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Unitary Fermi gas

• Fermi gas with contact interaction

• scattering amplitude (3d)
 

• strong scattering in unitary limit

• universal for dilute system (broad resonance)
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Figure 3. Ultracold Fermi gas phase diagram. Sketch of the Bardeen-Cooper-
Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover for ultracold Fermi
gases. When the scattering length as passes through a pole, so that 1/(kFas) → 0,
one obtains a strongly correlated fluid, the unitary gas. The critical temperature Tc

for the phase transition only approaches the pairing temperature Tpair in the limit
1/(kFa) → −∞. The crossover region is the strongly interacting regime, loosely
defined by |1/(kFas)| < 1. Note that we denote the scattering length by a in the text.
Used with permission from Ref. [33].

of the low density and ultracold temperatures these interactions are dominated by an

effective s-wave contact interaction. The scattering amplitude is of the form

f(k) =
1

−1/a + r0k2/2− ik
, (2)

where a is the s-wave scattering length and r0 is the effective range. Higher partial waves

as well as short range corrections are suppressed by powers of r0/λdB and r0n1/3.! The

scattering length is widely tunable by a Feshbach resonance [32], an external magnetic

field that brings a weakly bound excited molecular state into resonance with the unbound
atomic scattering state.

Each of the different trapped atomic elements used in ultracold quantum gas

experiments has an internal spin structure due to hyperfine structure of the atom, that

! The range of the atomic potential is on the order of the van der Waals length l = (mC6/!2)1/4, where
C6 controls the van der Waals tail of the atomic potential, V ∼ C6/r6. We assume that the p-wave
scattering length is natural, meaning ap ∼ r0.

[Sa de Melo, Physics Today 2008]
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Renormalization group

• vacuum (T=0, n=0): exact beta function        

• 2<d<4: unstable fixed point g* (unitarity, Feshbach resonance)

• detuning 1/a is relevant perturbation

dg

d�
= (2− d)g − g2

2

[Nikolic, Sachdev; Diehl et al.]
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Fig. 8.3 Crossovers of the dilute Bose gas in d = 3 as a function of the chemical potential µ and
the temperature T. The regimes labeled A, B, C are described in Ref. [17]. The solid line is the
finite-temperature phase transition where the superfluid order disappears; the shaded region is where
there is an effective classical description of thermal fluctuations. The contours of constant density
are similar to those in Fig. 8.1 and are not displayed
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Fig. 8.4 The exact RG flow of (8.36). a For d < 2 (ε > 0), the infrared stable fixed point at
u = u∗ > 0 describes quantum liquids of either bosons or fermions with repulsive interactions
which are generically universal in the low density limit. In d = 1 this fixed point is described by the
spinless free Fermi gas (‘Tonks’ gas), for all statistics and spin of the constituent particles. b For
d > 2 (ε < 0) the infrared unstable fixed point at u = u∗ < 0 describes the Feshbach resonance
which obtains for the case of attractive interactions. The relevant perturbation (u −u∗) corresponds
to the the detuning from the resonant interaction

be attractive: unlike the Bose gas case, the u < 0 case is not immediately unstable,
because the Pauli exclusion principle can stabilize a Fermi gas even with attractive
interactions. Furthermore, at the same time we should also consider the physically
important case with d > 2, when ε < 0. The distinct nature of the RG flows predicted
by (8.36) for the two signs of ε are shown in Fig. 8.4.

Notice the unstable fixed point present for d > 2 and u < 0. Thus accessing
the fixed point requires fine-tuning of the microscopic couplings. As discussed in
[11, 12], this fixed point describes a Fermi gas at a Feshbach resonance, where the
interaction between the fermions is universal. For u < u∗, the flow is to u → −∞:

[Nikolic, Sachdev 2007]
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Quantum critical point

• resonant fixed point is Quantum critical point (QCP)

• density n is order parameter: vacuum for T=0, μ<0

[Nikolic, Sachdev]

PHYSICAL REVIEW A 86, 013616 (2012)

Quantum critical transport in the unitary Fermi gas

Tilman Enss
Physik Department, Technische Universität München, D-85747 Garching, Germany

(Received 5 April 2012; published 12 July 2012)

The thermodynamic and transport properties of the unitary Fermi gas at finite temperature T are governed by
a quantum critical point at T = 0 and zero density. We compute the universal shear viscosity to entropy ratio
η/s in the high-temperature quantum critical regime T ! |µ| and find that this strongly coupled quantum fluid
comes close to perfect fluidity η/s = h̄/(4πkB ). Using a controlled large-N expansion, we show that already
at the first nontrivial order the equation of state and the Tan contact density C agree well with the most recent
experimental measurements and theoretical Luttinger-Ward and bold diagrammatic Monte Carlo calculations.
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I. INTRODUCTION

The unitary Fermi gas is a basic many-body problem which
describes strongly interacting fermions ranging from ultracold
atoms near a Feshbach resonance [1–3] to dilute neutron
matter. The properties in the dilute limit are independent of
the microscopic details of the interaction potential and share
a common universal phase diagram. A quantum critical point
(QCP) at zero temperature governs the critical behavior in the
whole phase diagram as a function of temperature T , chemical
potential µ, detuning from the Feshbach resonance ν, and
magnetic field h [4–6]. Whereas conventional QCPs separate
two phases of finite density, in our case the density itself is the
order parameter which vanishes for µ < 0 and assumes a finite
value for µ > 0 [6]. In the spin-balanced case h = 0 and at
resonance ν = 0 the Fermi gas is unitary and scale invariant. In
terms of the thermal length λT = h̄(2π/mkBT )1/2 the density
equation of state nλ3

T = fn(µ/kBT ) is a universal function
which has been measured experimentally [7,8]. The unitary
Fermi gas becomes superfluid at a universal Tc(µ) ≈ 0.4 µ [8];
see Fig. 1. In this work we focus on the quantum critical
regime T > 0 above the QCP at h = 0, ν = 0, and µ = 0,
where nλ3

T = fn(0) ≈ 2.9 is a universal constant. Since the
thermal length λT is comparable to the mean particle spacing
n−1/3, quantum and thermal effects are equally important.
There is no small parameter, and it is a theoretical challenge to
compute the critical properties. Recent measurements [8] and
computations [9,10] of the equation of state now agree to the
percent level. However, a precise determination of transport
properties is much more demanding.

In order to reliably estimate transport coefficients we
perform controlled calculations in a large-N expansion [5,11].
Due to the lack of an intrinsic small parameter we introduce
an artificial small parameter, 1/N , which organizes the
different diagrammatic contributions, or scattering processes,
into orders of 1/N . The original theory is recovered in
the limit N = 1. One can perform controlled calculations
by including all diagrams up to a certain order in 1/N ,
and these approximations can be systematically improved
by going to higher order. This approach is similar to the ε
expansion in the dimension of space. The advantage over
perturbation theory is that it is controlled even at strong
interaction, while in contrast to quantum Monte Carlo it works
directly in the thermodynamic limit and needs no finite-size
scaling.

We thus obtain results for the Tan contact density [12–14]
and the transport properties in the quantum critical region.
The shear viscosity η = h̄λ−3

T fη(µ/kBT ) assumes a universal
value at µ = 0. In kinetic theory η = P τ is given by the pres-
sure P times the viscous scattering time τ , which is related to
the incoherent relaxation time of the gapless critical excitations
above the QCP. The entropy density s = kBλ−3

T fs(µ/kBT ) at
µ = 0 is exactly proportional to the pressure, s = 5P/2T , and
the viscosity to entropy ratio (at N = 1),

η

s
= 2

5
T τ ≈ 0.74

h̄

kB

, (1)

is a universal number independent of temperature. A
temperature-independent ratio η/s = h̄/(4πkB) has been
found in certain string theories [15] and is conjectured to hold
as a lower bound in other models [16]. Strongly interacting
quantum fluids which saturate this bound are called perfect
fluids [17]. Among real nonrelativistic fluids the unitary Fermi
gas comes closest to the bound and is almost perfect [18–20],
while for graphene the viscosity decreases logarithmically with
temperature in the quantum critical regime [21].

We compare our large-N results at N = 1 [22] with exper-
imental measurements [8,19,23,24] and other theoretical ap-
proaches, including self-consistent Luttinger-Ward [18,25,26]
and bold diagrammatic Monte Carlo (BDMC) [9] calculations;
see Table I. The excellent agreement between experiment and
BDMC provides a reliable reference to assess the accuracy of
other methods. We find very good agreement of the pressure
P with large-N (3% above BDMC) and Luttinger-Ward (4%
below) calculations, just slightly outside the error bars, and
we find similarly good agreement for the entropy density s.
From the BDMC equation-of-state simulations of [9], one can

FIG. 1. (Color online) Universal phase diagram of the unitary
Fermi gas.

013616-11050-2947/2012/86(1)/013616(8) ©2012 American Physical Society
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Universal properties

• thermodynamic functions depend
only on μ/T (“angle”)

e.g. equation of state

• measured by Zwierlein group, Science 2012,
computed using Bold Diagrammatic MC:

agreement on percent level (benchmark)

• open: contact, imbalance, superfluid (in progr.)
challenge: transport

focus on quantum critical regime: 
quantum and thermal fluctuations equally important
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properties is much more demanding.
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an artificial small parameter, 1/N , which organizes the
different diagrammatic contributions, or scattering processes,
into orders of 1/N . The original theory is recovered in
the limit N = 1. One can perform controlled calculations
by including all diagrams up to a certain order in 1/N ,
and these approximations can be systematically improved
by going to higher order. This approach is similar to the ε
expansion in the dimension of space. The advantage over
perturbation theory is that it is controlled even at strong
interaction, while in contrast to quantum Monte Carlo it works
directly in the thermodynamic limit and needs no finite-size
scaling.
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as a lower bound in other models [16]. Strongly interacting
quantum fluids which saturate this bound are called perfect
fluids [17]. Among real nonrelativistic fluids the unitary Fermi
gas comes closest to the bound and is almost perfect [18–20],
while for graphene the viscosity decreases logarithmically with
temperature in the quantum critical regime [21].

We compare our large-N results at N = 1 [22] with exper-
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Figure 3 | Constructing the EOS from in situ imaging. The atom cloud shown contains N=8× 10
4
atoms for each spin state, with a local Fermi energy of

EF = 370 nK at the centre. a, Absorption image of the atomic cloud after quadrant averaging. b, Reconstructed local density n(ρ,z). c, Equipotential
averaging produces a low-noise density profile, n versus V. Thermometry is performed by fitting the experimental data (red) to the known portion of the

EOS (solid blue line), starting with the virial expansion for βµ<−1.25 (green dashed line). In this example, the EOS is known for βµ≤−0.25, and the fit to

the density profile yields T= 113 nK, and βµ = 1.63. d, Given µ and T, the density profile can be rescaled to produce the EOS nλ3 versus βµ.
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Figure 4 | Equation of state of the unitary Fermi gas in the normal phase. Density n (a) and pressure P (b) of a unitary Fermi gas, normalized by the

density n0 and the pressure P0 of a non-interacting Fermi gas, versus the ratio of chemical potential µ to temperature T. Blue filled squares: BDMC (this

work), red filled circles: experiment (this work). The BDMC error bars are estimated upper bounds on systematic errors. The error bars are one standard

deviation systematic plus statistical errors, with the additional uncertainty from the Feshbach resonance position shown by the upper and lower margins as

red solid lines. Black dashed line and red triangles: Theory and experiment (this work) for the ideal Fermi gas, used to assess the experimental systematic

error. Green solid line: third order virial expansion. Open squares: first order bold diagram
15,21

. Green open circles: Auxiliary Field QMC (ref. 11). Star:

superfluid transition point from Determinental Diagrammatic Monte Carlo
13
. Filled diamonds: experimental pressure EOS (ref. 22). Open pentagons:

pressure EOS (ref. 23).
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λT ≈ n−1/3
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Effective action

• Hubbard-Stratonovich transformation in Cooper channel: 
exchange of virtual molecules (T-matrix)

• integrate out fermions: bosonic effective action

(positive mass!)

S =

�
ddx dτ

�

σ=↑,↓
ψ∗
σ

�
∂τ − ∇2

2m
− µσ

�
ψσ − 1

g0
|φ|2 − hψ∗

↑ψ
∗
↓φ− hφ∗ψ↓ψ↑

g h h
G−1

φ,Λ

tr lnGf [φ] = b2(q,ω) |φ|2 + b4(qi,ωi) |φ|4 + · · ·

Conclusion

• significant improvement of results by inclusion of w/q dependence of propagators

• analytical continuation -> spectral function, excited states, decay rates

• We have developed an algorithm that is completely general for all types of 
two-point Green‘s functions for bosons and fermions (isotropic interactions)

) = ∂̃t

Tuesday, July 26, 2011
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Vacuum (at QCP)

• 3d, T=μ=0: 

• anomalous dimension:

• n-point functions                     all scale marginally [Enss 2012]

• no simple       theory (Hertz-Millis)

• in vacuum no feedback on 2-point function, dg/dl remains exact 
but possible limit cycles in 3-body sector can change ground state
(Efimov physics, Richard Schmidt’s talk on Friday) 
[Floerchinger, Schmidt, Moroz, Wetterich]

b2(q,ω) �
�

q2

4m
− ω − i0

ηφ = 4− d > 0, dim[φ] =
d+ ηφ

2
= 2 (2 < d < 4)

bn ∼ q5−2n

φ4
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Finite density

• T>0, n>0: all higher n-point functions feed back into ϕ propagator,
no obvious strategy to select diagrams (no small parameter)

• strong coupling many-body problem:
- sample all diagrams (Bold Diagrammatic MC)
- Luttinger-Ward (2PI): self-consistent propagators (1-loop skeleton diagrams)
- functional RG: derivative expansion; full ω,q [Schmidt, Enss 2011]

• large-N expansion:   [Nikolic, Sachdev]
N flavors of ↑↓ fermions
fermion loops: factor N
pair propagators: factor 1/N (N=∞ free fermions)
controlled expansion in orders 1/N
extrapolate to physical case N=1
details:  Enss, PRA 86, 013616 (2012)
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Results: thermodynamics

• leading order large-N expansion (NSR) at μ=0:  [Enss 2012]

• pressure and entropy within 3%, contact density within 1% of expt./BDMC:

• good and efficient approximations available!

TILMAN ENSS PHYSICAL REVIEW A 86, 013616 (2012)

Note that this order of the 1/N expansion extrapolated to
N = 1 is exactly the Nozières–Schmitt-Rink (NSR) theory
[22]. The Matsubara frequency summation can be continued
analytically to real frequency,

!

N
=

∑

k

{
− 2T ln[1 + e−β(εk−µ)]

− 1
N

∫ ∞

−∞

dω

π
b(ω) δ(k,ω,µ,ν)

}
, (12)

with the scattering phase shift δ(k,ω,µ,ν) =
Im ln T (k,ω,µ,ν) and the Bose function b(ω) =
[exp(βω) − 1]−1. Specifically in d = 3 the T matrix
reads (in the spin-balanced case h = 0)

T −1(k,ω) = −mν

4π
− m3/2

4π

√
εk

2
− ω − i0 − 2µ

+ m

2π2k

∫ ∞

0
dp

p

1 + eβ(εp−µ)

× ln
[
ω + i0 + 2µ − εp − εk−p

ω + i0 + 2µ − εp − εk+p

]
. (13)

The integral is convergent and readily evaluated numerically.

A. Thermodynamics

Using (13), we obtain for the pressure P = −!/Ld

(equation of state) at µ = 0, ν = 0, h = 0, and T > 0

P

N
= − !

NLd
= P (0) + 1

N
P (1) + · · ·

=
(

1.734 400 + 1
N

0.747 561
)

T λ−3
T , (14)

where

P (0) = 2(1 − 2−3/2)ζ (5/2) T λ−3
T ,

P (1) =
∫

d3k

(2π )3

dω

π
b(ω)δ(k,ω) .

Since the unitary Fermi gas is scale invariant, the internal
energy density ε is proportional to the pressure [32],

ε

N
= 3P

2N
=

(
2.601 600 + 1

N
1.121 341

)
T λ−3

T . (15)

Also the entropy density s = ∂P/∂T = (ε + P − µn)/T at
unitarity and µ = 0 is proportional to the pressure,

s

N
= 5P

2T N
=

(
4.335 999 + 1

N
1.868 902

)
λ−3

T . (16)

The density at µ = 0 to order O(1/N ) is

n

N
= d(P/N)

dµ
= n(0) + 1

N
n(1) + · · ·

=
(

1.530 294 + 1
N

1.143 936
)

λ−3
T , (17)

where

n(0) = 2(1 − 2−1/2)ζ (3/2) λ−3
T ,

n(1) =
∫

d3k

(2π )3

dω

π
b(ω)

dδ(k,ω)
dµ

.

If this order of the 1/N expansion is evaluated at N = 1 (NSR),
we obtain for the density

n = 2.674 230 λ−3
T (N = 1). (18)

The ratio of thermal length to mean particle spacing, λT n1/3 ≈
1.388, is of order unity; hence quantum and thermal fluctua-
tions are equally important in the high-temperature quantum
critical region. The density determines the Fermi temperature,

kBTF = k2
F

2m
= (3π2n)2/3

2m
, (19)

which is useful to compare with data given in terms of the
reduced temperature,

θ ≡ T

TF

=
(

3
√

π

8
nλ3

T

)−2/3

= 0.681 496 (N = 1). (20)

Finally, the Tan contact density is defined as the total
spectral weight (density) of the pairing field [12–14],

C = m2〈φ∗φ〉 = −m2

N

∫
d3k

(2π )3

dω

π
b(ω) Im T (k,ω)

= 26.840 128
λ−4

T

N
. (21)

At N = 1 the contact can be expressed in terms of kF using
Eq. (19) which yields C = 0.0789 k4

F . This is equivalent to
the non-self-consistent T matrix result [33] and agrees with
the BDMC calculation within 1.4% (see Table I), but it differs
from the result in [6] by a factor of 2.

Note that the Tan adiabatic theorem [13],

d(−P/N)
dν

= C

4πm
, (22)

is fulfilled exactly in the 1/N expansion: the change of the
pressure with detuning is

d(−P/N)
dν

= − 1
N

∫
d3k

(2π )3

dω

π
b(ω)

dδ(k,ω)
dν

= − m

4πN

∫
d3k

(2π )3

dω

π
b(ω) Im T (k,ω) (23)

because the change of scattering phase shift with detuning
is dδ(k,ω)/dν = (m/4π ) Im T (k,ω), and using Eq. (21), we
obtain (22).

B. Transport

At N = ∞ the fermions are free: once a shear flow is
excited in the infinite system, it will continue forever, and the
dynamic shear viscosity is

η(ω) = πP δ(ω) . (24)

The Drude weight is proportional to the pressure, in accordance
with the viscosity sum rule [18,34,35]. At order 1/N the
fermions acquire a self-energy correction by scattering off
pairing fluctuations, so for large N the fermions are almost
free quasiparticles with lifetime O(N ) and an energy shift of
the quasiparticle dispersion Re. ∼ 1/N . In kinetic theory the
dynamic viscosity becomes

η(ω) = P τ

1 + (ωτ )2
, (25)

013616-4

2

Experiment Large-N LuttWard BoldDiagMC

nλ3
T 2.966(35) [8] 2.674 3.108 [26] 2.90(5) [9]

P [nkBT ] 0.891(19) [8] 0.928 0.863 [26] 0.90(2) [9]

s [nkB ] 2.227(38) [8] 2.320 2.177 [26] 2.25(5) [9]

C [k4
F ] 0.0789 0.084 [18] 0.080(5) [27]

η/s [!/kB ] 1.0(2) [19, 28] 0.741 0.708 [18]

TABLE I: Thermodynamic properties and transport coeffi-
cients of the unitary Fermi gas in the quantum critical region
µ = 0, T > 0: density n, pressure P , entropy density s, Tan
contact density C, and shear viscosity η, with Fermi momen-
tum kF = (3π2n)1/3. Large-N results extrapolated to N = 1.

We compare our large-N results at N = 1 [22] with
experimental measurements [8, 19, 23, 24] and other the-
oretical approaches, including self-consistent Luttinger-
Ward [18, 25, 26] and Bold Diagrammatic Monte Carlo
(BDMC) [9] calculations, see Table I.

The excellent agreement between experiment and
BDMC provides a reliable reference to assess the accu-
racy of other methods. We find very good agreement
of the pressure P with large-N (3% above BDMC) and
Luttinger-Ward (4% below) calculations, just slightly
outside the error bars, and we find similarly good agree-
ment for the entropy density s. From the BDMC equa-
tion of state simulations of [9], one can extract (via the
pair propagator) a preliminary value for the contact den-
sity [27] C/k4F = 0.080(5). Our large-N value is just
1.4% below the BDMC value, which is remarkable given
how simple the calculation is, while the Luttinger-Ward
value lies about 5% above the BDMC value, just inside
the error bars. Experimental measurements of the con-
tact [24] yield C = 0.030(6) k4F for the trapped gas at
µ = 0 (T/TF = 0.64), which agrees well with trap aver-
aged calculations [24]. However, knowledge of the trap
averaged contact does not allow us to reconstruct the
corresponding value for the homogeneous system, so we
refrain from a direct comparison. Dynamical and trans-
port properties such as η/s are harder to compute than
thermodynamic properties, which makes simple approxi-
mations all the more valuable: we find that η/s agrees to
5% between large-N and Luttinger-Ward theory, giving a
narrow estimate. The viscosity of a trapped gas has been
measured experimentally and agrees with trap averaged
calculations [19, 23, 28], but differs from the viscosity of
the homogeneous system.

The body of this paper explains how these values are
obtained: in section II we review the renormalization
group (RG) analysis of the unitary Fermi gas and its uni-
versal phase diagram, in section III we perform thermo-
dynamic and transport calculations using the controlled
large-N expansion, and in section IV we extract the µ = 0
data from the self-consistent Luttinger-Ward calculation,
before concluding in section V. In particular, in Ap-
pendix A we give a new derivation of the Tan adiabatic
and energy relations and show that they are satisfied ex-
actly in self-consistent Luttinger-Ward approximations,

while Appendix B provides technical details on the quan-
tum kinetic equation.

II. PHASE DIAGRAM OF THE UNITARY
FERMI GAS

The interacting two-component Fermi gas is described
by the action

SF =

∫

ddx dτ
{

∑

σ

ψ∗
σ

(

∂τ −
∇2

2m
− µσ

)

ψσ

+ g0ψ
∗
↑ψ

∗
↓ψ↓ψ↑

}

(2)

where ψσ are Grassmann variables representing fermion
species σ = ↑, ↓ of equal mass m, and the imaginary time
τ = 0 . . . β runs up to the inverse temperature β = 1/T
(we use units where ! = 1 = kB). µσ is the chemical
potential of species σ, but we will only consider the spin-
balanced case µ = µ↑ = µ↓.

In d = 3 dimensions the scattering amplitude for small
relative momenta k can be written in the form [2]

f(k) =
1

−1/a− ik + rek2/2
(3)

where the scattering length a can be varied experimen-
tally by an applied magnetic field, and the effective range
re depends on the details of the interatomic potential. By
fine-tuning to a Feshbach resonance 1/a → 0 the two-
particle scattering remains strong at low energy k → 0
and reaches the unitarity limit f(k) = i/k independent
of re. The low-energy properties remain universal at fi-
nite density n > 0 if re is much shorter than the mean
particle spacing n−1/3. This condition kF re → 0 is real-
ized physically for a dilute gas and near a broad Feshbach
resonance as in 6Li [2].

A finite re regularizes the contact interaction at short
distances (UV), and for a sharp momentum cutoff Λ ∼
1/|re| the detuning ν is related to the bare coupling g0
in (2) by

ν ≡ −
1

a
= −

4π

m

(

1

g0
+

mΛ

2π2

)

. (4)

Note that the resonance ν = 0 can only be reached for
attractive interactions g0 < 0, when a bound state of the
interatomic potential is at the continuum threshold.

More generally, this can be understood from an RG
analysis of the model (2): at zero temperature and den-
sity the running coupling g obeys the exact flow equation
[4–6]

dg

d)
= (2− d)g −

g2

2
(5)

which in 2 < d < 4 has an unstable fixed point at
g∗ = −2(d− 2) < 0 corresponding to the Feshbach reso-
nance. For smaller g < g∗ the fermions will form a BEC
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Results: transport

• Boltzmann equation justified in large-N expansion;
need in-medium T-matrix for consistency!

• transport in quantum critical regime: scaling with temperature

• viscosity η/s measures incoherent relaxation rate:

• large-N in 2d: viscosity
[Enss, Küppersbusch, Fritz,
      PRA 86, 013617 (2012)]
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FIG. 2. (Color online) Viscosity-to-entropy ratio η/s with
medium scattering above Tc for different interaction strengths
εB/εF = 0.1,0.2,0.5,1,2 (from top to bottom). The dashed line
indicates the bound 1/(4π ).

that Pauli blocking and enhanced scattering cancel precisely
and η approaches a finite value for T → 0 [10].

In Fig. 2 the ratio of the viscosity to entropy density η/s
is compared for different values of the interaction strength.
As the binding energy εB is lowered, Tc as defined by the
Thouless criterion is shifted to lower temperatures, indicated
by the end points of the solid lines (the end points are at
T = 1.04 Tc). As an estimate, the minimum for εB/εF = 0.5
is located at around T/TF = 0.6 at a value of η/s = 0.15, only
about twice the proposed string-theory bound η/s = 1/(4π ).

B. Spin diffusion

Equivalently, we have carried out the analysis for the spin-
diffusion coefficient D. In the high-temperature limit [29]

D = Qθ

4π
, Q = π2 + ln2

(
3T

2εB

)
, (34)

the diffusion coefficient depends linearly on θ with logarithmic
corrections; see Fig. 3. Pauli blocking (squares) increases
diffusion, while the inclusion of medium effects leads to a
strong reduction of the diffusion coefficient D (circles).
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Pauli blocking + medium scattering

FIG. 3. (Color online) Spin-diffusion coefficient D in the high-
temperature limit of a classical gas (solid line), including Pauli
blocking (squares) and with the full medium scattering cross section
(circles).

V. COMPARISON TO EXPERIMENT

In order to compare our results for the balanced homoge-
neous 2D Fermi gas with experiments in a trap we perform
an average over the density profile of the trap, assuming the
local density approximation to hold. At high temperatures the
density profile in the trap is [28]

n(r) = N

πσ 2
e−r2/σ 2

(35)

with σ 2 = 2T/(mω2
⊥), radial trapping frequency ω⊥, and total

density
∫

d2r n(r) = N . The local Fermi temperature is given
in terms of the density as

TF (r) = π

m
n(r) (36)

such that the local reduced temperature is

θ (r) = T

TF (r)
= mT

πn(r)
(37)

and the local pressure of the free Fermi gas is [cf. (33)]

P (r) = −n(r)T θ (r) Li2(1 − e1/θ(r)). (38)

The frequency-dependent shear viscosity of the homogeneous
system is in kinetic theory [15,28,44]

η(ω) = P τ

1 + ω2τ 2
(39)

in accordance with the viscosity sum rule [45]. From the
dimensionless ratio η(0)/n = α(θ ), one obtains the viscous
scattering time

τ = η(0)
P

= n

P
α(θ ). (40)

The local viscosity can be defined in terms of the local reduced
temperature θ (r),

η(ω,r) = n(r)α(θ (r))
1 + ω2[n(r)α(θ (r))/P (r)]2

. (41)

The spatial integral of the viscosity diverges at ω = 0 because
the dc viscosity is density independent in the outer regions of
the trap [28,29]. In order to obtain a finite integral, the viscosity
is evaluated at the quadrupole frequency ωQ =

√
2ω⊥ [27],

〈α〉 = 1
N

∫
d2r η(ωQ,r). (42)

The global Fermi temperature TF =
√

Nω⊥ allows us to define
a global reduced temperature ) = T/TF , so that the trap-
averaged viscosity can be written as

〈α())〉 = 1
N

∫
d2r n(r)

α(θ (r))
1 + (ωQ

ω⊥
)2 α2(θ(r))

N)2p2(θ(r))

(43)

with dimensionless pressure p(θ (r)) = P (r)/[n(r)T ]. We can
change variables and integrate θ (r) = 2)2, . . . ,∞,

〈α())〉 = 2)2
∫ ∞

2)2

dθ

θ2

α(θ )

1 + (ωQ

ω⊥
)2 α2(θ)

N)2p2(θ)

. (44)

Finally, the quadrupole damping rate is [27]

*Q

ω⊥
= 2〈α())〉

mω⊥〈r2〉
= 〈α())〉√

N)
(45)

013617-5

η ∼ �T 3/2, s ∼ kB T 3/2 −→ η

s
= 0.74

�
kB
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Results: transport

• Luttinger-Ward (2PI): self-consistent fermion and pair propagators

k! kF. Alternatively, the contact density can be determined from the vertex function (C.4) as
!h4C ¼ #m2CX0¼Xþ [58]. At high temperatures T! TF this can be evaluated analytically and leads to

CðTÞ ¼ 4m2z2T2

p!h4 ¼ 8p2!h2n2

mT
¼ 16k4F

9p2h
; ð60Þ

which agrees precisely with the result obtained in Ref. [76] (note the different definition of the contact
in this work which accounts for an apparent difference by a factor of 4p2). This asymptotic behavior is
in perfect agreement with our numerical results in Fig. 8. An alternative way to infer the high fre-
quency behavior of the shear viscosity is based on the relation [28]

gðxÞ ¼ lim
q!0

3x3

4!hq4 Imvqqðq;xÞ ð61Þ

between the frequency-dependent shear viscosity and the mass–density correlation function vqq(q,
x), a relation that is valid at all frequencies. As shown by Son and Thompson [77], the density corre-
lation function at large frequencies

Imvqqðq;x ! 1Þ ¼ 4!h5=2q4C
45pm1=2x7=2 ð62Þ

is again fully determined by the Tan contact C. The resulting coefficient Cg in the high-frequency tail of
the shear viscosity agrees precisely with that in Eq. (59) above.

Our result for the temperature-dependent shear viscosity can now be combined with the known
value of the entropy density [58] to determine the ratio g/s in the normal fluid regime of the unitary
gas. As shown in Fig. 9, this ratio exhibits a very shallow minimum around T ' 0.3–0.4TF, below which
g/s increases very slowly. The precise location of the minimum clearly depends sensitively on how
accurate the results for both the viscosity and entropy are in this regime. On quite general grounds,
it is likely that the minimum in g/s is close to the superfluid transition temperature Tc ’ 0.15TF, and
that g/s is monotonically increasing as the temperature is lowered in the superfluid regime, eventually
crossing over to the steep increase predicted by Eq. (16) as the temperature approaches zero. The fact
that our diagrammatic calculation gives results, e.g., for the critical temperature and the associated
entropy density s ’ 0.7nkB [58] which agree well with precise numerical results [78], suggests that
our ratio g/s provides a quantitatively reliable estimate, despite the fact that the precise location of
the minimum is difficult to determine. Granting that our value g/s ’ 0.6!h/kB for the minimum is close
to the exact result, we conclude that the ratio g/s for the unitary Fermi gas remains a factor of about

T [TF]
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Fig. 9. Shear viscosity to entropy ratio g/s (blue circles) in comparison with known asymptotes. The dashed red line on the left
is the phonon contribution g/s ( (T/TF)#8 in Eq. (16), the solid red line on the right the classical limit (54) divided by the classical
entropy from the Sackur–Tetrode formula. The red diamond indicates Tc ’ 0.15TF. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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viscosity η/s:
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Quantum limited spin diffusion in the unitary Fermi gas

Tilman Enss
Physik Department, Technische Universität München, D-85747 Garching, Germany

Rudolf Haussmann
Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany

We compute spin transport in the unitary Fermi gas using the strong-coupling Luttinger-Ward
theory. In the quantum degenerate regime the spin diffusivity attains a minimum value of Ds !

1.3 h̄/m approaching the quantum limit of diffusion for a particle of mass m. Conversely, the spin
drag rate reaches a maximum value of Γsd ! 1.2 kBTF /h̄ in terms of the Fermi temperature TF .
The frequency-dependent spin conductivity σs(ω) exhibits a broad Drude peak, with spectral weight
transferred to a universal high-frequency tail σs(ω → ∞) = C/3π(mω)3/2 proportional to the Tan
contact density C. For the spin susceptibility χs(T ) we find no downturn in the normal phase above
Tc ! 0.16TF .

PACS numbers: 67.85.Lm, 05.30.Fk, 05.60.Gg, 51.20.+d

The excitation and decay of spin currents plays an im-
portant role in many areas of condensed matter physics,
including the development of electronic devices based on
spin transport. While the Coulomb interaction does not
affect electrical currents in a uniform system [1] it trans-
fers momentum between spin-up and down particles and
thereby dampens the spin current. Understanding the
mechanism of spin drag and spin diffusion quantitatively
is important for an effective control of spin currents, how-
ever in solids this is often complicated by the presence of
impurities and lattice effects. Ultracold atomic Fermi
gases provide an extremely clean experimental realiza-
tion to study the effect of the two-particle interaction
alone [2]. If the interactions are short-ranged and the
scattering length is much larger than the particle spac-
ing the results are universal and apply to a wide range of
models, including even dilute nuclear matter. The spin
diffusivity Ds measures how quickly a spin current levels
out a gradient in the spin density. In a strongly interact-
ing Fermi gas Ds decreases as the temperature is lowered
into the quantum degenerate regime and reaches a min-
imum near the Fermi temperature TF , before increasing
again at even lower temperatures in the superfluid phase.
The minimum value of Ds in the strong-coupling region
can be understood qualitatively as a consequency of the
uncertainty principle: the mean-free path in a gas cannot
become shorter than the mean particle spacing in the ab-
sence of localization [3], which translates into a quantum
bound Ds

>∼ h̄/m for particles of mass m. For a strongly
interacting Fermi gas of trapped 6Li atoms a spin diffu-
sivity Ds ≥ 6.3(3) h̄/m has recently been measured [4].
Very low spin diffusion is found also in graphene [5], while
spin Coulomb drag in GaAs quantum wells yields a value
of Ds

>∼ 500 h̄/m [6].

The determination of Ds near its minimum in the
strongly interacting regime, and more generally the ques-
tion whether quantum mechanics imposes universal lower
bounds on the transport coefficients, is a key challenge in

many-body physics. Recent progress comes from the Anti
de Sitter and Conformal Field Theory correspondence
which maps a strongly coupled field theory to an equiv-
alent weakly coupled gravitational theory, where calcu-
lations are feasible. It gives a lower quantum bound for
the internal friction of mass flow, expressed as the ratio
of shear viscosity to entropy η/s ≥ h̄/4πkB , in certain
relativistic field theories [7]. Quantum limited friction,
or perfect fluidity [8], has been found to be almost sat-
isfied in very different physical situations ranging from
quark-gluon plasmas to ultracold atomic gases [9–11]. It
remains an open question whether a similar bound ex-
ists for spin diffusion in non-relativistic systems [12]. In
this Letter we present a strong-coupling calculation of
the spin diffusivity Ds in the homogeneous unitary Fermi
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FIG. 1: (Color online) Spin diffusivity Ds (in units of h̄/m)
versus reduced temperature T/TF (solid red line). The ex-
perimental data [4] (blue squares) for the trapped gas are
rescaled down by a factor of 4.7 to compensate for the ef-
fect of the trapping potential. The dashed black line is
the result for a classical gas of weakly interacting particles,
Ds = 1.1 (T/TF )

3/2h̄/m.

spin diffusion rate
Enss, Haussmann, arXiv:1207.3103 (2012)

comparison with experimental data:
Sommer et al. (Zwierlein group), Nature 2011

Ds ∼ �/m
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Conclusions

• phase diagram of unitary Fermi gas governed by quantum critical point

• scaling analysis of effective action: 
infinity number of marginal vertices, approximations not obvious

• comparison with benchmark: 
large-N expansion, Luttinger-Ward (2PI), functional RG work well

• lesson for functional RG: 
integrate out fermions and bosons simultaneously; full ω,q dependence helps

• large-N accurately determines pressure, entropy, contact;
transport calculations can explain recent experiments:
quantum limited spin diffusion
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