremely sensitive to arbitrary assumptions.

• Why inflation? The problem is to explain correlations between regions that seem causally dis-
connected. Inflation is one way to do that, but not the only way. Any mechanism that establishes
correlations — even without causal contact — could in principle do the job. Given how little we
know about the early universe, this argument allows for a lot of wiggle room.

That this argument (as well as other arguments which originally motivated inflation) is questionable
does not mean that inflation in and of itself is equally questionable. Inflationary models predominantly
make the prediction of a slightly reddish spectrum (scalar spectral index Ns close to but below one),
which has been measured to be the case, see exercise (j). Yet, other very-early-universe models also
make this prediction, so this is rather a statement on how small the amount of information is we have
about the very early universe.

(c) The stress energy tensor reads

Tµν ≡ −2
δS

δgµν
= ∇µφ∇νφ−

1

2
gµν∇ρφ∇ρφ− gµνV. (9.29)

As the scalar is just a function of time, we obtain

T00 =
φ̇2

2
+ V, (9.30)

Tij =a2

(
φ̇2

2
− V

)
. (9.31)



Thus, considering that u = ∂t in comoving coordinates, we obtain the density and pressure

ρ =
φ̇2

2
+ V, (9.32)

p =
φ̇2

2
− V. (9.33)

(d) We can write the derivative of the Hubble parameter as

Ḣ =
ä

a
−H2. (9.34)

Regrouping, we obtain
ä

a
=

(
Ḣ

H2
+ 1

)
H2 = H2(1− ε). (9.35)

(e) We need the Friedmann equations to express ε in terms of the equation-of-state parameter. The
time derivative of the first Friedmann equation yields

Ḣ =
ρ̇

6m2
PH

. (9.36)

Plugging in the continuity equation
Ḣ = −ρ+ p

2m2
P

. (9.37)

Then, we can plug into the definition of ε :

ε =
3(ρ+ p)

2ρ
=

3

2
(w + 1). (9.38)

Indeed, when ε < 1, w < −1/3 so the expansion is accelerated.
(f) According to Eq. (9.18) the regime 0 < ε � 1 amounts to the regime −1 < w � 1/3. Plugging

in Eqs. (9.12) and (9.13), we obtain

− 1 ≤
1
2
φ̇2 − V

1
2
φ̇2 + V

=

1
2
φ̇2

V
− 1

1
2
φ̇2

V
+ 1
� −1

3
. (9.39)

The value −1 is realized for φ̇ = 0. Thus, deviations from w = −1 are small if

1
2
φ̇2

V
� 1. (9.40)

To make this more explicit, we can expand

w = −1 +
φ̇2

V
. (9.41)

(g) In the slow-roll regime, we can approximate ε as

ε =
3(p+ ρ)

2ρ
=

3φ̇2

2( φ̇
2

2
+ V )

' 3φ̇2

2V
, (9.42)



The equation of motion for the scalar approximately equals

3Hφ̇+ V ′ ' 0, (9.43)

while the first Friedmann equation reads

H2 ' V

3m2
P

. (9.44)

Plugging in both equations, we obtain

ε ' 3V ′2

2H2V
' m2

P

2

(
V ′

V

)2

≡ εV . (9.45)

Additionally, the second slow-roll parameter becomes

η = − φ̈

Hφ̇
. (9.46)

Taking a time-derivative of the scalar-field equation, i. e. Eq. (9.43),

3Ḣφ̇+ 3Hφ̈+ V ′′φ̇ ' 0. (9.47)

Thus, we can replace φ̈ to obtain

η '
Ḣ + V ′′

3

H2
' −ε+m2

P

V ′′

V
≡ −ε+ ηV . (9.48)

Thus, we obtain
ηV = η + ε. (9.49)

(h) At the end of inflation, we have

εV (φend) =
m2

P

2

(
V ′(φend)

V (φend)

)2

=
2m2

P

φ2
end

= 1. (9.50)

Thus, the field value at which inflation ends equals φend =
√

2mP. Using the definition of the e-fold

N(φ) =

∫ t

tend

Hdt. (9.51)

Yet, during slow-roll inflation, we can express H as a function of φ and change the integration to
dt = φ̇−1dφ ' −3Hdφ/V ′.

Therefore, the integration of time becomes

N(φ) =

∫ φ

φend

3H2

V ′
dφ '

∫ φ

√
2mP

V

m2
PV
′dφ =

∫ φ

√
2mP

φ

2m2
P

dφ =
1

4

(
φ2

m2
P

− 2

)
. (9.52)

Thus, we can express φ? in terms of N? as

φ? =
√

4N? + 2mP. (9.53)

At N? = 60 we obtain φ? =
√

242mP ' 16mP.
(i) The first slow-roll parameter for the quadratic potential is given in Eq. (9.50). Thus, the amplitude

of the scalar fluctuations reads
∆2

s '
m2φ4

?

96π2m6
P

=
2422

96π2

m2

m2
P

. (9.54)



Given that 2422/96π2 ' 62 ∼ O(10), and ∆2
s ∼ 10−9, we obtain the mass

m ∼ 10−5mP ∼ 1014GeV. (9.55)

Considering that H amounts to the energy scale of inflation, and H ∼ m, inflation occurs at around
this scale.

(j) We can immediately compute the tensor-to-scalar ratio

r = 32
m2

P

φ2
?

=
32

242
' 0.1. (9.56)

For the scalar spectral index we need the second slow-roll parameter

ηV (φ?) =
2m2

P

φ2
?

=
1

121
' 0.008 = εV (φ?). (9.57)

Thus, the scalar spectral index equals
ns ' 0.967. (9.58)

Let’s compare to data. The latest ACT data predicts ns = 0.9709 ± 0.0038. Thus, the quadratic
model is well within error tolerance. Error bars amount to 1σ. A little bit more than 1σ does not imply
a tension. The value of r from Planck data, namely r < 0.044 at 3σ, cannot be accommodated in the
quadratic model for inflation, however. Indeed, quadratic inflation is in 4σ-tension with the Planck data
(and actually in even higher tension with newer data), and, therefore, ruled out.
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Exercise 10: Kerr black hole

Motivation: Real black holes spin. That twist adds a whole new layer of physics. Let’s dive in.

A rotating black hole cannot be static and spherically symmetric anymore. Instead it is axially
symmetric and stationary, i. e. it changes in time but this change is time-translation invariant.
This is the resulting metric:

ds2 =

(
1− 2GMr

ρ2

)
dt2 +

4GMar sin2 θ

ρ2
dtdφ− ρ2

∆
dr2

− ρ2dθ2 −
[
(r2 + a2)2 − a2∆ sin2 θ

] sin2 θ

ρ2
dφ2, (10.1)

where the constantsM and a = J/GM (with the angular momentum J) parametrize the geometry,
while ∆ = r2 − 2GMr + a2 and ρ2 = r2 + a2 cos2 θ.
In the following, we learn some of the key properties of this metric. The required computations can
become involved due to the complexity of the metric itself, so it may be advised to use symbolic
equation manipulation software like Mathematica or SageMath.

(a) Take the limit a → 0. Which geometry do you obtain? Do the same for the limit M → 0.
(Hint: You may have to apply coordinate transformations after the limit to properly identify
the resulting geometry. Another way to characterize a geometry (which may be simpler) is
to compute the corresponding curvature tensor. While ordinarily it is necessary to compute
curvature invariants, in this case the curvature tensor is sufficient.)

(b) Depending on the constant parameters, the metric has zero, one or two horizons. If they
exist, compute their radii (say r+ and r− for r+ > r−), and the parameter ranges corre-
sponding to the three cases. Which of these regimes are expected to be physical? (Hint:
For the Kerr metric, horizons and their properties can be read off the radial part of the
metric.)

(c) As for the Schwarzschild geometry, the singularities at the horizons are mere coordinate
singularities. Introducing a Tortoise coordinate

dr∗ =
r2 + a2

∆
dr, (10.2)

we can transform the time and angular coordinates to obtain

dv = dt+ dr∗, dφ̃ = dφ− a

∆
dr. (10.3)

Here the transformation φ → φ̃ is required so that the basis vectors ∂r and ∂φ remain
linearly independent close to the horizon. Show that the metric in the resulting set of
ingoing Eddington-Finkelstein coordinates (v, r, θ, φ̃) is regular at the outer horizon.



(d) A horizon-generating Killing vector is a Killing vector which is null on the horizon. Given
such a horizon-generating Killing vector χ, we can then define the horizon as the submanifold
constrained by the condition χ2 = 0. The surface gravity κ is defined such that

χν∇νχµ|r=r+ = κχν |r=r+ . (10.4)

What’s the left-hand side of this equation? What does it mean that the right-hand side is
non-zero?

Contrary to the Schwarzschild case, the horizon generating Killing vector for the outer
horizon is not simply ∂t. Instead, it reads χ = ∂t+ΩH∂φ with ΩH = a/(a2+r2

+). Demonstrate
that the surface gravity at the outer horizon equals

κ =
r+ − r−

2(r2
+ + a2)

. (10.5)

This amounts to the acceleration required to hover on top of the outer horizon. What does
this mean for the vacuum state defined by an observer inertially falling into the hole? (Hint:
Turn the vector equation into a scalar equation by projecting on a vector. Note that on the
horizon ∂φ|r=r+ = ∂φ̃|r=r+.)

(e) Compute the surface gravity in the limit a → GM. Borrowing an analogy with the third
law of thermodynamics, what do we learn about trying to spin up a black hole until it is
extremal? Indeed one can prove the answer to this problem in full generality in general
relativity – the result is called the third law of black hole mechanics.

(a) In the limit a→ 0

∆ = r2 − 2GMr, ρ2 = r2. (10.6)

Thus, the metric becomes

ds2 =

(
1− 2GM

r

)
dt2 − 1

1− 2GM
r

dr2 (10.7)

− r2dθ2 − r2 sin2 θdφ2, (10.8)

which is the Schwarzschild metric. This is in line with the fact that a represents the angular momentum
– a Schwarzschild black hole is the non-rotating version of a Kerr black hole.

In the limit M → 0

∆ = r2 + a2, ρ2 = r2 + a2 cos2 θ. (10.9)

As a result, the metric reads

ds2 =dt2 − r2 + a2 cos2 θ

r2 + a2
dr2 −

(
r2 + a2 cos2 θ

)
dθ2

−
[
(r2 + a2)2 − a2(r2 + a2) sin2 θ

] sin2 θ

r2 + a2 cos2 θ
dφ2. (10.10)

This can be simplified because

(r2 + a2)2 − a2(r2 + a2) sin2 θ

r2 + a2 cos2 θ
= (r2 + a2)

r2 + a2(1− sin2 θ)

r2 + a2 cos2 θ
= r2 + a2. (10.11)



Thus, the metric reads

ds2 =dt2 − r2 + a2 cos2 θ

r2 + a2
dr2 −

(
r2 + a2 cos2 θ

)
dθ2 − (r2 + a2) sin2 θdφ2. (10.12)

This is just Minkowski space in disguise – if by disguise you mean ellipsoidal coordinates. Applying the
coordinate transformation to Cartesian coordinates

x =
√
r2 + a2 sin θ cosφ, y =

√
r2 + a2 sin θ sinφ , z = r cos θ, (10.13)

we obtain
ds2 = dt2 − d~x2. (10.14)

(b) At horizons in stationary geometries, the radial component of the metric diverges. This happens
when ∆ = 0. This quadratic equation has the solutions

r± = GM ±
√

(GM)2 − a2. (10.15)

Thus, there are 0,1 or 2 real roots if a > GM, a = GM or a < GM, respectively.
As there is still a ring-shaped singularity (better: "ringularity") inside the hole, the case a > GM is a

naked singularity, which violates the cosmic censorship conjecture and would allow access to arbitrarily-
large-curvature regions – an effect we appear not to see in observations.

If a = GM , the Kerr black hole is extremal, i. e. the two horizons are equal. Compared to the black
holes we see in the sky, this is still excessively fast. Actually, there is a theorem that in GR you can not
spin up a black hole up to a = 1, just as in thermodynamics you can’t lower the temperature to 0 with
a finite number of steps (chrchrm Hawking effect chrchrm).

The physical regime is thus a < GM. All the observed black holes fall into this category.
(c) Applying the coordinate transformation given in Eqs. (10.2) and (10.3), after some algebra we

obtain the metric

ds2 =

(
1− 2GMr

ρ2

)
dv2 +

4GMar

ρ2
dvdφ− 2dvdr + 2a sin2 θdrdφ

− ρ2dθ2 −
[
(r2 + a2)2 − a2∆ sin2 θ

] sin2 θ

ρ2
dφ2 (10.16)

As there is no ∆ in any denominator, the metric is regular at ∆ = 0.
(d) The left-hand side of Eq. (10.4) is the left-hand side of the geodesic equation. Thus, the right-

hand side being non-zero captures the acceleration required to stay put, i. e. hover over the horizon.
Killing vectors satisfy the Killing equation

∇(µχν) = 0. (10.17)

Therefore, we can express Eq. (10.4) as

χν∇µχν |r=r+ =
1

2
∇µ(χ2)|r=r+ = −κχµ|r=r+ , (10.18)

where χ2 = χµχµ. Projecting on some vector ξ which is not normal to χ on the horizon, we obtain

κ = − ξµ∇µ(χ2)

2ξµχµ

∣∣∣∣
r=r+

. (10.19)



In Eddington-Finkelstein coordinates, we can choose ξ = ∂r to obtain

κ = − ∂r(χ
2)

2χr

∣∣∣∣
r=r+

=
1

2

(
1

GM
− GM

a
+

√
(GM)2 − a2

a2

)
=

r+ − r−
2(r2

+ + a2)
. (10.20)

Thus, we obtained the surface gravity of the Kerr black hole. As we learned last week, for static horizons,
the surface gravity of a horizon is proportional to its Hawking temperature. Thus, if a QFT is in the
inertial vacuum, i. e. the vacuum defined by an inertial observer falling into the black hole, an observer
hovering above a Kerr black hole is surrounded by a thermal bath of temperature

T =
r+ − r−

4π(r2
+ + a2)

, (10.21)

which in the limit a→ 0 recovers the temperature of the Schwarzschild black hole as expected.
(e) In the limit a→ GM, the surface gravity vanishes. Thus, extremal black holes have temperature

T = 0. The third law of thermodynamics tells us that it takes an infinite number of steps to lower the
temperature to 0. Thus, it is impossible to spin up a black hole to a = GM in a finite number of steps.
The third law of black-hole mechanics is indeed that one can’t lower the surface gravity of a black hole
to 0 by a finite number of steps.

Exercise 11: Ergoregion and Penrose process

Motivation: Rotating black holes might just be the most powerful energy source in the universe, real sci-fi stuff.
Here’s how.

As you derived in the last exercise, contrary to the Schwarzschild black hole, the timelike Killing
vector K is not null on the outer horizon. This does not mean that there are no surfaces, where
it satisfies K2 = 0.

(a) Do this exercise before reading on. Verify that the two vectors K = ∂t and R = ∂φ
are Killing vectors of the Kerr metric. Killing vectors are defined such that their covariant
derivative is antisymmetric. What physical quantities are conserved due to these symmetries,
and how are they related to the black hole parameters M and a?

(b) Do this exercise before reading on: Find the hypersurface ∂E at which the Killing
vector K is null. Verify that it is generically outside the horizon, i. e. r∂E(θ) ≥ r+, where
r∂E parametrizes ∂E.

(c) The region bounded by ∂E is called ergoregion. Draw a constant-time hypersurface of the
outer horizon and the positive-r branch of the ergosurface (r∂E) as seen from the side, say
for φ = π, for large a (e. g. a = 0.9).

(d) The ergoregion is a very special place. There, the norm of the Killing vector K is spacelike.
On this basis, argue that timelike observers cannot stand still in the ergoregion. This effect
is called frame dragging. Which direction do they have to move in? (Hint: Note that ∂E
is not a horizon. One can leave it.)

(e) Consider a particle of mass m which has momentum p = mu with timelike four-velocity u.
For simplicity, assume that the particle is only moving on hypersurfaces of constant θ and
r, i. e. p = pt∂t + pφ∂φ, and into the future, i. e. pt > 0. The particle’s energy is defined
as E = Kµpµ, its angular momentum as L = −Rµpµ. Are the energy and the angular
momentum always positive in the ergoregion outside the horizon, i. e. for r+ < r0 < r∂E?



(f) Consider that you send an object into the ergoregion, it breaks up into two equal-mass
pieces, one of which comes back out. Start out with the original object at infinity such that
the conserved total energy equals Etot = Ein + Eout = µ. Assume the pieces, both of mass
m break apart inside the ergoregion, one particle falls into the black hole and one particle
escapes to infinity. Use energy conservation to argue that the energy of the outgoing particle
can satisfy Eout > µ. Where is the energy extracted from?

(g) Let’s maximize the efficiency of this process, i. e. the quantity

η =
Eout

Etot

, (11.1)

where Ein denotes the energy of the infalling particle. Evidently, an efficiency larger than
one implies that one gets more energy out of the black hole than went in. Assume that:

• The object breaks apart somewhere outside the outer horizon, i. e. at some r0 > r+.

• The object breaks apart at a turning point in radial motion (i. e. ṙ = 0). At this point
during the evolution, on any object of mass m, energy E and angular momentum L,
the geodesic equation enforces the constraint

r2E

m
+

2GM

r

(
aE

m
− L

m

)2

+

(
a2E

2

m2
− L2

m2

)
−∆ = 0. (11.2)

• The black hole is extremal, i. e. a = GM.

• Energy and angular momentum are conserved during the process. This follows from K
and R being Killing vectors.

Compute Ein, Eout and η(m, r0) and maximize η for allowed values of r0 and m. (Hint: An
object can be more than the sum of its decay products.)

(h) The Penrose process decreases both the angular momentum J and the mass M of the black
hole. Over all, however, J decreases more than M such that a = J/GM decreases. This
works until the black hole stops rotating. The mass of a black hole that has been spun down
to a = 0 by the Penrose process is called the irreducible mass Mirr.

Fun fact aka assume without proof: You may have heard of the area theorem stating
that the area of black holes cannot decrease in GR. A perfectly administered Penrose process
is actually optimal: It does not change the area of the outer horizon.

Show that the area of the Kerr horizon equals

A = 4π(r2
+ + a2). (11.3)

Use the fun fact to compute the irreducible mass.

(i) The black hole in the centre of the Galaxy has mass M ' 4 × 106M�, where M� denotes
the mass of the sun. Imagine that it would be extremal (its actual spin parameter is around
a ∈ [0.1, .5] but never mind reality). Compute how much energy could be extracted from
the black hole. You should obtain that it’s around 29% of the original black-hole mass.
For comparison, nuclear fusion converts 0.7% of matter into energy, and the mass of visible
matter in the milky way equals around ∼ 5× 1010M�. Connect the dots. True sci-fi stuff!
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Figure 3: Side view on the ergoregion of a spacelike hypersurface (t = const) of a Kerr black hole with
a = 0.9GM given in

(a) Killing vector fields satisfy the Killing equation Eq. (13.6) We do this in all generality. Assume
that the metric is independent of a coordinate ξ, i. e. ∂ξgµν = 0. Then, the vector X = ∂ξ satisfies

∇µXν = gνσΓσµρX
ρ = gνσΓσµξ =

1

2
(∂ξgµν + ∂µgξν − ∂νgµξ) . (11.4)

However, the metric is independent of ξ, so

∇µXν = ∂[µgν]ξ = ∇[µXν]. (11.5)

Thus, the vector X is a Killing vector. The metric is independent of both t and φ. Therefore, K and R
are Killing vectors.

(b) In Boyer-Lindquist coordinates the norm of the Killing vector K is just KµKµ = gtt. Thus, K is
null when

r2 − 2GMr + a2 cos2 θ = 0. (11.6)

The most positive root of this equation yields the parametric solution

r∂E = GM +
√

(GM)2 − a2 cos2 θ, (11.7)

which defines the boundary of the ergoregion. Clearly, r∂E|θ=0,π = r+, but generally r∂E ≥ r+. Thus,
the hypersurface where K becomes null lies outside the horizon.

(c) I plot the ergoregion for a = 0.9GM in fig. 3.
(d) Inside the ergoregion, the Killing vector K becomes spacelike. Since observers must follow

timelike worldlines, their 4-velocity cannot be proportional to K. In Boyer–Lindquist coordinates, viz.
Eq. (10.1), there is exactly one contribution to the metric which is timelike inside the ergoregion, namely
the cross term proportional to dtdφ. Thus, the only way to construct a future-directed timelike 4-velocity
is to include a nonzero dφ component. This means the observer must move azimuthally—i.e., co-rotate
with the black hole. This effect is known as frame dragging.

(e) Let’s compute energy and angular momentum in Boyer-Lindquist coordinates

E =gttp
t + gtφp

φ, (11.8)
L =− gφφpφ − gφtpt. (11.9)



In the physical regime a < GM, both K and R are spacelike inside the ergoregion, i. e. gtt < 0, and
gφφ < 0. At the same time, the momentum of a timelike observer is timelike, i. e. (considering for
simplicity an observer with pθ = pr = 0)

pµp
µ = gtt(p

t)2 + 2gtφp
tpφ + gφφ(pφ)2 = m2. (11.10)

As gtt, gφφ < 0 while gtφ > 0, we naturally obtain pφ > 0, which is just the answer to exercise (f).
Given the mass-shell constraint, we can express the energy and the angular momentum as

E =
m2 − gφφ(pφ)2 − gtφptpφ

pt
=
m2 − pφ(|gtφ|pt − |gφφ|pφ)

pt
, (11.11)

L =− m2 − gtt(pt)2 − gtφptpφ

pφ
= −m

2 − pt(|gtφ|pt − |gtt|pφ)

pt
. (11.12)

Thus, if pφ and m2 are chosen sufficiently small while at the same time satisfying Eq. (11.10), the energy
is negative, and so can be the angular momentum. A concrete example is a = GM/2, r = 1.9GM,
θ = π/2, pt = 34.3m and pφ = .24/G yielding E = −0.05M and L = −0.82GM2.

(f) If the piece falling into the black hole is allowed to acquire negative energies, i. e. Ein < 0, the
outgoing piece can have more energy than the whole object had before falling in because

Eout = Etot − Ein = µ+ |Ein| > µ. (11.13)

Thus, energy has been extracted from somewhere. The only place this energy can come from is the black
hole itself, which will lose rotational energy and mass by this process to match the negative energy and
the negative angular momentum of the infalling particle. Note that due to the area theorem, namely
that black hole horizon areas don’t decrease, this loss has to be such that the change in a = J/M is
negative.

(g) First, we solve the constraint from the geodesic equation at r0 for the total angular momentum
obtaining

Ltot =
2aGM ±

√
2GMr0∆

2GM − r0

µ. (11.14)

As this is also the place where the object breaks into two pieces, the geodesic equation equivalently
applies to those two. Thus, for both particles we obtain the angular momenta

Lin/out =
2aGMEin/out ±

√
r0∆[E2

in/outr
2
0 +m2(2GM − r0)]

2GM − r0

. (11.15)

At the same time, we know that Etot = µ. Thus, we can use energy conservation and angular-momentum
conservation to determine the individual energies Ein/out. Thus, imposing

Etot = Ein + Eout, Ltot = Lin + Lout, (11.16)

we obtain (choosing the roots Ein < Eout)

Ein/out =
µ

2

[
1∓

√(
1− 4m2

µ2

)
2GM

r0

]
. (11.17)

Thus, we obtain the efficiency

η =
1

2

[
1 +

√(
1− 4m2

µ2

)
2GM

r0

]
. (11.18)



The efficiency is maximal for minimal r0, i. e. when hovering just above the horizon, and minimal m,
i. e. the object decays into massless particles like photons. For a = GM, m = 0, and r0 = r+ = GM, we
obtain

η =
1

2

[
1 +
√

2
]
' 120%. (11.19)

Thus, we get out 120% of the energy we sent into the black hole.
(h) First we need to compute the area of the horizon. The horizon is a surface of constant time

(dt = 0) and radius r = r+ (thus, also dr = 0). Thus, the induced metric on the horizon reads

ds2
(2) = −ρ2(r+)dθ2 −

[
(r2

+ + a2)2 − a2∆ sin2 θ
] sin2 θ

ρ2(r+)
dφ2. (11.20)

The area is then defined as
A ≡

∫
H

√
hd2x, (11.21)

where h is the determinant of the induced metric on the horizon surface. Thus, we have to compute

A = (a2 + r2
+)

∫ π

0

∫ 2π

0

sin θdφdθ = 4π(a2 + r2
+). (11.22)

The irreducible mass amounts to the black hole not rotating any more such that

A = 16π(GMirr)
2. (11.23)

As the black-hole area does not change, this equals the area before all of its rotational energy has been
extracted. Thus, we obtain

Mirr =
1

2G

√
a2 + r2

+ =

√
M2 +M

√
M − a/G

2
. (11.24)

In particular, for extremal black holes the irreducible mass becomes minimal, yielding

Mirr =
M√

2
. (11.25)

(i) The amount of energy that could be extracted is

M −Mirr =

(
1− 1√

2

)
M ' 0.29M. (11.26)

This amounts to 29% of the original mass, which is an extremely large amount.
Throughout their lifetime, all stars in the milky way generate 0.7% of their mass in radiation from

nuclear fusion. The mass of all stars in the galaxy being around 5× 1010M�, all in all this amounts to
a radiated energy of Estars ∼ 4× 108M�. If the black hole at the centre of the Milky Way was extremal,
we could extract EPenrose ∼ 106M�, which is just about 400 times smaller. Besides, that black hole is
rather small as supermassive black holes go. This is probably the strongest energy source in the universe
we know of.
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Please hand in this assignment before the tutorial at 11h15AM on May 28. In total, you need to
obtain 40% of the combined points from this and the second exam.

Exercise 12: Particle creation in an expanding universe – 30pts.

Motivation: Back to square one. Let’s compute the number of particles created in a more realistic scenario than
before.

Consider a spatially flat universe which starts out changing adiabatically, then undergoes a rapid
phase of expansion, to finally end up in another adiabatic phase. Such a universe is given by the
scale factor

a2(η) = a2
1 + (a2

2 − a2
1)

1 + tanh η
η0

2
, (12.1)

with the dimensionless parameters a1 and a2, and the quantity η0 which has units of time. Prop-
agating in this universe, consider a conformally coupled, massive scalar field according to the
action

S =

∫
d4x
√
−g
(

1

2
∇µφ∇µφ− 1

2

(
m2 − R

6

)
φ2

)
. (12.2)

(a) Plot the scale factor. What do the parameters a1, a2 and η0 stand for? Ignoring the flat
asymptotic regions (large |η|), what part of the universe’s history could the intermediate
evolution be a toy model for?

(b) Show that the scale factor Eq. (12.1) results in the squared effective mass

m2
eff = m2

(
a2

1 + (a2
2 − a2

1)
1 + tanh η

η0

2

)
(12.3)

for the scalar.

(c) Having applied the usual rescaling φ→ χ = aφ, the field satisfies the usual mode equation

χ′′k +
(
k2 +m2

eff

)
χk = 0. (12.4)

Show that the mode equation can be solved by the following two linearly independent mode
functions

vk =
e
ikx−iω+η−iω−η0 log(2 cosh η

η0
)

√
4πωin

2F1

(
1 + iω−η0, iω−η0; 1− iωinη0;

1 + tanh η
η0

2

)
, (12.5)

uk =
e
ikx−iω+η−iω−η0 log(2 cosh η

η0
)

√
4πωout

2F1

(
1 + iω−η0, iω−η0; 1 + iωoutη0;

1− tanh η
η0

2

)
, (12.6)

where we defined

ω2
in ≡ k2 + a2

1m
2, ω2

out ≡ k2 + a2
2m

2, ω± ≡
ωout ± ωin

2
, (12.7)



and 2F1 denotes a common type of hypergeometric function.
Hint: Try to recover the differential equation defining the hypergeometric function f =

2F1(a, b; c; z), namely

z(1− z)f ′′ + [c− (1 + a+ b)z]f ′ − abf = 0. (12.8)

(d) Show that the mode functions asymptote to Minkowski-like positive-frequency solutions at
early and late times

vk ∼
ei(kx−ωinη)

√
4πωin

, η → −∞, (12.9)

uk ∼
ei(kx−ωoutη)

√
4πωout

, η →∞. (12.10)

Discuss why the mode equation has solutions with these asymptotics. Conclude that vk
defines a natural in-vacuum, and uk a natural out-vacuum. Why?
Hint: The hypergeometric function has the limit limz→0 f(a, b; c; z) = 1 for all a, b, c.

Thus, the field can be expanded in modes as

χ =
1√
2

∫
d3k

(2π)3/2

(
akvk + a†kv

∗
k

)
, (12.11)

where ak defines the in-vacuum via ak|0in〉 = 0. We can write down a similar mode expansion,
namely

χ =
1√
2

∫
d3k

(2π)3/2

(
bkuk + b†ku

∗
k

)
, (12.12)

where bk defines the out-vacuum via bk|0out〉 = 0, and b†k constructs particle states at late times.
Clearly vk 6= uk. Thus, the two have to be related as

vk = αkuk + βku
∗
−k, (12.13)

with the Bogolyubov coefficients αk, and βk.
(e) Demonstrate that the Bogolyubov coefficients equal

αk =

√
ωout

ωin

Γ(1− iωinη0)Γ(−iωoutη0)

Γ(−iω+η0)Γ(1− iω+η0)
, (12.14)

βk =

√
ωout

ωin

Γ(1− iωinη0)Γ(iωoutη0)

Γ(iω−η0)Γ(1 + iω−η0)
. (12.15)

Hint: The hypergeometric function 2F1 satisfies the identities

2F1(a, b; c; z) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)2F1(a, b; a+ b− c+ 1; 1− z)

+ (1− z)c−a−b
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
2F1(c− a, c− b; c− a− b+ 1; 1− z),

(12.16)

2F1(a, b; c; z) =(1− z)c−a−b2F1(c− a, c− b; c; z). (12.17)

(f) Assume that the field is in the vacuum state at early times. Show that the particle number
density at late times equals

nk =
sinh2(πω−η0)

sinh(πωinη0) sinh(πωoutη0)
. (12.18)
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Figure 4: Scale factor given in Eq. (12.1).

(a) I plot the scale factor in fig. 4. It starts out flat at a = a1 and ends up flat at a = a2.
The intermediate evolution smoothly interpolates between the two points. The parameter η0 is the
characteristic time scale over which the transition from a1 to a2 occurs.

To interpret the intermediate evolution, we have to keep in mind that the scale factor is given in
terms of conformal time, not cosmological time. To see what is physically happening, we compute the
acceleration of the scale factor in physical time t (derivatives with respect to t are denoted by overdots)

ä =
a′′

a2
− a′2

a3
. (12.19)

I plot the acceleration of the scale factor during the intermediate evolution in fig. 5. In a nutshell,
the intermediate evolution features accelerated expansion followed by deceleration, resembling cosmic
inflation and subsequent radiation-/matter-dominated phases.

(b) As we computed in exercise 6, the effective mass of a nonminimally coupled scalar in an FLRW
background reads

m2
eff = a2

[
m2 + 6

(
ξ − 1

6

)
R

]
, (12.20)

where ξ is the nonminimal coupling. For the present case, i. e. ξ = 1/6, we obtain simply

m2
eff = a2m2 = m2

[
a2

1 + (a2
2 − a2

1)
1 + tanh η

η0

2

]
. (12.21)

(c) We make the ansatz

vk =
e
ikx−iω+η−iω−η0 log(2 cosh η

η0
)

√
4πωin

f(η). (12.22)

As a result, f has to satisfy the differential equation

f ′′ − 2i

(
ω+ + ω− tanh

η

η0

)
f ′ +

i+ η0ω−
η0

ω−

sinh2 η
η0

f = 0. (12.23)

If we now introduce the new variable

z =
1 + tanh η

η0

2
, (12.24)



-η0 η0
η

a
..
(η)

Figure 5: Scale factor acceleration with respect to cosmic time as a function of conformal time as given
in Eq. (12.19).

f(z) satisfies Eq. (12.8) with

a = 1 + iω−η0, b = iω−η0, c = 1− iωinη0. (12.25)

Similarly, for uk, we make the ansatz

uk =
e
ikx−iω+η−iω−η0 log(2 cosh η

η0
)

√
4πωout

g(η), (12.26)

yielding the differential equation

g′′ − 2i

(
ω+ + ω− tanh

η

η0

)
g′ +

i+ η0ω−
η0

ω−

sinh2 η
η0

g = 0. (12.27)

If we now introduce the new variable

w =
1− tanh η

η0

2
, (12.28)

g(w) satisfies Eq. (12.8) with

a = 1 + iω−η0, b = iω−η0, c = 1 + iωoutη0. (12.29)

(d) In the limit η → −∞, the variable z goes to

lim
η→−∞

z = lim
η→−∞

1 + tanh η
η0

2
= 0. (12.30)

Similarly, in the limit η →∞, the variable w goes to

lim
η→∞

w = lim
η→∞

1− tanh η
η0

2
= 0. (12.31)

Then, the hypergeometric function in the mode functions v and u equals

2F1(a, b; c; 0) = 1. (12.32)



Thus, for large negative η the mode function vk goes like

vk ∼
e
ikx−iω+η−iω−η0 log(2 cosh η

η0
)

√
4πωin

, (12.33)

=
e
ikx−iω+η−iω−η0 log

(
e
η
η0 +e

− η
η0

)
√

4πωin

, (12.34)

∼e
ikx−i(ω+−ω−)η

√
4πωin

, (12.35)

=
eikx−iωinη

√
4πωin

. (12.36)

Similarly, for large positive η the mode function uk goes like

uk ∼
e
ikx−iω+η−iω−η0 log(2 cosh η

η0
)

√
4πωout

, (12.37)

=
e
ikx−iω+η−iω−η0 log

(
e
η
η0 +e

− η
η0

)
√

4πωout

, (12.38)

∼e
ikx−i(ω++ω−)η

√
4πωout

, (12.39)

=
eikx−iωoutη

√
4πωout

. (12.40)

The mode equation has solutions which asymptote to plane waves in Minkowski spacetime with constant
scale factors a1 as η → −∞ and a2 as η → ∞. It allows for these solutions exactly because for large
negative and large positive η the spacetime itself asymptotes to Minkowski spacetime up to an overall
constant rescaling by a1 and a2, respectively. Therefore, v is suited to describe the asymptotic Minkowski
vacuum at early times, while u is suited to construct the asymptotic Minkowski vacuum at late times.

(e) Expressing vk in terms of uk by Eq. (12.13), we have

vk =eikx

[
αk
e
−iω+η−iω−η0 log(2 cosh η

η0
)

√
4πωout

2F1

(
1 + iω−η0, iω−η0; 1 + iωoutη0;

1− tanh η
η0

2

)

+βk
e
iω+η+iω−η0 log(2 cosh η

η0
)

√
4πωout

2F
∗
1

(
1 + iω−η0, iω−η0; 1 + iωoutη0;

1− tanh η
η0

2

)]
. (12.41)

Conjugating the differential equation defining the hypergeometric, i. e. Eq. (12.8) function, we obtain

z∗(1− z∗)f ∗′′ + [c∗ − (1 + a∗ + b∗)z∗]f ∗′ − a∗b∗f ∗ = 0. (12.42)

Clearly, this differential equation defines the same hypergeometric function with conjugated arguments,
i. e.

2F
∗
1 (a, b; c; z) = 2F1 (a∗, b∗; c∗; z∗) . (12.43)

Thus, we obtain the equality

vk =eikx

[
αk
e
−iω+η−iω−η0 log(2 cosh η

η0
)

√
4πωin

2F1

(
1 + iω−η0, iω−η0; 1 + iωoutη0;

1− tanh η
η0

2

)

+βk
e
iω+η+iω−η0 log(2 cosh η

η0
)

√
4πωin

2F1

(
1− iω−η0,−iω−η0; 1− iωoutη0;

1− tanh η
η0

2

)]
. (12.44)



Let’s now see whether we can get the left-hand side into the same shape. We use the first hint
(Eq. (12.16)) to re-express the hypergeometric function in vk as

vk =
e
ikx−iω+η−iω−η0 log(2 cosh η

η0
)

√
4πωin

[
Γ(1− iωinη0)Γ(−iωoutη0)

Γ(−iω+η0)Γ(1− iω+η0)
2F1

(
1 + iω−η0, iω−η0; 1 + iωoutη0;

1− tanh η
η0

2

)

+

(
1− tanh η

η0

2

)−iωoutη0
Γ(1− iωinη0)Γ(iωoutη0)

Γ(1 + iω−η0)Γ(iω−η0)
2F1

(
−iω+η0, 1− iω+η0; 1− iωoutη0;

1− tanh η
η0

2

) .
(12.45)

The first term is already in the right shape. Regarding the second term, note that we can rewrite(
1− tanh η

η0

2

)−iωoutη0

=e
−iωoutη0 log

(
1−tanh

η
η0

2

)
, (12.46)

=e
−iωoutη0 log

(
e
− η
η0

2 cosh
η
η0

)
, (12.47)

=e
iωout

[
η+η0 log

(
2 cosh η

η0

)]
. (12.48)

To flip the phase factor in the second term of Eq. (12.45), we reformulate(
1− tanh η

η0

2

)−iωoutη0

=e
2iω+η+2iω−η0 log(2 cosh η

η0
)
e
−i(2ω+−ωout)η−i(2ω−−ωout)η0 log(2 cosh η

η0
)
, (12.49)

=e
2iω+η+2iω−η0 log(2 cosh η

η0
)
e
iωin[−η+η0 log(2 cosh η

η0
)]
, (12.50)

=e
2iω+η+2iω−η0 log(2 cosh η

η0
)
e
−iωinη0 log

[
e

η
η0

2 cosh
η
η0

]
, (12.51)

=e
2iω+η+2iω−η0 log(2 cosh η

η0
)

(
1 + tanh η

η0

2

)−iωinη0

. (12.52)

Thus, we can rewrite the second term in Eq. (12.45) as

vk − αkuk =
e
ikx+iω+η+iω−η0 log(2 cosh η

η0
)

√
4πωin

Γ(1− iωinη0)Γ(iωoutη0)

Γ(1 + iω−η0)Γ(iω−η0)

×

(
1 + tanh η

η0

2

)−iωinη0

2F1

(
−iω+η0, 1− iω+η0; 1− iωoutη0;

1− tanh η
η0

2

)
. (12.53)

Now we use the second hint (Eq. (12.17)) to express(
1 + tanh η

η0

2

)−iωinη0

2F1

(
−iω+η0, 1− iω+η0; 1− iωoutη0;

1− tanh η
η0

2

)
(12.54)

=2F1

(
1− iω−η0, 1− iω−η0; 1− iωoutη0;

1− tanh η
η0

2

)
. (12.55)



Thus, after all the mode function can be expressed as

vk =eikx

[
e
−iω+η−iω−η0 log(2 cosh η

η0
)

√
4πωin

Γ(1− iωinη0)Γ(−iωoutη0)

Γ(−iω+η0)Γ(1− iω+η0)
2F1

(
1 + iω−η0, iω−η0; 1 + iωoutη0;

1− tanh η
η0

2

)

+
e
iω+η+iω−η0 log(2 cosh η

η0
)

√
4πωin

Γ(1− iωinη0)Γ(iωoutη0)

Γ(1 + iω−η0)Γ(iω−η0)
2F1

(
1− iω−η0,−iω−η0; 1− iωoutη0;

1− tanh η
η0

2

)]
.

(12.56)

This is exactly the shape of Eq. (12.44). Therefore, we can read off the Bogolyubov coefficients

αk =

√
ωout

ωin

Γ(1− iωinη0)Γ(−iωoutη0)

Γ(−iω+η0)Γ(1− iω+η0)
, (12.57)

βk =

√
ωout

ωin

Γ(1− iωinη0)Γ(iωoutη0)

Γ(iω−η0)Γ(1 + iω−η0)
. (12.58)

(f) As usual, we define the number density in the in-vacuum as

nk ≡V −1〈0in|b†kbk|0in〉 (12.59)
= |βk|2, (12.60)

where we used a simplified version of Eq. (8.16). Plugging in Eq. (12.58), we obtain the number density

nk =
ωout

ωin

∣∣∣∣Γ(1− iωinη0)Γ(iωoutη0)

Γ(iω−η0)Γ(1 + iω−η0)

∣∣∣∣2 , (12.61)

=
sinh2(πω−η0)

sinh(πωinη0) sinh(πωoutη0)
, (12.62)

where we introduced the spatial volume V, and used the fact that

|Γ(bi)|2 =
π

b sinh(πb)
, |Γ(1 + bi)|2 =

πb

sinh(πb)
, (12.63)

for real b.

Exercise 13: Hawking radiation from non-singular black holes – 20pts.

Motivation: Black-hole solutions in GR are singular; it is expected that a more complete (quantum) theory of gravity
can resolve this. We will consider whether regularity leaves any imprints in the Hawking temperature.

In this exercise, work with the Hayward metric. This is a metric that is not a solution to the
Einstein equations (at least not for an energy-momentum tensor that satisfies the standard energy
conditions). You can think of it as a phenomenological model for black holes beyond GR. The
line-element in Schwarzschild-type coordinates is given by

ds2 = f(r) dt2 − f(r)−1dr2 − r2dΩ2
2, (13.1)

with f(r) = 1− 2GM r2

r3+2GM `2
, with ` a parameter with units of length. All (non-derivative) curvature

invariants remain finite in the limit r → 0, as long as ` > 0.

(a) What is the limit `→ 0?



(b) For spherically symmetric, static metrics in Schwarzschild-like coordinates, the event horizon
is determined by the equation grr = 0. Find the location of the event horizon. If there is a
qualitative (not just quantitative) difference to the Schwarzschild case, discuss it.

(c) Is the vector ξ = ∂t a Killing vector? If yes, is there a Killing horizon?

(d) Determine the surface gravity for a metric of the form Eq. (13.1) for an unspecified function
f(r); then insert f(r) for the Hayward metric and discuss the difference to a Schwarzschild
black hole.

(e) What are the implications of your previous results for the Hawking temperature of the
Hayward black hole?

(a) In the limit `→ 0, we obtain f = 1− 2GM/r, yielding the Schwarzschild metric.
(b) The condition grr = f(rH) = 0 amounts to the cubic equation

r3
H + 2GM `2 − 2GM r2

H = 0 (13.2)

This equation has two real, positive solutions if ` < 4GM/3
√

3, namely

r+ =
2

3
GM (1 + 2 cos Ξ) , r− =

2

3
GM

(
1− cos Ξ +

√
3 sin Ξ

)
, (13.3)

where Ξ = arccos(1 − 27`2/8G2M2)/3 ≤ π/3 as long as ` ≤ 4GM/3
√

3. The two radii become equal,
i. e. both horizons merge in the limit `→ 4GM/3

√
3. In this limit, the black hole is extremal. While we

recover the single Schwarzschild horizon in the limit `→ 0, , with lim`→0 r+ = 2GM and lim`→0 r− = 0,
the Hayward black hole, thus, generally differs qualitatively from the Schwarzschild solution.

(c) We proved on the last exercise sheet that if the metric is independent of a coordinate, the
corresponding vector is a Killing vector. The metric is independent of t, so ξ = ∂t is a Killing vector. A
Killing horizon is a surface where the Killing vector becomes null. Computing the norm of ξ and setting
it equal to zero, we obtain

ξ2 ≡ ξµgµνξ
ν = gtt = f(r) = 0. (13.4)

This is the same equation as the defining equation of the horizon. Thus, the horizon is a Killing horizon.
(d) This is analogous to exercise 10 (d). The surface gravity is defined such that

ξν∇νξµ|r± = κξµ|r=r± . (13.5)

As Killing vector ξ satisfies the Killing equation

∇(µξν) = 0. (13.6)

Therefore, we can express Eq. (13.5) as

ξν∇µξν |r=r± =
1

2
∇µ(ξ2)|r=r± = −κξµ|r=r± , (13.7)

Projecting on some vector V which is not collinear with ξ on the horizon, we obtain

κ = − V µ∇µ(ξ2)

2V µξµ

∣∣∣∣
r=r±

. (13.8)



In order to be able to evaluate this equation, we need coordinates, which are well defined on the horizon,
akin to the Eddington-Finkelstein coordinates in exercise 10 (c). Therefore, we choose

du = dt− dr∗, (13.9)

with the tortoise coordinate satisfying dr∗ = dr/f(r). Replacing the time coordinate with the light-like
coordinate u, the metric reads

ds2 = fdu2 − 2dudr + r2dΩ2. (13.10)

Now we can contract with V = ∂r to obtain

κ = − V µ∇µ(ξ2)

2V µξµ

∣∣∣∣
r=r±

=
f ′(r±)

2
. (13.11)

For the Hayward black hole, we obtain

κ = GMr±
r3
± − 4GM`2

(2GM`2 + r3
±)2

=
3

4GM
− 1

r±
, (13.12)

where in the last equality we used Eq. (13.2). At the outer horizon (r = r+), the surface gravity reads
explicitly

κ =
3

4GM

(
1− 2

1 + 2 cos Ξ

)
≤ 1

4GM
, (13.13)

where the inequality holds for all ` ≤ 4GM/3
√

3, and κS denotes the surface gravity of the horizon of
a Schwarzschild black hole, which is, of course, recovered for ` → 0. Thus, the surface gravity of the
Hayward black hole is lower than that of the Schwarzschild black hole. In total, it interpolates between
the Schwarzschild value κ|`=0 = κS and κ|`=4GM/3

√
3 = 0. Thus, in the extremal limit the temperature

vanishes, just as it did for the Kerr black hole last week.
(e) The Hawking temperature of the outer horizon of the Hayward black hole reads

T =
κ

2π
=

3

8πGM
− 1

2πr±
=

3

8πGM

(
1− 2

1 + 2 cos Ξ

)
≤ 1

8πGM
= TS, (13.14)

where TS denotes the temperature of the Schwarzschild black hole. Thus, the temperature is lower than
that of the Schwarzschild black hole, and vanishes in the extremal limit, just like for the Kerr black
hole. This has major implications for black hole evaporation: Black hole evaporation is dominated by
the Stefan-Boltzmann law

dE

dt
∝ T 4, (13.15)

where E is the radiated energy. The Schwarzschild black hole increases its temperature while evaporat-
ing, which further increases the energy loss due to evaporation. Hence, a Schwarzschild black hole enters
a vicious circle which only ends when the black hole has fully evaporated which is in finite time. Instead,
the Hayward metric gets closer and closer to extremality, effectively lowering its temperature once it is
small enough. Thus, when the horizon radius of the Hayward black hole becomes comparable to the
regulator scale `, its evaporation will slow down drastically. As it is impossible to lower the temperature
of any object to zero by a finite number of steps, the Hayward black hole will never evaporate fully, but
slowly enter an adiabatic stage, becoming a remnant. Note, though, that any physics at the final stages
of Hawking evaporation hinges on concepts derived from QFT in curved spacetime, which is not a good
approximation any more – at the final stages, quantum gravity cannot be neglected.
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Exercise 14: Superradiance

Motivation: Two weeks ago, we learned about particles in the ergoregion. These effects get supercharged once we
talk about fields. This will be an explosive adventure!

Superradiance amounts to extraction of energy from a black hole by perturbing the Kerr geometry.
First, let’s find a thermodynamic argument that makes superradiance plausible in GR. In the last
weeks, we have often encountered the laws of black hole mechanics/thermodynamics. Here, we
need the first law

δM =
κ

8π
δAH + ΩHδJ, (14.1)

with the change in the area δAH, the surface gravity κ, the angular velocity of the horizon ΩH and
the change in the black hole’s angular momentum δJ. Besides, we need the second law δAH ≥ 0.
The perturbation of angular momentum and energy by an incident wave of frequency ω and
azimuthal number m reads

δJ

δM
=
m

ω
. (14.2)

(a) Compute the frequency range, within which we can extract mass from the black hole.

Next, we compute this explicitly for a scalar test field. The Klein-Gordon equation for a minimally
coupled massless scalar φ on the Kerr geometry is a complicated beast. But there is a surprising
extra piece of information, which allows to simplify it enormously.

(b) Consider the tensor
Kµν = r2gµν − 2ρ2l(µnν), (14.3)

where l and n are null vectors satisfying lµnµ = 1. In Boyer-Lindquist coordinates

l =
r2 + a2

∆
∂t + ∂r +

a

∆
∂φ, n =

r2 + a2

2ρ2
∂t −

∆

2ρ2
∂r +

a

2ρ2
∂φ. (14.4)

Using your favourite symbolic equation manipulation software, verify that K satisfies the
generalized Killing equation

∇(ρKµν) = 0 (14.5)

on the Kerr geometry. Such a tensor is called a Killing tensor.

Hint: Do not do this computation by hand unless you really like to grind.

(c) Consider a general Killing tensor kµ1µ2...µn , satisfying the generalization of Eq. (14.6)

∇(ρkµ1µ2...µn) = 0. (14.6)

Show that given the momentum pµ = muµ, with mass m and four-velocity uµ, one can
construct a scalar s = kµ1µ2...µnp

µ1pµ2 . . . pµn , which is conserved on geodesics.



Thus, the Kerr geometry has a hidden symmetry. This symmetry is instrumental in solving the
Klein-Gordon equation because it allows to construct a hermitian derivative operator which com-
mutes with the d’Alembertian, namely∇µK

µν∇ν .
a As a result, one can simultaneously diagonalize

the operators �, Kµ∇µ, R
µ∇µ (here we use the notation of exercise 11) and ∇µK

µν∇ν .
Therefore, it does not come as a surprise that the Klein-Gordon equation on Kerr can be brought
into the form [

(r2 + a2)2

∆
− a2 sin2 θ

]
∂2
t Ψ +

4GMar

∆
∂t∂φΨ

+

[
a2

∆
− 1

sin2 θ

]
∂2
φΨ− ∂r (∆∂rΨ)− 1

sin θ
∂θ(sin θ∂θΨ) = 0. (14.7)

(d) Show that Eq. (14.7) is separable: Making the ansatz

Ψ =
1

2π

∫
dωe−iωteimφS(θ)R(r) (14.8)

show that the radial part satisfies the scalar Teukolsky equation

d

dr

(
∆

dR

dr

)
+ V̄ R = 0, (14.9)

with

V̄ =
[ω(r2 + a2)− am]

2

∆
− a2ω2 + 2amω − A`m, (14.10)

and where A`m are the eigenvalues to the equation

1

sin θ

d

dθ

(
sin θ

dS

dθ

)
+

(
a2ω2 cos2 θ − m2

sin2 θ
+ A`m

)
S = 0. (14.11)

For example, for small aω the eigenvalue becomes A`m = `(`+ 1).

Hint: In order to get the conventional shape of A`m we aim at here, you may transform
θ-dependent parts in Eq. (14.7) into combinations of constant and θ-dependent terms us-
ing trigonometric identities, and shift the constant contributions into the radial differential
equation.

(e) Introduce the tortoise coordinate we already know from earlier assignments

dr? =
r2 + a2

∆
dr. (14.12)

Recall for later that r? → −∞ as r → r+, while r? → ∞ as r → ∞. Find a redefinition
R(r?)→ ψ(r?) such that Eq. (14.9) becomes a Schrödinger-like differential equation

ψ′′(r?) + Veffψ(r?) = 0, (14.13)

with the effective potential

Veff =
∆

(r2 + a2)4

[
(2r2 − a2)∆− 2r2(r2 + a2) + (r2 + a2)2V̄

]
. (14.14)



Consider a scattering experiment with a monochromatic wave. The boundary conditions for such
an experiment have to be set at the outer horizon r → r+, and at infinity, i. e. r → ∞. At
infinity, there is an incoming wave with amplitude I and a reflected wave with amplitude R. At
the horizon, there is only a transmitted wave, i. e. one that enters the horizon with amplitude T
because the horizon is a one-way surface.

(f) Show that Eq. (14.13) at the boundaries (r → r+, i. e. r? → −∞ and r →∞, i. e. r? →∞)
allows for the solutions

ψ ∼

{
T e−ikHr? r? → −∞,
Ie−iωr? +Reiωr? r? →∞,

(14.15)

where kH = ω −mΩH with, again, the angular velocity of the horizon ΩH = a/2GMr+.

(g) As the potential is real, the complex conjugate of Eq. (14.30) is a linearly independent
solution of the equation of motion. Then, the Wronskian of ψ is independent of r?. Use this
fact to compute that

|R|2 = |I|2 − kH

ω
|T |2. (14.16)

(h) The energy flux at infinity reads

dEout

dt
=
ω2

2
|R|2, dEin

dt
=
ω2

2
|I|2, (14.17)

where Eout and Ein stand for ingoing and outgoing energy. What happens if ω < mΩH?

(i) Bonus Sci-fi-question: What happens if we surround the black hole by a perfectly reflect-
ing (and extremely durable) mirror and send in an initial wave of frequency ω < ΩH? Not
without reason, this is called a black-hole bomb.

aNote that K being a Killing tensor is a necessary but not a sufficient condition for ∇µK
µν∇ν to commute with

the d’Alembertian. It also has to be compatible with the curvature on the geometry, which K on Kerr actually is.

(a) Plugging the angular momentum into the first law of black hole mechanics

δM =
κ

8π

δAH

1−mΩH

ω

. (14.18)

Mass is extracted if δM < 0. As δAH ≥ 0, mass extraction therefore requires ω < mΩH.
(b) See ancillary Mathematica notebook.
(c) The time derivative along a geodesic equals d/dτ = uµ∇µ (here τ is the affine parameter along

the curve). Thus, the time derivative of the scalar reads

dkµ1µ2...µnp
µ1pµ2 . . . pµn

dτ
= m−1∇(νkµ1µ2...µn)p

νpµ1pµ2 . . . pµn + nk(µ1µ2...µn)
dpµ1

dτ
pµ2 . . . pµn = 0, (14.19)

where in the last equality we used Eq. (14.6) and that test particles on geodesics follow unaccelerated
motion, i. e. dpµ/dτ = 0.

https://www.nature.com/articles/238211a0


(d) Plugging in the ansatz, Eq. (14.8), we obtain

− ω2

[
(r2 + a2)2

∆
− a2 sin2 θ

]
+

4GMar

∆
mω

−
[
a2

∆
− 1

sin2 θ

]
m2 −R−1 d

dr

(
∆

dR

dr

)
− 1

S sin θ

d

dθ

(
sin θ

dS

dθ

)
= 0. (14.20)

Observe that terms depending on θ and r appear separately, never mixed. Hence, we can separate these
variables: The contributions to the Klein-Gordon equation dependent on r have to be constant and so
have to be the contributions dependent on θ to cancel each other for all values of the variables. Thus, we
set the contributions dependent on r equal to the constant A`m. Then, those contributions dependent
on θ have to be equal to −A`m for the Klein-Gordon equation to be satisfied.

As suggested in the hint, we write sin2 θ = 1 − cos2 θ in the first line and shift the constant bit to
the differential equation for R. Thus, for R, we obtain

d

dr

(
∆

dR

dr

)
+

[
ω2 (r2 + a2)2

∆
+
a2m2

∆
− a2ω2 − 4GMar

∆
mω − A`m

]
R = 0. (14.21)

We can rewrite this equation as

d

dr

(
∆

dR

dr

)
+

[
[(r2 + a2)ω − am]

2

∆
+ 2amω

r2 − 2GMr + a2

∆
− a2ω2 − A`m

]
R = 0. (14.22)

Plugging in the definition of ∆, we obtain

d

dr

(
∆

dR

dr

)
+

[
[(r2 + a2)ω − am]

2

∆
+ 2amω − a2ω2 − A`m

]
R = 0. (14.23)

Apart from that, for the differential equation for S we obtain

1

sin θ

d

dθ

(
sin θ

dS

dθ

)
+

(
a2ω2 cos2 θ − m2

sin2 θ
+ A`m

)
S = 0. (14.24)

(e) In terms of the tortoise coordinate, the derivative part of Eq. (14.9) reads

d

dr

(
∆

dR

dr

)
=
r2 + a2

∆

d

dr?

(
(r2 + a2)

dR

dr?

)
, (14.25)

=
(r2 + a2)2

∆

d2R

dr2
?

+ 2r
dR

dr?
. (14.26)

To obtain a Schrödinger-like equation, we have to eliminate the first-derivative term. Indeed, if we
redefine ψ ≡

√
r2 + a2R, we obtain

(r2 + a2)2

∆

d2R

dr2
?

+ 2r
dR

dr?
=

(r2 + a2)3/2

∆
ψ′′ +

(2r2 − a2)∆− 2r2(r2 + a2)

(a2 + r2)5/2
ψ. (14.27)

The Schrödinger-like equation Eq. (14.13) follows immediately.
(f) At the horizon ∆ = 0, so terms proportional to ∆ can be neglected. The surviving terms in the

effective potential given in Eq. (14.14) read

Veff |r=r+ =

(
ω − am

r2
+ + a2

)2

= (ω −mΩH)2 = k2
H. (14.28)



Thus, as r → r+ the field ψ behaves like a plane wave with frequency kH.
At large r, we can neglect terms at higher than zeroth order in 1/r, and we have ∆ ' r2. Thus, the

effective potential reads

Veff = ω2, (14.29)

implying plane wave behaviour at infinity with frequency ω.
Thus assuming that the horizon is a one-way surface, we obtain

ψ ∼

{
T e−ikHr? r? → −∞,
Ie−iωr? +Reiωr? r? →∞.

(14.30)

(g) The Wronskian of ψ and ψ∗ reads

W (ψ, ψ∗) =ψ
dψ∗

dr?
− ψ∗ dψ

dr?
(14.31)

On the horizon, the Wronskian becomes

W (ψ, ψ∗) = 2|T |2ikH, r? → −∞, (14.32)

while at large r?, we obtain

W (ψ, ψ∗) =− 2i|R|2iω + 2iω|I|2, r? →∞. (14.33)

Thus, constancy of the Wronskian imposes the condition

|R|2 = |I|2 − kH

ω
|T |2. (14.34)

(h) Using Eq. (14.16), the outgoing energy flux satisfies

dEout

dt
=
ω2

2

(
|I|2 − kH

ω
|T |2

)
=

dEin

dt
− kHω

2
|T |2. (14.35)

If ω < mΩH, we have kH < 0. This immediately implies that

dEout

dt
>

dEin

dt
, (14.36)

i. e. net energy is extracted from the black hole.
(i) As the outgoing wave from the black hole has the same frequency as the incident wave, when

reflected back by the mirror it will produce another, further amplified outgoing wave and so on. Like
the Penrose process, this process decreases the angular momentum of the black hole, i. e. it decreases
the angular velocity of the horizon ΩH. Thus, it will do so until ω = mΩH, where the energy extraction
stops, and the whole system equilibrates. As we can, in principle, choose ω to be arbitrarily small (which
requires making the mirror arbitrarily large), similarly to the Penrose process, one can basically reduce
the angular momentum of the black hole to zero this way, releasing the same amount of energy (29% of
the initial black-hole mass). Now imagine, the mirror breaks or is made to disappear at the very end
of the process. This would release all of this energy at once, i. e. for Sagittarius A∗ if it was extremal
∼ 0.25% of all energy that all stars in the galaxy will emit during their whole lifetime. Sounds like a
galaxy-sized nuke, doesn’t it?



Exercise 15: Superradiance in analogue systems

Motivation: Last time I checked, we couldn’t send waves to black holes and pick up the amplified reflected waves.
But we can see the effect already in a draining bath tub. Here’s how.

The idea of analogue gravity is to study the effects of fields on curved spacetime in more accessible
systems realizable in a lab. An example is water going down a drain. Similar to a black hole, the
speed required to avoid falling down the drain exceeds the sound speed of the liquid such that
perturbations experience an effective horizon. Here we try to derive the effective curved-spacetime
Klein-Gordon equation these perturbations satisfy.
We describe the fluid by a velocity potential Φ in terms of which one defines the velocity field
~v = −~∇Φ. Besides, the fluid has vanishing viscosity and a barotropic equation of state p(ρ)
relating pressure p and density ρ, and the evolution is adiabatic, i. e. slow enough for the system
to remain in local equilibrium. Then, the fluid satisfies the continuity equation

∂tρ+ ~∇(ρ~v) = 0 (15.1)

and, absent external driving forces, the Euler equation

− ∂tΦ +
v2

2
+

∫
dp

ρ
= 0. (15.2)

(a) Assume ρ = ρ0 + ερ1, ~v = ~v0 − ε~∇φ, Φ = Φ0 + εφ, where ε � 1. Obtain the linearized
continuity equation

∂tρ1 + ~∇(ρ1~v0 − ρ0
~∇φ) = 0, (15.3)

and the linearized Euler equation

− ∂tφ− ~v0 · ~∇φ+ c2
s

ρ1

ρ0

= 0, (15.4)

with the background speed of sound c2
s = dp/dρ|ρ=ρ0 .

(b) Use Eqs. (15.3) and (15.4) to obtain the differential equation for the perturbation

∂t

(
c−2

s ρ0(∂tφ+ ~v0 · ~∇φ)
)
− ~∇ ·

[
ρ0
~∇φ− c−2

s ρ0~v0(∂tφ+ ~v0 · ~∇φ)
]

= 0. (15.5)

(c) Show that this equation can be equivalently obtained as the curved-space Klein-Gordon
equation derived from the metric

ds2 =
ρ0

cs

[
c2

sdt2 − (d~x− ~v0dt)2
]
. (15.6)

(d) As an example, consider a fluid in 2 + 1 dimensions with constant cs and a background-fluid
velocity (in terms of polar coordinates r and φ)

~v0 = −A
r
~er +

B

r
~eφ, (15.7)

where A,B are constants characterizing the direction of the flow. Here, we assume that
A,B > 0 such that the fluid is moving inward with an additional clockwise rotation, thus
mimicking a rotating black hole. For example, water in a draining bath tub flows this way.
Show that the resulting metric reads

ds2 = c2
sdt2 −

(
dr +

A

r
dt

)2

−
(
rdφ− B

r
dt

)2

. (15.8)



(e) Show that the resulting geometry has an ergosphere at radii below

r∂E =

√
A2 +B2

cs

, (15.9)

and a sound horizon at
rH =

A

cs

. (15.10)

(f) There is an ergoregion outside the sound horizon. What happens if you introduce a pertur-
bation of sufficiently low frequency at the outer boundary of the experiment? What could
the "sufficiently low frequency" be precisely? Think about your answer, then check out this
link.

(a) At first order in ε, the linearized continuity equation, Eq. (15.3), follows immediately from
Eq. (15.1). To obtain Eq. (15.4), we need to take a closer look at the specific enthalpy

h(p) ≡
∫

dp

ρ(p)
= h(p0 + εp1) ' h(p0) + εp1h

′(p0) = h(p0) + ε
p1

ρ0

, (15.11)

where ρ0 = ρ(p0). At the same time, Taylor expanding ρ(p) fixes p1 = c2
sρ1, where c2

s = dp/dρ|ρ0 .
Therefore, we obtain

h ' h(p0) + ε
c2

sρ1

ρ0

. (15.12)

This immediately implies Eq. (15.4).
(b) We first solve Eq. (15.4) such that

ρ1 =
ρ0

c2
s

(
∂tφ+ ~v0 · ~∇φ

)
. (15.13)

Plugging into Eq. (15.3), we obtain Eq. (15.5).
(c) The inverse of the metric has the components

gtt =
1

csρ0

, git =
vi0
csρ0

, gij =
vi0v

j
0 − c2

sδ
ij

csρ0

. (15.14)

The determinant of the metric equals g = −ρ4
0/c

2
s . Thus, the d’Alembertian reads

�φ =
1√
−g

∂µ
(√
−ggµν∂νφ

)
, (15.15)

=
cs

ρ2
0

∂t

[
ρ0

c2
s

(
∂tφ+ ~v0 · ~∇φ

)]
+
cs

ρ2
0

~∇ ·
[
ρ0

c2
s

(
~v0(∂tφ+ ~v0 · ~∇φ)− c2

s
~∇φ
)]

. (15.16)

Finally, the Klein-Gordon equation �φ = 0 can be expressed as

∂t

[
c−2

s ρ0

(
∂tφ+ ~v0 · ~∇φ

)]
− ~∇ ·

[
ρ0
~∇φ− c−2

s ρ0~v0

(
∂tφ+ ~v0 · ~∇φ

)]
, (15.17)

which is exactly Eq. (15.5).
(d) To get to polar coordinates, we transform x1 = r cosφ, x2 = r sinφ. Writing ~v0 = vr0~er + vφ0~eφ,

we can express the metric as

ds2 =
ρ0

cs

[
c2

sdt2 −
(
dr2 − vr0dt

)2 − (rdφ− vφ0 dt)2
]
. (15.18)

https://inspirehep.net/literature/1504934
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Plugging in for vr0 and vφ0 , we obtain Eq. (15.8).
(e) An ergosphere is a region where the timelike Killing vector becomes spacelike. The boundary of

the ergosphere is defined where the norm of the timelike Killing vector becomes zero. Thus, at r = r∂E,
the vector K = ∂t is null. In other words

gtt|r=r∂E =
ρ0

cs

[
c2

s −
(
A

r∂E

)2

−
(
B

r∂E

)2
]

= 0. (15.19)

This equation has one positive solution namely Eq. (15.9).
At the horizon, the absolute value of the radial velocity is as large as the speed of sound, similarly

to the escape velocity on the horizon of a black hole being the speed of light. Thus, we set

|vr0|r=rH =
A

rH

= cs, (15.20)

which immediately implies Eq. (15.10).
(f) Provided the frequency is small enough, the wave is going to get amplified when it is reflected.

Thus, there is going to be superradiance exactly as we derived it in the preceding exercise. The paper
linked on the sheet is the first observation of this process in a lab, indeed done with a draining bath tub.

To find out what the “sufficiently low frequency" is, we have to compute the angular velocity at the
horizon ΩH. Since the angular motion of the fluid defines the frame-dragging at the horizon, ΩH is simply
the angular velocity of the fluid at the horizon, i. e.

ΩH =
vφ
r

∣∣∣
r=rH

=
B

A2
c2

s . (15.21)

By analogy with the result in exercise 14, low frequencies are now ω < mBc2
s/A

2, where m denotes the
azimuthal wave number.
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Exercise 16: Euler-Heisenberg Lagrangian

Motivation: Strong background fields can induce higher-order corrections to QFT. Here, we will find this result
already in QED at one loop.

The QED partition function on a flat background reads

Z =

∫
DADψ̄DψeiSQED , (16.1)

with the QED action

SQED =

∫
x

[
−F + ψ̄

(
i /D −m

)
ψ
]
. (16.2)

Here, F ≡ FµνF
µν/4, where Fµν is the field-strength tensor of the gauge field Aµ. Besides, /D

denotes the covariant Dirac operator involving the covariant derivative

Dµ = ∂µ − ieAµ, (16.3)

and e and m are the charge and the mass of the (Grassmann-valued) fermion ψ, respectively.
We want to compute the one-loop effective Lagrangian for constant Fµν by integrating out the
fermion. For constant field strength, the effective Lagrangian is related to the effective action as

Γ[A] =

∫
d4xLeff(F ) = V Leff(F ), (16.4)

where V denotes the spacetime volume.

(a) At one-loop order, we can treat the electromagnetic field as a nondynamical background,
and integrate over the fermion field. Define the effective action Γ[A] for the background field
A as

Z =

∫
DAeiΓ[A]. (16.5)

Show that the resulting one-loop correction to the effective action reads

Γ(1)[A] = −i log det(i /D −m). (16.6)

Hint: Without gravity, constants in the effective action, even if they are infinite, do not
contribute to the physics, and can be neglected. You can do this in every part of this exercise.

(b) As it is simpler to compute determinants of scalars, let’s rewrite the determinant. Show
that we can express the one-loop contribution to the effective action as

Γ(1)[A] = − i
2

log det( /D
2

+m2). (16.7)

Hint: Assume that the operator i /D −m is hermitian.



To simplify the problem, we use the proper-time representation of the effective action by expressing
the Logarithm as (this works for hermitian)

logO = −
∫ ∞

0

ds

s
e−isO + const. (16.8)

(c) Demonstrate that the proper-time representation of Eq. (16.7) reads

Γ(1)[A] =
i

2

∫ ∞
0

ds

s
e−ism

2

tr
(
e−is /D

2
)
. (16.9)

Thus, this exercise comes down to computing the trace of the operator U = e−iHs, with the
analogue of a Hamiltonian

H ≡ /D
2
. (16.10)

(d) Show that
H = D2 +

e

2
F µνσµν ≡ Hkin +Hspin, (16.11)

where σµν = i[γµ, γν ]/2, and Hkin and Hspin denote the kinetic term and the spin interaction.

The purpose of this exercise is to compute the trace for Fµν =const. Then, the spin-interaction
Hamiltonian commutes with the kinetic term. Then we can write

tr
(
e−isH

)
= tr

(
e−isHkin

)
tr
(
e−isHspin

)
. (16.12)

(e) Show that
tr
(
e−

ies
2
Fµνσµν

)
= 4 cosh(esa) cos(esb), (16.13)

where

a2 =
√
F2 + G2 −F , b2 =

√
F2 + G2 + F , (16.14)

where we defined G ≡ εµνρσFµνFρσ/8.

Hints:

• Hspin is position independent, so what do we have to trace over?

• On the way, derive that (Fσ)2 = 8(F + iγ5G). You can use the fact that

{σµν , σρσ} = 2
(
gµρgνσ − gνρgµσ + iγ5εµνρσ

)
, (16.15)

and that (γ5)2 = 0 and trγ5 = 0.

• The result of the trace has to be Lorentz invariant. Are there any Lorentz invariants
which contain odd powers in Fµν?

Time for the last step. The trace of Hkin are best computed in Euclidean signature and afterwards
analytically continued back. This amounts to the transformation t→ −ix0, ∂t → i∂0 and Hkin →
−iHkin. Thus, we transform

tr
(
e−isHkin

)
→ tr

(
e−sHkin

)
, D2 = ηµνDµDν → −δABDADB ≡ −(DA)2, (16.16)

where indices A,B are four-dimensional Euclidean indices. Note that raising and lowering of
indices is not required in Euclidean signature



(f) Show that the operator Hkin can be split into two commuting operators Hkin,a and Hkin,b by
an orthogonal transformation such that

tr
(
e−sHkin

)
= tr

(
e−sHkin,a

)
tr
(
e−sHkin,b

)
. (16.17)

Hints:

• Antisymmetric matrices, like FAB, can be put into Darboux-form, i. e. into non-mixing
2-by-2 antisymmetric blocks, by an orthogonal transformation.

• Use without prove that in four dimensions and in Euclidean signature, the matrix
FµρF

ρν has the eigenvalues −a2 and −b2.

• If FAB =const, we can express the gauge field in a Landau-type gauge (show that!),
where

A = ax0dx1 + bx2dx3. (16.18)

.

An operator trace formally amounts to a sum over all eigenvalues of an operator, including the
multiplicity if the operator has degenerate eigenstates, namely

tr
(
e−sHkin,I

)
=
∑
n

MI,ne
−sEI,n , (16.19)

where the EI,n are the eigenvalues of Hkin,I , and MI,n is the multiplicity of eigenstate |EI,n〉 for
I = a, b and n can collectively stand for different quantum numbers. Note, though, that operators
can have continuous spectra.

(g) Compute the eigenvalues of Hkin,I .

Hint: You can reduce the problem to that of a one-dimensional quantum harmonic oscillator.

(h) There is something fishy going on with these eigenvalues. What is the multiplicity?

Don’t despair! We have seen this kind of infinity before. Recall that we want to obtain the
effective Lagrangian – not the effective action. Let us, for the moment, put our theory into a box.
What we found is that the multiplicity scales with the side length fo that box.
The number of allowed values of k provides the multiplicity but k also shifts the centre of motion
of the harmonic oscillator. Put the two two-dimensional systems into quadratic boxes of side
length L positioned such that the edges are at (x0, x1) = (0, 0) and (x0, x1) = (La, La) as well as
(x2, x3) = (0, 0) and (x2, x3) = (Lb, Lb), with periodic boundary conditions. As a result, the whole
theory is confined to a hypercube of box length L

(i) Estimate the number of states at fixed n, i. e. MI,n. by requiring that the centre of motion
for allowed k has to be inside the box. You should obtain

MI,n =
eIL2

2π
. (16.20)

This appears to be sleight of hand, but is actually exact in the limit L→∞ that we will take
in the end. Why? Hint: To answer the "why"-question, consider that ψ̄ is the eigenfunction
of the one-dimensional harmonic-oscillator Hamiltonian with shifted centre of motion.

(j) Show that

tr
(
e−sHkin,I

)
= V

e2ab

(4π)2 sinh(esa) sinh(esb)
, (16.21)

where V = L4 is the volume of the hypercube.



(a) Treating the gauge field as external field, we can write

Z =

∫
DAeiScl

(∫
Dψ̄Dψei

∫
x ψ̄(i /D−m)ψ

)
, (16.22)

with the classical (i. e. tree-level) action Scl = −
∫
x
FµνF

µν/4. The involved integral is Gaussian an can
be solved explicitly, yielding ∫

Dψ̄Dψei
∫
x ψ̄(i /D−m)ψ = N det(i /D −m), (16.23)

where we introduced some (infinite) normalization constant N . Thus, the effective action satisfies

eiΓ[A] = eiSclN det(i /D −m). (16.24)

Thus, we obtain for the effective action

Γ[A] = Scl − i log det(i /D −m)− i logN . (16.25)

Neglecting the infinite constant N – constants, even if they are infinite, are irrelevant to the effective
action in the absence of gravity –, we obtain the one-loop correction

Γ(1)[A] = Γ[A]− Scl = log det(i /D −m). (16.26)

(b) As the operator i /D−m is hermitian, we can re-express the logarithm of its determinant the sum
of itself and its hermitian conjugate, namely

log det i( /D −m) =
1

2

[
log det(i /D −m) + log det(−i /D −m)

]
, (16.27)

=
log[det(i /D −m) det(−i /D −m)]

2
, (16.28)

=
log[det(i /D −m)(−i /D −m)]

2
, (16.29)

=
log det( /D

2
+m2)

2
. (16.30)

Thus, we obtain

Γ(1)[A] = − i
2

log det( /D
2

+m2). (16.31)

(c) Using the fact, that for any operator log detO = tr logO, we can rewrite

Γ(1)[A] =− i

2
tr log( /D

2
+m2), (16.32)

=
i

2
tr
∫ ∞

0

ds

s
e−is( /D

2
+m2) + const, (16.33)

=
i

2

∫ ∞
0

ds

s
e−ism

2

tr
(
e−is /D

2
)

+ const. (16.34)

(d) We have

Hspin =γµγν(∂µ − ieAµ)(∂ν − ieAν), (16.35)
=(ηµν − iσµν)(∂µ − ieAµ)(∂ν − ieAν), (16.36)
=(∂ − ieA)2 − eσµν∂µAν , (16.37)

=(∂ − ieA)2 − e

2
σµνFµν , (16.38)



where we used that σµν is antisymmetric in its indices. SIGN WRONG?!
(e) The trace that we have to compute is solely in spinor space. First, we expand

tr
(
e−

ies
2
Fµνσµν

)
=
∞∑
n=0

(−ies
2

)n
n!

tr [(Fσ)n] . (16.39)

As the resulting expression is local and Lorentz invariant, it cannot depend on odd powers of the field
strength – a Lorentz invariant, local operator of odd power in field strength does not exist. Therefore
tr[(σF )2n+1] = 0 for integer n. Therefore, we can write

tr
(
e−

ies
2
Fµνσµν

)
=
∞∑
n=0

(−ies
2

)2n

(2n)!
tr
[
(Fσ)2n

]
. (16.40)

Next, let’s compute (Fσ)2, which we can express as

(Fσ)2 =FµνFρσσ
µνσρσ, (16.41)

=
1

2
FµνFρσ{σµν , σρσ}, (16.42)

=2FµνF
µν + iγ5εµνρσFµνFρσ, (16.43)

=8
(
F + iγ5G

)
. (16.44)

Thus, the kinds of traces, we have to take are

tr[(Fσ)2n] =8ntr[
(
F + iγ5G

)n
], (16.45)

=8n
n∑

m=0

(
n

m

)
tr
[
Fn−m(iγ5G)m

]
. (16.46)

Now we use the hints on γ5 to arrive at

tr[(Fσ)2n] =8n
n/2∑
m=0

(
n

2m

)[
Fn−2m(iG)2m

]
tr[14×4]. (16.47)

This is a binomial sum where all the odd powers of iG are projected out. Thus, we obtain

tr[(Fσ)2n] =
tr[14×4]

2
8n [(F + iG)n + (F − iG)n] . (16.48)

Thus, with tr[14×4] = 4 the whole sum becomes

tr
(
e−

ies
2
Fµνσµν

)
=2

∞∑
n=0

(
−
√

8ies
2

)2n

(2n)!
[(F + iG)n + (F − iG)n] , (16.49)

=2
[
cos
(es

2

√
8(F + iG)

)
+ cos

(es
2

√
8(F − iG)

)]
. (16.50)

Using the definitions of a and b, we obtain

√
F ± iG =± 1√

2
(ia∓ b) , (16.51)



such that

tr
(
e−

ies
2
Fµνσµν

)
=2 [cos (es(ia− b)) + cos (es(ia+ b))] , (16.52)

=4 cosh(esa) cos(esb), (16.53)

where we used a trigonometric addition formula in the last equality.
(f) FAB is an antisymmetric matrix also in Euclidean signature. Any antisymmetric 2n-by-2n matrix

can be brought into block diagonal form by an orthogonal transformation, where the n blocks are
themselves 2-by-2 matrices. This block-diagonalization amounts to diagonalizing the square of the
antisymmetric matrix. Then, nontrivial entries of the resulting 2-by-2 blocks are the eigenvalues of that
square of the antisymmetric matrix.

As the background is four-dimensional Euclidean space, i. e. symmetric under O(4)-transformations
aka 4D rotations, we are allowed to compute eigenvalues in such a frame. Then, the field strength
splits the tensor into electric and magnetic fields. The values in characterizing the 2-by-2 blocks are the
eigenvalues of FABFBC , namely −a2 and −b2 (see hint). Consequently, we can express the field strength
as

FAB =


0 a 0 0
−a 0 0 0
0 0 0 b
0 0 −b 0

 . (16.54)

Indeed, if we choose the Landau-type gauge given in Eq. (16.18), we obtain this form of the field strength
from

Fµν = ∂AAB − ∂BAA. (16.55)

Thus, after the orthogonal transformation and in Landau-type gauge, the operator Hkin reads

Hkin = Hkin,a +Hkin,b, (16.56)

where

Hkin,a = (−i∂0)2 + (−i∂1 − eax0)2 , (16.57)

Hkin,b = (−i∂2)2 + (−i∂3 − ebx2)2 . (16.58)

As these two Hamiltonians commute with each other, we can trace over them independently and split
their appearance in the exponent such that

tr
(
e−sHkin

)
= tr

(
e−s(Hkin,A+Hkin,B)

)
= tr

(
e−sHkin,A

)
tr
(
e−sHkin,B

)
. (16.59)

(g) The eigenvalue problem of the Hamiltonians Hkin,I (hereafter I = a, b) defines two Landau-
level systems in Landau gauge (i. e. charged particle in a constant background magnetic field). Their
dependence in x1 and x3 is only through derivatives. Thus, we can express the eigenfunctions of the
Hamiltonians as

ψa(x0, x1) = eikax1ψ̄a(x0), ψb(x2, x3) = eikbx3ψ̄b(x2), (16.60)

with the continuous quantum number k, and where the ψI are defined such that HIψI = EIψI . As a
result, the Hamiltonians become

Hkin,aψ̄a =
[
(−i∂0)2 + (ka − eax0)2] ψ̄a, (16.61)

Hkin,bψ̄b =
[
(−i∂2)2 + (kb − ebx2)2] ψ̄b. (16.62)



These two Hamiltonians describe harmonic oscillators whose centre of motion is shifted with respect
to the origin by an amount which depends on the quantum number k. This shift cannot be translated
away, because we cannot make sense of coordinates which depend on the state of a system, namely
the value of k. For the spectrum of the Hamiltonian, the position of the centre of motion is irrelevant,
though. To get the spectrum in the correct units, let us define dimensionless coordinates ya =

√
eax0

and yb =
√
ebx2 to bring the Hamiltonians into canonical form (recall I = a, b)

Hkin,Iψ̄I =eI
[
(−i∂yI )

2 + (yI − yI,c)2] ψ̄I , (16.63)

where yI,c = kI/
√
eI. As a result, we can read off the eigenvalues as the eigenvalues of a one-dimensional

harmonic oscillator, namely

Ekin,I,nI = 2eI

(
nI +

1

2

)
. (16.64)

(h) The problem is two-dimensional, but there is only one quantum number in the eigenvalues. The
other quantum number, k, only appears in the position of the centre of motion. Thus, the multiplicity
is infinite.

(i) In a box of length L the eigenvalues of the operators −i∂1 and −i∂3 are quantized as

ki,mI =
2πmI

LI
, (16.65)

where mI is a new discrete quantum number,i. e. a (possibly negative) integer. That’s just the free-
particle-in-a-box problem we all know and love/hate. The dimensionful position of the centre of motion
is

xI,c =
yI,c√
eI

=
kI
eI

=
2πmI

eILI
. (16.66)

To not shift the centre out of the box, mI has to satisfy

0 ≤ xI,c =
2πmI

eILI
≤ LI . (16.67)

Thus, we have

0 ≤ mI ≤
eIL2

I

2π
. (16.68)

As mI is an integer, we can basically have

MI,n =
eIL2

I

2π
+O(1) (16.69)

states in the box in any level n. In the limit LI →∞, we can neglect the order-one contribution. Thus,
in the box we obtain the multiplicity

MI,n =
eIL2

2π
, (16.70)

which is independent of n.
Why is this an accurate state counting when L→∞? Harmonic-oscillator eigenstates always contain

a Gaussian

ψ̄I ∝ e−
(yI−yI,c)

2

2 = e−
(x1,3−xI,c)

2

2eI . (16.71)



Thus the standard deviation of the states in comparison to the size of the box get smaller and smaller
with increasing L as

∆x1,3

L
=

√
eI

L
, (16.72)

i. e. they are extremely sharply peaked for large L.We can safely count a state as allowed if the boundary
loss is negligible, i. e. if ∫

x1,3 /∈[0,L]

|ψ̄|2 ≤ ε (16.73)

for some small fixed number ε. We can safely count them as not allowed if they are positioned almost
exclusively outside of the box, i. e. if ∫

x1,3 /∈[0,L]

|ψ̄|2 ≥ 1− ε. (16.74)

The only states that we cannot be sure about are those which satisfy neither of these two inequalities.
But as the states are sharply peaked for large L (i. e. there standard deviation is independent of L),
however small the value of ε is one chooses to work with, the number of states we are not sure about
always scales as O(1). As we already discussed above, the multiplicity given in Eq. (16.69) goes like
MI,n ∝ L2. Thus, order-one corrections are negligible in the limit L → ∞, and the number density we
computed is exact.

(h) We have to sum the eigenvalues, i. e.

tr
(
e−sHkin,I

)
=
∞∑
n=0

MI,ne
−sEn,I , (16.75)

=
eIL2

2π

∞∑
n=0

e−2esI(n+ 1
2), (16.76)

=
eIL2

2π
e−seI

∞∑
n=0

e−2seIn, (16.77)

=
eIL2

2π

eesI

e2esI − 1
, (16.78)

=
eIL2

4π sinh(esI)
. (16.79)

Thus, in total we obtain

tr
(
e−sHkin

)
=tr

(
e−sHkin,a

)
tr
(
e−sHkin,b

)
, (16.80)

=
e2abL4

(4π)2 sinh(esa) sinh(esb)
(16.81)

=V
e2ab

(4π)2 sinh(esa) sinh(esb)
. (16.82)

In total the Lagrangian reads (NEED WICK ROTATION)

Leff = lim
V→∞

(
Scl +

Γ(1)[A]

V

)
= Scl +

e2ab

(4π)2

sinh(esa) sinh(esb)

4 cosh esa cos esb.
(16.83)


