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Classroom Exercise 1: Rotating spinors

Motivation: A nice way to think about fermions and their difference to bosons, is the behaviour of the first with
respect to rotations. Usually, rotating an object by 2π you recover the same object. We will see that fermions, which
are described by spinors, behave differently. One needs to do a 4π rotation of the fermion to recover it back.

You saw in the lecture that spinors transform in the spinor representation of the Lorentz algebra
which can be written with the help of the γ matrices of the Clifford algebra

Mµν =
i

4
[γµ, γν ] (1.1)

Consider now a finite spatial rotations of a spinor with respect to the z-axis. These are generated
by the J3 = M12 generator of the Lorentz algebra (see Sheet 2).

a) Calculate the generator of rotations J3 in the spinor representation using the γ matrices in

the Weyl representation. You should find that J3 = 1
2

(
σ3 0
0 σ3

)
, whereσi are the usual

2-dimensional Pauli matrices.

b) Write the finite rotation of a spinor (by an angle θ)generated by J3. What happens if you
rotate the spinor by θ = 2π? What about θ = 4π?

Exercise 1: Spin representation of the Lorentz group

Motivation: You mentioned in the lecture that the γ matrices satisfying the Clifford algebra, furnish a representation
of the Lorentz algebra and that the γ matrices transform as a Lorentz 4-vector. In this exercise, you are going to
prove these statements, which are crucial if we want to understand how to build relativistic theories quantum
theories of fermions through spinors.

In the lecture, you introduced the matrices γµ, with µ = 0, 1, 2, 3 that satisfy the Clifford algebra

{γµ, γν} = 2ηµνI4×4 , (1.2)

for (1 + 3) spacetime dimensions. The relevance of the Clifford algebra and its representations
comes from the fact that one can build representations of the proper orthochronous Lorentz group
SO+(1, 3) from representations of the Clifford algebra, i.e. choice of γ matrices. The induced
representation we are interested it is called the spinor representation and is defined as:

Mµν =
i

4
[γµ, γν ] (1.3)

a) First we show that the vector γµ = (γ0, γ1, γ2, γ3), in which each component of the vector
is a matrix (in Dirac indices), transforms as a four-vector, i.e. that it transforms in the



fundamental representation of the Lorentz group (recall Sheet 2, Ex.1a-1b). To that end,
show that:

[Mµν , γρ] =
(
Mµν

(fund)

)ρ

σ
γσ , (1.4)

where
(
Mµν

(fund)

)ρσ

≡ −i (ηµρηνσ − ηνρηµσ). Note that Eq. (1.4) is essentially the infinitesimal
version of Eq. (2.9) in Sheet 1, or directly Eq. (2.10) with P µ → γµ.

b) Show that Eq. (1.3) defines a representation of the Lorentz algebra by showing that satisfiesa

[Mµν ,Mρσ] = i (ηνρMµσ − ηµρMνσ − ηνσMµρ + ηµσMνρ) (1.5)

Note that this is a bit of a lengthy calculation in which you need to repeatedly apply the
anticommutation rule of the γ matrices however, you can simplify it significantly by using
question a).

c) A relevant example for condensed matter physics is the restriction of the above in the 3-
dimensional Euclidean space where ηµν → δij with i, j = 1, 2, 3. Show that the Pauli
matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (1.6)

which satisfy the known su(2) algebra [σi, σj] = 2iϵijkσk, satisfy also the 3-dimensional
Clifford algebra (denoted as Cl(3, 0)). This expresses the mathematical fact,

Cl(3, 0) ∼= SU(2) ∼= SO(3) (1.7)
aThis Lorentz algebra is different up to a minus sign to the one we showed in Sheet 1. This is equivalent since

we have the freedom to reparameterize the generators with an extra minus sign.This choice is the consistent one
with the sign conventions for M(fund) and Mspinor above.

Exercise 2: All the γ-matrices

Motivation: You have seen in the lecture that one can construct a matrix γ5 that anticommutes with all other γ

matrices satisfying the Clifford algebra. In this exercise, we are going to showcase the utility of γ5 that allows us to
understand Dirac fermions through their Weyl compononents. Also γ5 is instrumental when it comes to describing
the weak interactions which only involve left-handed fermions.

You also saw in the lecture that one can construct another matrix, the γ5, from the four γµ

matrices, as

γ5 = iγ0γ1γ2γ3 =
i

4!
ϵµνρσγ

µγνγργσ . (1.8)

a) Show that {γ5, γµ} = 0 and that (γ5)
2
= I4×4.

b) Show that in the (Weyl) representation for the γ-matrices, the matrix γ5 takes the form:

γ5 =

(
−I2×2 0
0 I2×2

)
. (1.9)



c) Show that the left and right projectors,

PL =
1

2

(
I− γ5

)
, PR =

1

2

(
I+ γ5

)
, (1.10)

are orthogonal, i.e., show that PL · PL = PL, PR · PR = PR and PL · PR = PR · PL = 0. Show
also that their action on a Dirac spinor Ψ = (ΨL,ΨR)

T, where ΨL is a left-handed Weyl
spinor and ΨR is a right-handed Weyl spinor,

PLΨ = ΨL , PRΨ = ΨR . (1.11)

Now we can understand the Dirac Lagrangian L = Ψ̄ (iγµ∂µ −m)Ψ, with Ψ̄ = Ψ†γ0, in terms of
left-handed and right-handed spinors.

d) First, show the following identities:

γµPL = PRγ
µ , γµPR = PLγ

µ , (1.12)

and then that Ψ̄L ≡ Ψ†
Lγ

0 = Ψ̄PR and Ψ̄R ≡ Ψ†
Rγ

0 = Ψ̄PL.

e) Show that in terms of left-handed and right-handed spinors, the kinetic term and the mass
term can be written as

iΨ̄γµ∂µΨ = iΨ̄Lγ
µ∂µΨL + iΨ̄Rγ

µ∂µΨR , (1.13)
mΨ̄Ψ = m

(
Ψ̄LΨR + Ψ̄RΨL

)
. (1.14)

This last calculation shows that the kinetic term decouples the two Weyl spinors that build
up the Dirac spinor, thus massless Dirac spinors are equivalently a system of two decoupled
Weyl spinors with different handedness. On the contrary, massive Dirac spinors are not
composed of independent Weyl spinors because the mass term necessarily mixes them up!


