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Quantum Field Theory I
Assignment Week 6

Classroom Exercise 1: Spontaneous symmetry breaking

Motivation: Here we present a toy example of spontaneous symmetry breaking. This mechanism has very impor-
tant applications in the theory of phase transitions. In particle physics, it provides the mechanism under which
the fundamental particles acquire mass, known as the Higgs mechanism. In QCD, symmetry breaking is behind

hadronization. As a result, it is important to see how this mechanism plays out in field theory.

Consider a theory of a 3-component real scalar field ¢7 = (¢1, ¢2, ¢3) and a complex scalar x, with
Lagrangian

1, = 1 5- 1. 7-5\2 -
L= 2087+ 51262 — 77 (7) + @000 — 92 x'x (1.1)
where A > 0,9 > 0.

a) Set x = 0 for now and identify the potential of the real scalar field. Show that this potential
is minimized for
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The above relation is satisfied by the vacuum of the theory, and the O(3) global symmetry
allows us to choose the vacuum state to be 50 = (0,0,v) without loss of generality. You
see already that the vacuum is not O(3)-symmetric anymore, the symmetry was broken
because the field acquired a non-zero vacuum expectation value. Do we have any remaining
symmetry though?

b) Now consider fluctuations of the ¢ field around the vacuum, i.e.,
¢ = (0,0,v) + 66 . (1.3)

Expand the y-part of the Lagrangian using Eq. (1.3) and show that the y-field obtains a
mass-term and specifically the mass parameter

mi = gv*. (1.4)

¢) Now write explicitly the fluctuation (55 in terms of components

—

0¢(x) = (my (), ma(x), h(z)) , (1.5)

Expand the purely g—part of the Lagrangian to quadratic order in the fluctuations, according
to the above expansion and show that the dynamical mode h(z) which is longitudinal to the
vacuum acquires a mass

m; = 2\? (1.6)

while the fluctuations (7, m2), which are orthogonal directions to the vacuum, are massless.
These massless fluctuations are known as Goldstone modes and they appear whenever a
global symmetry is spontaneously broken (this is also known as Goldstone’s theorem).




Exercise 1: The quantum effective action of the O(/N)-model

Motivation: In this exercise we review and generalize the calculation of the effective potential for the O(N) - model.
This is a useful calculation to understand how the computation goes through with multiple degrees of freedom. It
is also important for your intuition regarding the concept of renormalization, which is of paramount importance in
Quantum field theory.

In the lecture, you introduced the quantum effective action I'[(¢)] as the functional that
allows us to extract the equations that define the dynamics for the expectation value of the field
operators. These expectation values behave classically in the sense that they satisfy deterministic
equations of motion that however have taken into account quantum fluctuations. In this exercise,
we see how quantum effects affect the shape of the effective potential of the O(/N)-model or in
other words the multi-scalar field theory.

You also calculated the effective potential Vg = —% whose minimum defines the vacuum (or
vacua in the case of many minima) around which our quantum fields fluctuate. Here we extend
this calculation to the slightly more complicated case of the O(N) model, whose Lagrangian is

1oy 1 = 1. /072
L=50.07 - 306 = 7 (8*) . 1.7)

where A > 0 and s has an undefined sign for now®. We start by writing the the classical action as
an expansion S[¢| as an expansion around S[¢.] where ¢ is a solution of the classical equations
of motion. To that end,

a) Calculate the equations of motion for the components of the classical solution, ¢,.

Now one can attempt to calculate the path-integral by expanding around a classical solution.
However, one cannot obtain an exact expression since our action is not quadratic and so we
cannot use Gaussian integrals. To understand this, consider fluctations of the fields around a

classical solution by writing ¢' = ¢, + ¢’. Then the action can be written as follows:
Sa+ ¢l = Sloul + [ drtyp @t )|+ (1.8
cl = cl - - e .
o ()’ (y) =0

For quadratic actions the above expansion is exact, but in our case, it is only approximate.
Nevertheless, we are going to ignore higher orders, in what is called the “1-loop approximation”
for reasons that will become clear when we introduce Feynman diagrams. For now,

b) Show that the second functional derivative of the action is given by
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c) Use the Gaussian integrals we introduced last week to show that the generating functional
at vanishing sources Z[0] is given by

Z[0] = exp {%S[(Ed] _ %Tr [1og(D)H | (1.10)




where the functional trace is understood as a sum over all continuous or discrete indices’ in
some basis, i.e.,

™ [4] = i(A,i\AM,i) , (1.11)

and the operator D in position space is:
(v, ilDlz,3) = [0+ 509 + M(Ga(@)? + di(@)dh(@)] 0@ —y)  (112)

d) The global O(N) symmetry allows us to parametrize the classical solution as follows:

ng = (07"-a¢CI)T (113)

Write the functional trace explicitly in momentum space and show that

1 A | d'p 2 2
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where V = [ d*z the spacetime volume of our theory.

Now we would like to calculate the above momentum integrals. However, these integrals are
diverging for high momenta hence we would like to impose an energy cut-off A%2. There is a
problem though; the square of the 4-momentum p can be zero or even negative while at the same
time corresponding to high energies. This happens precisely because spacetime is Minkowskian
rather than Euclidean. To solve this problem we perform an analytic continuation® called Wick
rotation, where

t— —it = p’ — —iph . (1.15)

We then perform the calculation and at the end we Wick rotate back to obtain the QFT result.
To that end,

e) Show that after Wick rotating and changing to spherical Euclidean coordinates the 1-loop
contribution to the quantum effective action becomes
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Where did the A? factor come from inside the logarithm?

Note that for N = 1 we obtain the expression you computed in the lecture (up to con-
ventions), while for N > 1 we have extra contributions. Which kind of fluctuations are
responsible for these extra contributions? These are usually called Goldstone modes and we
are going to discuss them in the classroom exercise as well.




f) Calculate the above momentum integrals which are now finite and depend on the cutoff scale

A2. You should find that:
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Hint: You can calculate first the general integral

A2 4
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where A is a dimensionless quantity that takes the values

1z + >\¢Cl : for Goldstone modes
A= (1.19)

1z + 3)\—21 , for the massive scalar mode

Assuming now that ¢ is a constant expectation value that corresponds to our vacuum we have
that the effective potential is of the following form:
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This potential is divergent for A — co and that limit is the one we want to take in the end if we
want to take into account all quantum effects. Similarly to the lecture, if you expand the potential
in powers of ¢? you will see that only the coefficients of the quadratic and quartic terms diverge
while the higher orders are finite. This allows us to renormalize the theory by redefining the
parameters of the theory, that is the mass parameter x and the coupling A.

[A2(2/@ + 6% — A?) +2A*In <

g) [OPTIONAL TASK] Expand the potential to first and second order in ¢? (you might
want to use mathematica for that), and find the expressions of the renormalized mass and
coupling in terms of x, A and A, using the conditions®:
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The above calculation reveals something crucial. If you want your new parameters to be
finite in the limit A — oo then the original parameters x and A are really functions of the
cutoff A that would cancel the divergent contributions of the quantum fluctuations. In other
words, we can add particular counter-terms in the original Lagrnagian of the form

Sk ¢® , NG (1.23)

where the coefficients 0k and d A are diverging in the limit A — oco. You have actually figured
out already how these counter terms should look like, haven’t you?

If we proceed as above and absorb the divergences properly into the new parameters kpnys and
Aphys €nding up with a potential of the form

Kphys Aphvs oo
‘/;)ﬁ? - pThy gl + pThy ZCjtl + Vﬁlnitle i ) (124)
or more explicitly:
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where p is some physical scale of the system (e.g. the mass or vacuum expectation value of the
field). It comes out of the renormalization process which we will discuss in detail later in the
course.

Note that if we set N = 1 we obtain the result of the lecture up to our convention (3Anere = Alecture)-
The extra fields give extra contributions to the effective potential similar to the case of N = 1.

h Calculate the minimum of the effective potential as a function of Kpnys, A\pnys and . Use a
plotting software and see what happens as we increase the number of scalar fields. How does
the potential changes upon introducing quantum corrections in the case where rpny < 0 and
Kphys > 07

i) For the case of k = 0 write the form of the potential and find the new minimum. Observe
that the minimum is induced by a cancellation between a classical leading contribution and
the quantum correction. Is this a problem? What does this mean for our theory?

%For k > 0 we can write as a square of a number that would correspond to the mass parameter. But if K < 0
then this naively looks like an imaginary mass.

"The states here carry an extra index associated to the internal O(N)-symmetry, or in other words to the
different /distinguishable scalar fields.

¢This extends the domain of a function to complex numbers such that the complex function is analytic. Such a
condition is so restrictive that such continuation is unique. Here we will assume that we can use this technique to
assign a meaningful value to an otherwise divergent integral. Another example of such assignment is the Cauchy
principal-value for divergent real integrals with infinite boundaries.

IThese are called renormalization conditions and essentially prescribe how the finite parameters should be
defined. The choice of conditions is actually not unique.




