Heidelberg University WS 2025/2026

Quantum Field Theory I
Assignment Week 9

Classroom Exercise 1: Rotating spinors

Motivation: A nice way to think about fermions and their difference to bosons, is the behaviour of the first with
respect to rotations. Usually, rotating an object by 2w you recover the same object. We will see that fermions, which

are described by spinors, behave differently. One needs to do a 4w rotation of the fermion to recover it back.

You saw in the lecture that spinors transform in the spinor representation of the Lorentz algebra
which can be written with the help of the v matrices of the Clifford algebra
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M = 2 [7#, 7] (1.1)

Consider now a finite spatial rotations of a spinor with respect to the z-axis. These are generated
by the J3 = M1? generator of the Lorentz algebra (see Sheet 2).

a) Calculate the generator of rotations J? in the spinor representation using the v matrices in
3 0 )
the Weyl representation. You should find that J? = % ((E) ag) , whereo' are the usual

2-dimensional Pauli matrices.

b) Write the finite rotation of a spinor (by an angle f)generated by J2. What happens if you
rotate the spinor by § = 277 What about 6 = 477

Exercise 1: Spin representation of the Lorentz group

Motivation: You mentioned in the lecture that the v matrices satisfying the Clifford algebra, furnish a representation

of the Lorentz algebra and that the vy matrices transform as a Lorentz 4-vector. In this exercise, you are going to
prove these statements, which are crucial if we want to understand how to build relativistic theories quantum

theories of fermions through spinors.

In the lecture, you introduced the matrices v*, with = 0,1, 2, 3 that satisfy the Clifford algebra

{v*, 7"} = 20" axa (1.2)

for (1 + 3) spacetime dimensions. The relevance of the Clifford algebra and its representations
comes from the fact that one can build representations of the proper orthochronous Lorentz group
SO™(1,3) from representations of the Clifford algebra, i.e. choice of v matrices. The induced
representation we are interested it is called the spinor representation and is defined as:

v /L 12
M* = [V, "] (1.3)

a) First we show that the vector y* = (7°,~4%,~%,+?), in which each component of the vector
is a matrix (in Dirac indices), transforms as a four-vector, i.e. that it transforms in the




fundamental representation of the Lorentz group (recall Sheet 2, Ex.1a-1b). To that end,
show that:
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(M 7] = ( M(‘?und>) P (1.4)
po

where (M(’;an» = —i (n"*n"? — n¥Pn*?). Note that Eq. (1.4) is essentially the infinitesimal

version of Eq. (2.9) in Sheet 1, or directly Eq. (2.10) with P* — ~*.
b) Show that Eq. (1.3) defines a representation of the Lorentz algebra by showing that satisfies”
(MM, M%) = i (g MO — qp MY — o MHO P M) (15)
Note that this is a bit of a lengthy calculation in which you need to repeatedly apply the

anticommutation rule of the v matrices however, you can simplify it significantly by using
question a).

c) A relevant example for condensed matter physics is the restriction of the above in the 3-
dimensional Euclidean space where n*¥ — §% with 4,5 = 1,2,3. Show that the Pauli

matrices,
1 _ 0 1 2 0 _Z 3 _ 1 O
"‘(10)"’_¢0 7=\ —1) ¢ (L)

which satisfy the known su(2) algebra [0?,07] = 2ie"*o*, satisfy also the 3-dimensional
Clifford algebra (denoted as C1(3,0)). This expresses the mathematical fact,

Cl1(3,0) = SU(2) = SO(3) (1.7)

®This Lorentz algebra is different up to a minus sign to the one we showed in Sheet 1. This is equivalent since
we have the freedom to reparameterize the generators with an extra minus sign.This choice is the consistent one
with the sign conventions for M (tuna)y and Mgpinor above.

Exercise 2: All the v-matrices

Motivation: You have seen in the lecture that one can construct a matriz v° that anticommutes with all other ~y

matrices satisfying the Clifford algebra. In this exercise, we are going to showcase the utility of v° that allows us to
understand Dirac fermions through their Weyl compononents. Also v° is instrumental when it comes to describing
the weak interactions which only involve left-handed fermions.

You also saw in the lecture that one can construct another matrix, the 7°, from the four *
matrices, as

: i Voo
VP =" = S VY (1.8)

a) Show that {15,7#} = 0 and that (7°)® = L.

b) Show that in the (Weyl) representation for the y-matrices, the matrix 7° takes the form:

—I 0

5 2x2
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c) Show that the left and right projectors,

1
IP)LZ—(]I—’YE)) , Pr=

5 I+~°), (1.10)

1
2
are orthogonal, i.e., show that Py - P, = Py, Pg-Pr = Pg and Py, - Pg = Pg - P, = 0. Show

also that their action on a Dirac spinor ¥ = (U, \I/R)T, where ¥ is a left-handed Weyl
spinor and Vg is a right-handed Weyl spinor,

PU =0, , Ppl=Ug,. (1.11)

Now we can understand the Dirac Lagrangian £ = W (iv*9, — m) ¥, with ¥ = ¥T1% in terms of
left-handed and right-handed spinors.

d)

First, show the following identities:
VP =Ppy* , V*Pr=Pr7", (1.12)
and then that U, = U1~0 = UP, and ¥p = U0 = UP;.

Show that in terms of left-handed and right-handed spinors, the kinetic term and the mass
term can be written as

A0, 0 = U0,V + iUy 0, Vg , (1.13)

This last calculation shows that the kinetic term decouples the two Weyl spinors that build
up the Dirac spinor, thus massless Dirac spinors are equivalently a system of two decoupled
Weyl spinors with different handedness. On the contrary, massive Dirac spinors are not
composed of independent Weyl spinors because the mass term necessarily mixes them up!




