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This sheet is to review relativistic four-vector notation, the notion of tensors and related concepts,
which we will use extensively throughout the course.

Exercise 1: Spacetime coordinates and Lorentz transformations in the index notation

Motivation: Quantum field theory aims to reconcile quantum mechanics with special relativity. In the latter,
we are interested in covariant and contra-variant vectors that transform with Lorentz transformations, which we
denote with lower and upper indices. This exercise aims to remind you of the index notation which will be used
extensively throughout this course. If you have not covered it in previous courses, you can read A. Hebecker’s notes
on Electrodynamics Chapter 1.2 &1.3 (in German), D. Tong’s notes on Electromagnetism Ch. 4, or S. Weinberg’s
“Quantum Theory of Fields” Vol. 1, Chapter 2.3

Recall that in classical mechanics one talks about vectors x⃗, y⃗ ∈ R3. The length of the difference
of these vectors |x⃗ − y⃗|2 = (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2 is invariant under rotations and
translations. In special relativity, time and space are both coordinates of 4 dimensional spacetime
M = R1,3. Points in this spacetime are sometimes called "events" and their distance from the
origin is a 4-vector (i.e., a vector in M with 4 components) denoted as x = (t, x⃗) ≡ (x0, x⃗) ≡ {xµ}
with µ = 0, 1, 2, 3. The length of the difference of two such 4-vectors is defined as

|(x− y)|2 = +(x0 − y0)2 − |x⃗− y⃗|2, (1.1)

which is invariant under spatial rotations, translations and Lorentz boosts. In the index notation
covariant 4-vectors always have upper indices. One can also introduce the (Minkowski) metric
tensor

(ηµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (1.2)

with which we define co-vector components denoted with lower indices, xµ ≡ ηµνx
ν , i.e., we can

lower indices (only!) with contractions with the metric ηµν . a

a) Calculate the components xµ and the quantity xµx
µ.

b) Similarly we can define another object, denoted as ηµν , with which we can raise indices, i.e.,

xµ = ηµνxν . (1.3)

Show that ηµν = δµν (i.e. that ηµν is the inverse metric) using eq. (1.3) and calculate the
components ηµν .

Equation (1.1) expresses that all “inertial” frames of reference are equivalent under rotations,
translations or boosts since they do not alter the lengths of 4-vectors. The set of all these coor-
dinate transformations xµ → x′µ are collectively called “Poincaré transformations” and take the
form

x′µ = Λµ
νx

ν + aµ. (1.4)

https://www.thphys.uni-heidelberg.de/~hebecker/TP3/notes.pdf
https://www.damtp.cam.ac.uk/user/tong/em.html


c) Using eq. (1.1) and requiring that this expression is invariant under Lorentz transformations,
show the defining relation of the Lorentz transformations is

ηµνΛ
µ
κΛ

ν
λ = ηκλ. (1.5)

d) Show that (Λ−1)
µ
ν = Λ µ

ν . I know what you are thinking! Isn’t Λµ
ν = Λ µ

ν true? The answer
is NO! They are indeed different mathematical objects: the first acts on vectors and the
other on c-vectors.

aHere we have used the Einstein convention where repeated upper and lower indices are summed over, i.e.
xµx

µ = x0 · x0 + x1 · x1 + x2 · x2 + x3 · x3. This operation is also called contraction.

Exercise 2: Tensors, their Lorentz transformations, Einstein convention and index
notation

Motivation: This exercise continues from the main theme of exercise 1, namely relativistic four-vector notation.
The spacetime coordinate xµ of an event that we considered in exercise 1 is the simplest example of a four-vector.
Now, we generalize and review other four-vectors as well as tensors. We also review some properties of three-vectors,
i.e., the spatial parts of four-vectors.

In special relativity we introduced 4-vectors as 4-tuples of numbers organised as a column. We
denote the components of a vector Aµ with upper indices µ = 0, 1, 2, 3

A = (A0, A1, A2, A3). (2.6)

An example is the 4-velocity of a relativistic particle uµ ≡ dxµ

dτ
= (cγ, γv⃗), where v⃗ is the usual

3-dim. velocity and γ = 1√
1−v2/c2

. Vectors are not just any collection of four components, but

their defining property is that they transform in specific ways under a Lorentz transformation:
Vectors and co-vectors transform under a Lorentz transformations xµ → Λµ

νx
ν as

vµ → Λµ
νv

ν , (2.7)
uν → Λ µ

ν uµ . (2.8)

Objects with multiple upper and lower indices are called tensors and each index transforms ac-
cordingly, i.e.,

T µν
ρ → Λµ

κΛ
ν
λΛ

σ
ρ T κλ

σ . (2.9)

Just like for vectors, a tensor is not just any collection of quantities, but its defining property is
the above transformation under Lorentz transformations.

a) Show that the T µν∂µ∂νϕ is Lorentz invariant and that it vanishes if T µν is an antisymmetric
tensor and ϕ a function of xµ. (Hint: In the Einstein convention repeated indices are summed
and thus they can be renamed, hence their name “dummy” indices. Convince yourself of
that by expanding the abstract quantities AµB

µν and AαB
αν . Note that the free indices in

an equation like AµB
µν = Cν must always match.)

Another useful tensor apart from the metric is the Levi-Civita tensor. It can be defined as a rank
d tensor in d dimensions. Its rank-3-incarnation has three indices is defined as follows:

ϵijk =


+1 , for even perm. of (i, j, k) = (1, 2, 3)
−1 , for odd perm. of (i, j, k) = (1, 2, 3)
0 , otherwise

(2.10)



b) Show that for three-vectors C⃗ and D⃗ in Euclidean space the components of the cross product
vector A⃗× B⃗ can be written with the Levi-Civita tensor as follows

(C ×D)i = +ϵijkC
jDk , (2.11)

where we use the metric η = diag (+1,+1,+1) to raise or lower indices (i.e., in 3d Euclidean
space the components of the contravariant and covariant vectors do not differ by a sign).

c) Show that ϵijkϵmnk = (δimδ
j
n − δi nδ

j
m), ϵijkϵmjk = 2δim, and ϵijkϵijk = 6.

Another example of a 4-vector is the electromagnetic 4-potential where A0 = ϕ (scalar potential)
and A⃗ = (A1, A2, A3) (3-vector potential). Then the electric and magnetic field can be calculated
from the following:

E⃗ = −∇ϕ− ∂A⃗

∂t
, B⃗ = ∇× A⃗ , (2.12)

d) Use the index notation and the Minkowski metric to identify the components of the field-
strength tensor Fµν = ∂µAν − ∂νAµ in terms of the fields E⃗ and B⃗. Then calculate the
quantity −1

4
FµνF

µν and show that it is Lorentz invariant.

e) Show that ∂µF
µν = 0 is equivalent to the inhomogeneous Maxwell’s equations in vacuum

(absence of sources). Is ∂µF
µν Lorentz invariant? Does ∂µF

µν = 0 hold in every inertial
frame?


