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Abstract. We study the transition from the hydrodynamic to the collisionless regime in
collective modes of three- and two-dimensional Fermi gases by using the semiclassical Boltzmann
equation. We use direct numerical simulations as well as the method of phase-space moments
to solve the Boltzmann equation and show that the restriction to second-order moments is
not accurate enough. By including higher-order moments, we can successfully describe the
hydrodynamic to collisionless transition observed in the quadrupole mode in three-dimensional
Fermi gases and the frequency shift and damping of the sloshing mode due to the anharmonic
shape of the experimental trap potential. In the case of two-dimensional Fermi gases,
however, the strong damping of the quadrupole mode observed in a recent experiment remains
unexplained.

1. Introduction

By studying collective motion in ultracold atoms, one can address some questions that cannot
be answered from the measurement of static (equilibrium) quantities alone. Concentrating here
on the case of unpolarized Fermi gases, let us mention the superfluid-normal phase transition,
which can be seen most convincingly by looking at vortices in rotating traps [1]. It also shows
up, somewhat less impressively, in the radial quadrupole mode [2, 3]. Also in the normal
phase, above the critical temperature, Fermi gases in the strongly interacting regime reveal
interesting dynamical properties. For instance, in the anisotropic expansion of normal-fluid
Fermi gases in the unitary limit (i.e., exactly on a Feshbach resonance, where the scattering
length a diverges) it was observed that the viscosity of these systems is surprisingly low [4]. With
increasing temperature, however, the system expands, gets more and more dilute, and finally
it becomes essentially collisionless [5]. As one approaches the collisionless regime, the concept
of viscous hydrodynamics breaks down and a more microscopic description in the framework of
the Boltzmann equation is needed.

In the present work we concentrate on collective oscillations with small amplitude. Some of
these collective modes are depicted schematically in Fig. 1. The first one (a) is the sloshing
mode, an oscillation of the atom cloud as a whole with the trap frequency. This mode is very
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(a) (b) (c)

Figure 1. Schematic representation of
different collective modes, as seen in the xy
plane: (a) sloshing mode, (b) breathing mode,
(c) radial quadrupole mode.

useful since it allows the experimentalists to determine the trap frequency. However, as discussed
later, in a realistic (Gaussian) trap one has to be careful to account for anharmonicity effects.
The second example (b) shows the radial breathing mode. Breathing modes are of interest
because they give information about the equation of state. While in the usual three-dimensional
traps the axial breathing mode behaves always hydrodynamically because of its low frequency,
the frequency and damping rate of the radial breathing mode are sensitive to the transition
from the hydrodynamic to the collisionless regime. This is even more pronounced in the case
of the radial quadrupole mode (c), whose frequency changes from

√
2ωr (ωr being the radial

trap frequency) in the hydrodynamic limit to approximately 2ωr in the collisionless limit. The
damping is maximal in the intermediate regime between the two limits.

2. Formalism

We consider a two-component (↑, ↓) Fermi gas with equal distribution functions f↑(r,p, t) =
f↓(r,p, t) = f(r,p, t). The Boltzmann equation describing the time dependence of the common
distribution function f(r,p, t) reads

ḟ +
p

m
·∇rf −∇rV ·∇pf = −I[f ] (1)

where m is the atom mass, V (r) = Vtrap(r) + U(r) is the sum of trap potential and mean field.
The mean field U(r) is obtained in local-density from the real part of the self-energy, ReΣ,
calculated in ladder approximation (see Fig. 2) [6]. The collision term I on the rhs. of Eq. (1)
reads

I[f ] =

∫

d3p1
(2π~)3

∫

dΩ
dσ

dΩ
|v − v1| (ff1f̄ ′f̄ ′

1 − f ′f ′
1f̄ f̄1) (2)

where the factors f̄ = (1− f) etc. are included to take Pauli blocking into account, v−v1 is the
relative velocity of the two colliding atoms. The cross section σ is obtained from the absolute
square of the in-medium T matrix (see Fig 2). At low temperature, the in-medium cross section
σ is strongly enhanced compared to the free-space one, σfree = 4πa2/[1 + (qa)2], especially for
head-on collisions (p1 ∼ −p) with |p| ∼ |p1| ∼ kF . This can be interpreted as a precursor effect
of the pole in the T matrix at T = Tc [6, 7]. (The same effect was found in nuclear physics,
cf. [8]).

In Eq. (2), the collision term is written for the three-dimensional case. In two dimensions
one just has to replace the integral over d3p1dΩ (Ω being the solid angle characterizing the
direction of p′) by an integral over d2p1dθ (θ being the scattering angle). The enhancement of
the in-medium cross section compared to the free-space one is also found in two dimensions.

Σ Τ=
1

2

p’

= ++ + ...
p

1

p
2

p’

T

Figure 2. Feynman diagrams for the self-energy (left) and the in-medium T matrix (right) in
ladder approximation.
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In practice, we employ two different methods to solve Eq. (1). The first one is a numerical
simulation where the continuous function f(r,p, t) is replaced by a set of delta functions, the
so-called test particles. So far, test-particle calculations in the context of cold atoms [9, 10, 11]
have not included the mean field U and the medium modified cross section. The main difficulty
is that it takes too much computation time to evaluate the in-medium cross section for each pair
of possibly colliding test particles. We are presently working on a solution of this problem by
combining analytical expressions for the in-medium cross section obtained in a high-temperature
expansion with a parametrization fitted to the full cross-section at low temperatures. The test-
particle results discussed here were obtained with the free cross section.

The second method is the method of moments. For small oscillations, the distribution
function can be written in the form

f(r,p, t) = feq(r,p) +
dfeq
dµ

Φ(r,p, t) (3)

where feq denotes the distribution function in equilibrium, i.e., the Fermi function with chemical
potential µ, and Φ is a smooth function. We make the ansatz

Φ(r,p, t) =
n
∑

i=1

ci(t)φi(r,p) , (4)

where φi are monomials in r and p and ci are time-dependent coefficients. We linearize the
Boltzmann equation, i.e., we keep only first-order terms in Φ. By taking phase-space moments
of this linearized equation, i.e., by multiplying it by each of the φi and integrating over phase
space, we obtain a system of n linear equations of motion for the coefficients ci which can easily
be solved by matrix diagonalization.

3. Importance of higher-order moments

Often only the minimal set of functions φi necessary for the description of a collective mode
[6, 12, 13] is used. For instance, for the breathing, quadrupole, and scissors modes, one needs
second-order terms to describe the oscillation of the system shape in coordinate (e.g., φ1 = xy)
and momentum space (e.g., φ2 = pxpy) and of the velocity field (e.g., φ3 = xpy, φ4 = ypx),
while the simplest possible sloshing motion requires only first-order terms (φ1 = x, φ2 = px).
However, it is important to check quantitatively how strong the corrections due to higher-order
moments are.

In Fig. 3 we display a comparison between the test-particle method [10] and the method
of moments at second and fourth order for the case of the quadrupole mode in a spherical
trap. The peak position corresponds to the quadrupole frequency, while the width defines the
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Figure 3. Quadrupole response as a function
of the excitation frequency ω, obtained by a test
particle simulation and by the moments method
including up to second- and up to fourth-order
terms [10]. The calculations were done for N =
104 atoms in a spherical trap (frequency ω0),
temperature T/TF = 0.4, interaction parameter
1/kFa = −0.5, with the free-space cross section
and without mean field.
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Figure 4. Frequency ω and
damping rate Γ of the radial
quadrupole mode as func-
tions of temperature. The
data and system parameters
are taken from Ref. [13],
the theoretical curves were
obtained within the second-
and fourth-order moments
method, respectively [14].

damping rate. It can be seen that the inclusion of fourth-order moments improves significantly
the agreement between the moments method and the test-particle calculation.

We also applied the fourth-order moments method to a realistic case studied in a 6Li
experiment at Innsbruck [13]. In this calculation [14], the medium modification of the cross
section was taken into account. As an example, we display in Fig. 4 the frequency and damping
rate of the quadrupole mode as functions of the temperature, obtained within the method of
moments at second and fourth order, together with the experimental data. One can clearly see
the smooth transition from hydrodynamic to collisionless behavior as the temperature increases.
The reason is that the collision rate decreases when the gas expands and becomes more dilute
at high temperature. As one can see, the second-order results overestimate the collision effects
and therefore reach the collisionless regime at too high temperatures. The extension of the
moments method to fourth-order terms clearly improves the agreement with the data. However,
we mention that in the case of the scissors modes we did not find a clear improvement due to
the inclusion of fourth-order terms [14].

4. Sloshing mode in an anharmonic trap

In a harmonic trap, the sloshing mode is an undamped center-of-mass oscillation of the atom
cloud as a whole, leaving the shape of the atom cloud unchanged (Kohn theorem [15]). Since
its frequency is that of the trap, independently of the interaction and other system parameters,
it is very interesting for experimentalists for the precise determination of the trap frequency.

In real experiments, however, the trap potentials have more or less pronounced
anharmonicities. For instance, in an optical trap, where the radial confinement is produced
by a laser beam with waist w, the trap potential in radial direction is of the form Vtrap(r⊥) ∼
−V0 exp(−2r2⊥/w

2). Only if the particle energies (i.e., Fermi energy EF and temperature T )
are much smaller than the trap depth V0, this potential can be considered as approximately
harmonic. The anharmonicity of the potential changes the sloshing frequency, ωslosh 6= ωr [if
we define the radial trap frequency ωr by ω2

r = (1/m)(d2Vtrap/dr
2
⊥)r⊥=0] and leads also to a

damping of the sloshing mode.
We studied the sloshing mode within the method of moments for the parameters of the

experiment [13]. The main results of Ref. [16] are summarized in Fig. 5. With increasing
temperature the cloud expands and extends more and more into the anharmonic region of the
trap, where the trap potential is weaker than the idealized harmonic potential. Therefore, the
sloshing frequency (left panel of Fig. 5) decreases, as it is observed in the experiment. The
general trend is correctly reproduced by the moments method at first and at third order. Also
the mean field has only a weak effect. When comparing with the experimental data, however,
one should note that in the normalization of the experimental data it was assumed that the
sloshing frequency extrapolated to T = 0 should be equal to the trap frequency, which explains
why the data are shifted upwards as compared to the theoretical results.
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Figure 5. Left: temperature dependence of the sloshing frequency in the experiment [13] and
theoretical results [16] obtained within the moments method up to third (solid line) and first
order (dashes), respectively. For comparison, also the first-order result obtained without mean
field (U = 0) is shown (dashed-dotted curve). Right: corresponding damping of the sloshing
mode within the third-order moments method (solid line). For comparison, also the result
obtained with the free-space cross section (free σ, dashes) is shown. The data are from [17].

While the inclusion of third-order moments does not have a dramatic effect on the sloshing
frequency, it is crucial for the calculation of the damping rate of the sloshing mode. Within the
first-order moments method, the sloshing mode is undamped because x and px are conserved
during a collision. In order to describe the damping, one has to include at least third-order
terms such as x3, xy2, xp2x, xp

2
y, etc. (in total, Φ contains now 18 terms [16]). As shown in

the right panel of Fig. 5, the resulting damping is still very weak and it is compatible with
the experiment. We note that it practically does not matter if we use the in-medium or the
free-space cross section in this calculation.

In our calculation, the origin of the damping is that, as the cloud oscillates in the anharmonic
potential, its form changes. This leads to deformations of the Fermi sphere in momentum space,
which are damped by collisions. The change of the system shape during the sloshing motion can
also be interpreted in the following way: already in a harmonic trap, there are in addition to the
sloshing mode more complicated (i.e., described by moments of higher order) dipolar collective
modes which are damped. The anharmonicity leads to a coupling between the sloshing mode
and these higher-order modes. As examples, we display in Fig. 6 the velocity fields of the modes
excited by the operators (x2 + y2 − 2〈r2⊥〉eq)x (compressional dipole mode in the xy plane) and
(z2 − 〈z2〉eq)x (“bending mode” in the xz plane).

5. Anharmonicity effects in the quadrupole mode in two dimensions

In a recent 40K experiment done at Cambrigde [18, 19], the frequency and damping of the
quadrupole mode in two dimensions were studied. Although the analysis made in [19] based on
second-order moments could explain the transition of the observed frequency of the quadrupole
mode from the hydrodynamic to the collisionless regime with decreasing interaction strength
[increasing ln(kF a2D)], there was an unexplained offset in the damping rate. Since this
unexplained damping persisted even in the non-interacting regime, it was reasonable to assume
that it was caused by anharmonicity effects.

In fact, the experimental trap potential (see [20] for details) is not only anharmonic like
an inverted Gaussian, it also has a small ellipticity and it is deformed by linear terms due
to gravity and magnetic field gradients which destroy the symmetry of the potential, i.e.,
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Figure 6. Velocity fields of the compressional
dipole mode in the xy plane (left) and of the
bending mode (right) in the xz plane, which are
coupled to the sloshing mode in an anharmonic
trap [16]. The background color indicates the
column density of the cloud.

Vtrap(−r) 6= Vtrap(r). The model potential we used in our analysis [21] is shown in Fig. 7.
As a consequence of the asymmetric shape of the potential, modes of different symmetries (such
as sloshing, breathing, and quadrupole modes) are coupled to one another. In order to take
this coupling into account, we included in our analysis all moments up to fourth order, i.e., all
terms of the form xiyjpkxp

l
y where i, j, k, l are non-negative integer numbers with i+ j+k+ l ≤ 4

(70 terms in total) [21]. In our calculation, we include the in-medium cross section but not the
mean field.

In Fig. 8 we compare our results for the frequency and damping rate of the quadrupole
mode with the experimental ones. The results are shown as functions of the parameter
ln(kF a2D) characterizing the interaction strength, large values of ln(kFa2D) corresponding to
weak interaction. The frequency tends to the hydrodynamic one (

√
2ωr) in the limit of small

ln(kF a2D) and to the collisionless one (2ωr) in the limit of large ln(kFa2D). We start with the
simplest model, namely an isotropic harmonic potential (a) and include one by one the different
imperfections of the realistic potential: ellipticity (b), anharmonicity (c), linear terms due to
gravity and magnetic field gradients (d). It can be seen that these details have only little effect
on the results: in this experiment the harmonic approximation is actually very good because
the Fermi energy is small compared to the trap depth. In particular, the damping that persists
in the weakly interacting regime cannot be explained by anharmonicity effects.

We note that the effect of higher-order moments is much weaker here than in the three-
dimensional case discussed in Sec. 3. We thus confirm the results obtained in the analysis of
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[19] within the second-order moments method.
In contrast to what was found in an estimate based on a calculation of the shear viscosity

[22], also the in-medium enhancement of the cross section has only a moderate effect on the
damping. This finding, which is in agreement with the results of [19], is again very different
from the three-dimensional case discussed in Sec. 3. The fact that the theory cannot explain
the strong damping observed experimentally in the strongly-interacting regime [ln(kFa2D) . 1]
is maybe due to the breakdown of the validity of the Boltzmann equation in this regime.

6. Summary

We have studied various aspects of collective modes of trapped Fermi gases in the normal-
fluid phase. The Boltzmann equation allows us to describe the transition from hydrodynamic
to collisionless behavior, which is observed in both three- and two-dimensional systems. The
method of moments was used to obtain approximate solutions of the linearized Boltzmann
equation in the limit of small oscillations around equilibrium.

By comparing with a direct numerical solution within the test-particle method, we found that
the moments method including only second-order moments overestimates the collisional effects
in the case of the quadrupole mode in a spherical trap. By including also fourth-order moments,
the agreement improves a lot. Also the results for the radial quadrupole mode in an elongated
trap are in better agreement with experimental results if fourth-order moments are included.

Within the higher-order moments method, we were able to explain the experimentally
observed damping of the sloshing mode in an anharmonic three-dimensional trap. Here the
necessity to include higher-order moments (third order in this case) is obvious since at lowest
order (first order) the sloshing mode is undamped.

We also studied the effects of a realistic anharmonic potential on the damping of the
quadrupole mode in two dimensions. It turned out that the anharmonicity effects are by far
too weak to explain the experimentally observed damping in the weakly interacting regime. It
seems that the effect of higher-order moments is less important in two dimensions than in the
three-dimensional cases discussed before.

It should be mentioned that the strong damping of the quadrupole mode near the superfluid-
normal phase transition, observed in both two- and three-dimensional systems, still lacks a
theoretical description. Probably the Boltzmann equation is not applicable in this regime.
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Interesting subjects for future studies are the inclusion of the in-medium cross section and
mean-field into numerical test-particle simulations, which so far have been limited to the free
cross section without mean field. Work in this direction is in progress. The description of spin
modes and modes in imbalanced Fermi gases is more difficult since it requires a model for the
cross section and for the mean field in the imbalanced case, which is non-trivial because of the
failure of the usual ladder approximation in this case [23, 24, 25].
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