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Complex scaling flows in the quench dynamics of interacting particles
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Many-body systems driven out of equilibrium can exhibit scaling flows of the quantum state. For a sudden
quench to resonant interactions between particles we construct a class of analytical scaling solutions for the time
evolved wave function with a complex scale parameter. These solutions determine the exact dynamical scaling
of observables such as the pair correlation function, the contact and the fidelity. We give explicit examples of the
nonequilibrium dynamics for two trapped fermions or bosons quenched to unitarity, for ideal Bose polarons, and
for resonantly interacting, Borromean three-body systems. These solutions reveal universal scaling properties of
interacting many-body systems that arise from the buildup of correlations at short times after the quench.
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I. INTRODUCTION

The quantum dynamics of strongly correlated many-body
systems can often be described as fluid flow [1]. Near equilib-
rium, the slow relaxation of conserved charges and currents
is governed by hydrodynamics [2,3]. Remarkably, even some
situations far from equilibrium are well described by the
equations of fluid dynamics, for instance the fast hydro-
dynamization observed in relativistic nuclear collisions [4].
Advances in ultracold quantum gas experiments now provide
a new platform to explore far-from-equilibrium quantum dy-
namics in a controlled setting in the laboratory. In particular,
recent experimental and theoretical studies have focused on
the quench dynamics when strong or resonant interactions are
suddenly switched on in bulk fermion [5,6], Fermi polaron
[7,8], bulk boson [9–12], and Bose polaron [13–15] systems.
Understanding the validity of fluid dynamics in these strongly
correlated systems far from equilibrium has a wider impact
for finding simpler effective descriptions of complex quantum
dynamics.

A quench to strong interaction in a many-body system
is generally a hard problem. However, at short times the
dynamics is dominated by few-body correlations between
nearby quantum particles [9,16] and similarly for an impurity
quenched to strong interaction with a surrounding medium
[7,14]. This universal short-time quantum dynamics applies
equally to larger systems before the many-body timescale
is reached. For longer times, instead, collective many-body
excitations dominate and conformal symmetry can determine
the long-time asymptotics [17].

In this work, we focus on the short-time dynamics in an
extreme out-of-equilibrium setting and study few particles
quenched from a noninteracting state to resonant contact in-
teractions in a harmonic trapping potential. After the quench,
an initially stationary quantum state becomes a highly excited
state of the new Hamiltonian and can be represented as a
large superposition of new eigenstates with a complicated
time evolution. For two interacting particles, however, these

eigenstates are known and we find the analytical form of the
time evolved wave function. From this solution we obtain the
dynamical scaling of observables, in particular the full pair
correlation function g(2)(r, t ). For contact interactions in three
dimensions it diverges as g(2)(r, t ) = C(t )/(4πr)2 for short
distances r between the particles [18,19]. Starting from an ini-
tially noninteracting state, strong contact correlations build up
linearly in time and the contact scales as C(t ) ∝ | sin ω0t | with
trap frequency ω0 [9]. We find that, due to this short-distance
singularity, the fidelity has an anomalous time dependence
1 − γ |t |3/2 for short times, as discussed in Sec. II.

The main goal of this work is to construct a class of an-
alytical quench solutions in order to reveal universal scaling
dynamics, generalizing the two-particle example above. We
explain in Sec. III that this class of solutions for the global
wave function has an analytical scaling form reminiscent of
fluid flow. As a simple example, a quantum harmonic oscilla-
tor with time-dependent trapping potential can be transformed
into a new time-varying coordinate system where the Hamil-
tonian is stationary [20–22]. The well-known solutions of
the stationary harmonic oscillator can then be transformed
back to the original coordinates where the dynamical wave
function assumes a scaling form with a global scale param-
eter λ(t ) > 0. In this work we show that also an interaction
quench, which suddenly changes the Bethe-Peierls bound-
ary condition of the wave function at short distance, can be
brought into such a scaling form. However, we find that the
quenched wave function is stationary in complex space and
time coordinates, and the nonequilibrium quench dynamics in
the original space-time coordinates is described by a scaling
flow with a complex scale parameter λ(t ) ∈ C. Intriguingly,
the complex time coordinate runs backward in real time, such
that the quench evolution of an initial positive-energy state
is given by the complex scaling flow of a negative energy
stationary state. Expressing the quench dynamics as a scale
transformation of a single stationary state constitutes a dra-
matic simplification compared with the generic time evolution
of a highly excited state represented as a large superposition
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of eigenstates. This is reminiscent of the complex scaling used
to express a resonance not as an infinite superposition but as
a single state of complex energy [23–25]. Our earlier explicit
quench solution is an example of such a complex scaling flow.

After this general construction we apply the new class of
solutions in Sec. IV to quench dynamics in few- and many-
body systems, specifically to universal short-time scaling of
observables, to quenched impurities in a Bose-Einstein con-
densate and to resonant, Borromean three-body systems. We
conclude in Sec. V and discuss how strong few-body corre-
lations constrain an effective fluid description of the strongly
correlated quantum gas.

II. INTERACTION QUENCH DYNAMICS

To set the stage we begin by deriving an analytical solution
of quench dynamics in the traditional way, as a superposition
of eigenstates of the Hamiltonian after the quench. In the
next section this solution will be rederived as an instance of
complex scaling flows.

Consider two distinguishable particles in a 3D harmonic
trapping potential V (r) = (m/2)ω2

0r2 with trap frequency ω0.
The particles of mass m shall interact via an attractive contact
interaction and are described by the Hamiltonian

H = p2
1

2m
+ p2

2

2m
+ m

2
ω2

0

(
r2

1 + r2
2

) + gδ(3)
reg (r1 − r2). (1)

We recapitulate the spectrum and eigenstates found in
Ref. [26]; in the following we compute the nonequilibrium
dynamics after a change in interaction [27], which has simi-
larities to the one-dimensional case [28].

The center-of-mass (c.m.) motion in (1) decouples from the
relative motion, and the wave functions factorize as �(C, r) =
ψc.m.(C)ψ rel(r) with center-of-mass coordinate C = (r1 +
r2)/2 and relative coordinate r = r1 − r2. In three dimensions,
the contact interaction needs to be regularized, and we choose
the Fermi pseudopotential δ(3)

reg (r) = δ(3)(r)∂rr · · · of strength

g = 4π h̄2a/m, which is fully characterized by the s-wave
scattering length a. The interaction affects only the relative
motion, and only the l = 0 partial-wave component for a
zero-range interaction. The contact pseudopotential then leads
to the Bethe-Peierls boundary condition for the relative radial
l = 0 wave function as r → 0,

ψ rel(r) = A

(
1

r
− 1

a

)
+ O(r). (2)

The eigenfunctions for generic a are Whittaker functions
Wa,b(x) which decay sufficiently for r → ∞,

ψ rel
ν (r) = r−3/2WE rel/2,1/4(r2/�2), (3)

up to normalization. We express lengths in units of the relative
oscillator length � = √

h̄/μω0 for reduced mass μ = m/2 and
energies in units of the oscillator energy h̄ω0. The energy
eigenvalues of relative motion are given by E rel

ν = 2ν + 3/2,
where ν denotes the noninteger generalization of the principal
quantum number of the harmonic oscillator wave function.
The wave function (3) satisfies the boundary condition (2) if

ν is related to the scattering length a as [26]

�(−ν)

�
(−ν − 1

2

) = �
(−E rel

2 + 3
4

)
�

(−E rel

2 + 1
4

) = �

2a
. (4)

In the weakly interacting limit a → 0− with integer ν = n =
0, 1, 2, . . . one recovers the spectrum En,a→0− = 2n + 3/2
of the breathing modes of the noninteracting harmonic os-
cillator. For larger values of 1/a the energy levels decrease
monotonically. A particularly interesting case is resonant scat-
tering at 1/a = 0, where the scattering amplitude reaches the
maximum value consistent with unitarity and scale invari-
ance is restored. At resonance (unitarity) ν = n − 1/2 takes
half-integer values for n = 0, 1, 2, . . . and the eigenfunctions
simplify to

ψ rel
n,1/a=0(r) = e−r2/2�2

H2n(r/�)

π3/42n
√

2(2n)!�r
(5)

with Hermite polynomials Hn(x). The associated energy
eigenvalues at resonance,

E rel
n,1/a=0 = 2n + 1/2, (6)

are again equally spaced as in the noninteracting case, but
shifted downward by one unit of h̄ω0. Due to scale invariance
at unitarity (the scattering length drops out as a length scale),
an SO(2,1) symmetry emerges that generates the spectrum (6)
at equidistant spacing 2h̄ω0 [20,21,29–31].

The knowledge of eigenstates allows one to analytically
compute the time evolution of the quantum gas after a quench
from an ideal gas to unitarity. For definiteness we prepare the
system in the harmonic oscillator ground state both for the
center of mass and for the relative coordinate at a = 0−,

ψ rel
0,a=0− (r) = e−r2/2�2

π3/4�3/2
. (7)

When the interaction is suddenly quenched to unitarity at time
t = 0, the wave function is projected onto the new eigenbasis
of relative motion with coefficients

an = (
ψ rel

n,1/a=0, ψ
rel
0,a=0−

) = 2n

√
2(2n)!�(3/2 − n)

. (8)

Computing ψ rel(r, t ) = ∑∞
n=0 ane−itE rel

n,1/a=0ψ rel
n,1/a=0(r) we find

the full relative wave function after the quench to resonance
as

ψ rel(r, t ) = e−3iω0t/2

π5/4�3/2

[√
e2iω0t − 1

r/�
ei(r2/2�2 ) cot ω0t

+√
πe−r2/2�2

erf

(
r/�√

e2iω0t − 1

)]
. (9)

The quench leaves the initial energy E rel = ∑
n(2n +

1/2)|an|2 = 3/2 unchanged. This is expected from the dy-
namic sweep theorem because the expectation value of the
contact operator vanishes in the Gaussian initial state, as we
shall find below [18,19].

The pair correlation function of two particles at distance r
and time t ,

g(2)(r, t ) = |ψ rel(r, t )|2, (10)
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FIG. 1. Pair correlation function r2g(2)(r, t ) = r2|ψ rel(r, t )|2 vs
distance r at time t after a quench to unitarity (1/a = 0), as given by
Eq. (9). We give lengths in units of the trap length � and times in units
of ω−1

0 . The attractive interaction leads to a buildup of correlations
at short distance r → 0. At the same time, part of the correlation
is pushed out so that an uncorrelated halo appears at r = r0 and
ω0t = π/2 (see text). At r → 0 one can read off the contact C(t )
(red solid line). Inside the trap the correlations are periodic in time
with half the trap period. The black dashed and dash-dotted lines are
the wave function at the beginning and halfway through the periodic
motion, respectively.

is shown in Fig. 1. The initial Gaussian profile (weighted
by r2) is spread out over the trap length r � �. After the
quench the attractive interaction pulls the particles together
at r = 0 and correlations start to grow at short distance. At
short times, interference in the wave function (9) produces
short-wavelength modulations that scramble the correlation
at all distances. For longer times, however, the correlation
function becomes smooth again. The harmonic confinement
brings the wave function back to its initial state at half the trap
period ω0t = π and integer multiples; this is a consequence of
scale invariance and the SO(2,1) symmetry [21]. Remarkably,
at a quarter period ω0t = π/2 the correlation develops a node
and splits into two disjoint regions at r = r0 ≈ 1.306 930�,
with the inner part attracted toward r = 0 by the contact
interaction, while the outer part is pushed farther out. Note
that during the whole time evolution, the rms cloud size
〈r2〉(t ) = ∫

d3rr2|ψ rel(r)|2 = (3/2)�2 remains constant even
though the short-range correlations change dramatically.

In the short-distance limit the normalization (2) of the
relative wave function is

A(t ) = lim
r→0

rψ rel(r, t ) = e−iω0t

π5/4�1/2

√
2i sin ω0t . (11)

This gives rise to the time evolution of the contact [9,18,19],

C(t ) = lim
r→0

(4πr)2g(2)(r, t ) = |4πA(t )|2 = 32√
π�

| sin ω0t |.
(12)

As shown in Fig. 2, immediately after the quench the contact
C(t = 0) = 0 vanishes as before the quench. As the interac-
tion pulls together the particles, the contact grows linearly
for short times. Eventually it reaches a maximum value of

FIG. 2. Contact C(t )/Cmax (dashed red line) at time t after a
quench to unitarity (1/a = 0), as given in Eq. (12). It rises linearly
for short times and is periodic in time with half the trap period.
The fidelity or Loschmidt echo M(t ) (solid black line) in Eq. (13)
is nonanalytic as 1 − γ |t |3/2 for short times.

Cmax = 32/
√

π� at quarter period, before decreasing again as
a π -periodic function in time.

While the contact is sensitive to the wave function at short
distance, a measure of the evolution of the global quantum
state is given by the fidelity between initial and time evolved
states, or Loschmidt echo [27,28],

M(t ) = |〈ψ (0)|ψ (t )〉|2

= 4

π2
|
√

e2iω0t − 1 + arcsin(e−iω0t )|2. (13)

For short times the Loschmidt echo is anomalously sup-
pressed as M(t ) = 1 − (8/3π )|ω0t |3/2 + O(t5/2) and de-
creases faster than the usual t2 behavior which follows at
intermediate times; this is due to the short-distance singularity
of the contact interaction. The anomalously fast initial growth
reflects the fast scrambling of the wave function manifest in
the ripples of the pair correlation in Fig. 1 at short times.
The same anomalous scaling is found for a quench in a bulk
medium for times shorter than the many-body times scale
[32]. Eventually, the Loschmidt echo reaches a minimum of
M(ω0t = π/2) = 4[

√
2 − ln(1 + √

2)]2/π2 ≈ 0.115 at quar-
ter period and increases again to the next nonanalytic point at
ω0t = π , see Fig. 2.

III. COMPLEX SCALING FLOWS

The exact quench dynamics in the harmonic trap (9) is
a first example of a more general phenomenon and class of
analytical quench solutions. In Eq. (9) the time evolved state is
written as a large superposition of eigenstates of the quenched
Hamiltonian which gives rise to a complicated transient be-
havior. We now show that the same wave function results
from a single stationary state of the harmonic oscillator in a
new coordinate system that is related to the original one by a
global scale transformation. This dramatically simplifies the
description of quench dynamics.
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A. Scaling dynamics

Scaling flows are a powerful way to describe the nonequi-
librium time evolution of interacting quantum systems in the
context of hydrodynamics [1,33], nonthermal fixed points
[34] and trapped quantum gases [20,21,35]. As an example
consider a two-dimensional quantum harmonic oscillator with
time-dependent trapping frequency ω(t ):

H (t ) = p2

2m
+ m

2
ω2(t )r2. (14)

Initially the harmonic oscillator shall have a constant trap-
ping frequency ω(t ) = ω0 and wave function ψ̃ (r, t ). If the
trapping frequency ω(t ) changes in time for t > 0, the wave
function evolves as [21]

ψ (r, t ) = 1

λ(t )
exp

(
imr2λ̇(t )

2h̄λ(t )

)
ψ̃ (ρ, τ ). (15)

The original wave function ψ̃ (r, t ) of the prequench Hamilto-
nian is evaluated at new space and time coordinates

r �→ ρ = r
λ(t )

, t �→ τ =
∫ t

0

dt ′

λ2(t ′)
(16)

in terms of a global, positive scale factor λ(t ) > 0. The
wave function ψ (r, t > 0) after the quench (15) satisfies the
Schrödinger equation for given time-dependent trapping fre-
quency ω(t > 0) if the scale factor evolves in time according
to the Ermakov equation [20–22]

λ̈ + ω2(t )λ = ω2
0

λ3
, (17)

with initial conditions λ(0) = 1, λ̇(0) = 0. The 1/λ term in
(15) preserves the normalization of the wave function in two-
dimensional space, while the phase factor that depends on
space and time corresponds to a gauge transformation. In case
ψ̃ is a stationary state of the prequench Hamiltonian at energy
E , one can replace ψ̃ (ρ, τ (t )) = e−iEτ (t )/h̄ψ̃ (ρ, 0).

The time-dependent coordinate transformation (16) maps
the driven oscillator into a stationary one in new space ρ and
time τ coordinates [20–22]. Solutions ψ̃ (ρ, τ ) of the time-
independent oscillator can then be transformed back to the
original coordinates r, t to yield the nonequilibrium scaling
solution (15). Remarkably, this scaling solution for a single
driven oscillator extends to interacting many-body systems
with scale invariant interactions that possess the SO(2,1) sym-
metry in a harmonic trap, such as the unitary Fermi gas [21,29]
or the 2D quantum gas [20] up to the quantum scale anomaly
[35–39]. It applies also to quantum statistical models where
the quench dynamics can be mapped to that of harmonic
oscillators, such as the spherical model [40].

An interaction quench as discussed above in Sec. II cor-
responds to a sudden change of the Bethe-Peierls boundary
condition (2) for the relative s-wave function at r = 0 from
noninteracting (scattering length a = 0−) to resonant inter-
actions (1/a = 0). We demonstrate below that the ensuing
quench dynamics is again given by a scaling solution of the
form (15) but now with a complex scale factor that solves
the Ermakov equation (17) with a different set of initial
conditions. Remarkably, we find that the interaction quench
dynamics is obtained as the scaling in complex space and time

of a stationary state ψ̃ , albeit a different one from before,
which yields closed analytical expressions for the nonequi-
librium evolution. We now derive this for the generalized case
of N interacting particles in a harmonic trapping potential.

B. Trapped N-particle systems

Consider a three-dimensional N-particle system in a har-
monic trap. This is conveniently described in hyperspherical
coordinates in terms of center of mass C, hyperradius R, and
a collection of hyperangles � [30,41]. In the case of scale
invariant interaction the wave function factorizes as

�trap(X ) = ψc.m.(C)R−(3N−5)/2F (R)�(�), (18)

where X = (r1, . . . , rN ) is the vector of all particle positions,
C = (1/N )

∑
k rk denotes the center-of-mass coordinate, R =

[
∑

k (rk − C)2]1/2 is the hyperradius, and � denotes the hy-
perangles. The reason for choosing this coordinate system
is that an N-body interaction affects only the R coordinate
and turns it into a one-dimensional problem which can be
solved analytically. The hyperangular wave function satisfies
the Schrödinger equation[

− �� +
(

3N − 5

2

)2]
�(�) = s2�(�), (19)

with Laplacian �� and energy eigenvalue s2 ∈ R. Since the
harmonic confinement affects only the hyperradial and center-
of-mass coordinates, the hyperangular solution determines
also the relative wave function in free space,

�free(X ) = Rs−(3N−5)/2�(�). (20)

For noninteracting particles in three dimensions, the ground
state has hyperangular eigenvalue s = (3N − 5)/2 such that
sN=2 = 1/2, sN=3 = 2, etc. For particles with resonant two-
body interaction, s can take noninteger values, for instance
s = 1.7727 for N↑ = 2, N↓ = 1 fermions [41].

Given the value s of the hyperangular solution, the hy-
perradial wave function is found by solving the 2D radial
Schrödinger equation with centrifugal barrier and oscillator
confinement (from now on h̄ ≡ 1),

− 1

2m

[
F ′′ + 1

R
F ′

]
+

(
s2

2mR2
+ m

2
ω2

0R2

)
F (R) = ErelF (R),

(21)
with the energy eigenvalue of relative motion Erel and nor-
malization

∫ ∞
0 dRR|F (R)|2 = 1. For real s there is a tower of

universal states (q ∈ N0)

Fq(R) =
√

2(s + q)!

q!s!2

1

R
ME/2,s/2(R2) (22)

=
√

2q!

(s + q)!
Rse−R2/2L(s)

q (R2), (23)

with R in units of the oscillator length L = √
h̄/mω0, while

L(s)
q (x) denotes associated Laguerre polynomials [30]. The en-

ergy eigenvalues Erel = (1 + s + 2q)h̄ω0 are equally spaced
within each tower of fixed s. For positive s > 0 and small
hyperradius R → 0 the radial ground-state wave function
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scales as

F0(R) ∝ Rs[1 + O(R2)]. (24)

Note that both the hyperangular and the hyperradial
Schrödinger equations depend only on s2 and admit two so-
lutions s, −s. However, the sign change of s selects a solution
with a different boundary condition for R → 0, namely Rs vs
R−s, and a corresponding change of the ground-state energy
from E = 1 + s to E = 1 − s. This generalizes the Bethe-
Peierls boundary condition (2) to N-body interaction with a
condition on the hyperradial wave function F (R) for small
R → 0 (s > 0) [30,42],

F (R) = A

(
R−s − sgn(a)

Rs

|a|2s

)
+ · · · . (25)

The Rs solution describes particles without N-body interaction
(scattering length a → 0) where F (R) is bounded for R →
0. The R−s solution appears for N-body interaction of finite
scattering length a �= 0, and the Rs part disappears completely
for resonant N-body interaction (a → ∞). For −s � −1, the
normalization of the radial function F (R) can be formulated
with a short-distance cutoff that excludes the repulsive core as
done for p-wave and higher interactions [43,44].

Consider now a quench from a noninteracting trapped N-
particle Bose gas to resonant N-body interactions. This results
in a Borromean system with N-body but no (N − 1)-body or
smaller interaction [45]. Initially, the noninteracting gas has
s = (3N − 5)/2 > 0, and the hyperradial ground-state wave
function

F0(R) =
√

2

s!

1

R
M(1+s)/2,s/2(R2) =

√
2

s!
Rse−R2/2 (26)

is normalizable and has energy E0 = 1 + s = 3
2 (N − 1) for

the relative motion, which together with the center-of-mass
energy Ec.m. = 3

2 yields the total energy of Etot = 3
2 N . After

the quench, the sign of s is flipped to −s [46] and the new
resonant ground-state energy becomes

E res
0 = 1 − s. (27)

The original wave function can be decomposed into a large
superposition of the new eigenstates q ∈ N0 with energies
E res

q = 1 − s + 2q, and the interference between the tower
states results in the nonequilibrium quench dynamics as in
Eq. (9), cf. Fig. 3.

C. Analytical quench solution

We now construct the analytical solution of N-body quench
dynamics. We start with the general scaling form of the wave
function (15) with a complex scale parameter

λ(t ) =
√

e2iω0t − 1 ∈ C. (28)

This solves the Ermakov equation for constant trapping fre-
quency ω0 but a vanishing scale parameter λ(t → 0) = 0 at
the moment of the quench. The scaling transformation (16)
relates the original Hamiltonian to a stationary one in new

FIG. 3. Complex scaling inverts the arrow of time: the noninter-
acting initial state of energy 1 + s (in the “Noninteracting” tower)
can be represented either as an infinite superposition of postquench
resonant states with energies 1 − s + 2q, q = 0, 1, 2, . . . (the “Res-
onant” tower), or equivalently as the complex scaling of a single
stationary state of negative energy −1 − s (in the “Ghost” inverse
tower) evolving backward in time.

complex coordinates

ρ = R

√
−1 + i cot ω0t

2
, τ =

∫ t

ε

dt ′

λ2(t ′)
= −t − i ln

λ(t )

λε

,

(29)

with λε = λ(ε) ∼ ε1/2 for short-time cutoff ε → 0. We ob-
serve that the proper time τ runs backwards in real time t .
Hence, the complex scaling inverts the energy of the stationary
state ψ̃ . Remarkably, there exists a negative-energy resonant
state with q = −1,

E res
−1 = 1 − s − 2 = −E0, (30)

whose energy is precisely the inverse of the prequench energy
E0. Therefore, a single stationary state is sufficient to describe
the full quench dynamics of the initial positive-energy state
E0 upon complex scaling. Figure 3 illustrates how complex
scaling maps the negative energy state to precisely match the
energy of the initial state. The corresponding state F−1(ρ)
results as the Whittaker function with negative second index
−s/2 < 0,

F res
−1 (ρ) = N λ1+s

ε

�(1 − s)

1

ρ
M−(1+s)/2,−s/2(ρ2) (31)

=
√

2

s!
λ1+s

ε ρseρ2/2[1 − �(−s, ρ2)/�(−s)], (32)

with the incomplete Gamma function �(−s, x). By construc-
tion, F res

−1 (R) is not normalizable for real R ∈ R because it
is two levels below the oscillator ground state E res

0 . How-
ever, it becomes normalizable in complex space coordinate
ρ = R/λ(t ) ∈ C. The complex scaling solution (15) with the
stationary state F res

−1 (ρ) then reads

F (R, t ) = exp(−iE res
−1τ )

λ(t )
exp

(
iR2λ̇(t )

2λ(t )

)
F res

−1 (ρ). (33)
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Since the proper time τ in (29) runs backwards in real time
t the phase factor from the time evolution of the negative-
energy stationary state E res

−1 turns into that of a positive-energy
initial state E0 (whose energy remains unchanged by the
quench) and an additional scale factor,

e−iE res
−1τ = e−iE0t

(
λ(t )

λε

)1+s

. (34)

The λε term in the global phase (34) compensates the corre-
sponding term in the normalization in (31) to yield a finite
result in the ε → 0 limit. Since λ is complex, the gauge
factor changes not only the phase but also the amplitude, with
complex exponent

iR2λ̇

2λ
= −R2

4
(1 − i cot ω0t ) = 1

2
ρ̄2 (35)

in terms of the complex-conjugate coordinate ρ̄. Thus
e(ρ̄2+ρ2 )/2 = e−R2/2 gives a pure amplitude factor while
e(ρ̄2−ρ2 )/2 = eiR2 cot(ω0t )/2 is a pure phase. Collecting the terms
in (33) we arrive at our main result, the analytical quench
solution

F (R, t ) = e−iE0t F0(R)

[
1 − �

(−s, R2

e2iω0t −1

)
�(−s)

]
. (36)

It remains to be shown that the scaling solution (33),
(36) satisfies (i) the Schrödinger equation (21) and (ii) the
Bethe-Peierls boundary condition F (R, t ) ∼ R−s for t > 0,
and (iii) is continuous with the initial state (26) for t → 0.
In fact, (i) follows because the complex scale factor (28)
satisfies the Ermakov equation (17) and F res

−1 (R) is a stationary
solution of the Schrödinger equation, even though is has neg-
ative energy and is not normalizable. The boundary condition
(ii) for t > 0 follows from the short-distance expansion of
(36) using �(−s, ρ2 → 0) = ρ−2s/s + · · · . Continuity (iii)
requires F (R, t → 0) = F0(R): for short times λ2 → 2iω0t
and ρ2 = R2/λ2 → −i∞ becomes large. In the t → 0 limit
the incomplete Gamma function∣∣∣∣�

(
− s,

R2

2it

)∣∣∣∣ ∼
∣∣∣∣ t

R2

∣∣∣∣
1+s

(37)

vanishes. We thus obtain the continuity of the wave function
for short times,

F (R, t → 0) =
√

2

s!
Rse−R2/2 = F0(R). (38)

Hence, the full initial wave function with noninteracting Rs

boundary condition is recovered for short times t → 0 or for
distances R � Rd (t ) = √

2Dt (|ρ| � 1) larger than the diffu-
sion scale with quantum diffusivity D � h̄/m [47]. Complex
scaling replaces this by the resonant R−s boundary condition
for longer times or shorter distances R � Rd (t ).

D. Example: Two particles in a harmonic trap

The general analytic solution (36) recovers our earlier re-
sult for N = 2 particles derived in Sec. II. Indeed, with s =
1/2 one has E0 = 3/2, E res

0 = 1/2 and E res
−1 = −3/2 = −E0.

The postquench stationary state at negative energy is

F res
−1 (ρ) = 2λ3/2

ε

π3/4
ρ−1/2e−ρ2/2[1 + √

πρeρ2
erf (ρ)], (39)

while the quench solution reads

F (R, t ) = e−iE0t 2R1/2

π3/4

[
1

ρ
ei(R2/2) cot ω0t + √

πe−R2/2 erf ρ

]
.

We thus find the quenched 3D wave function ψ (r, t ) =
(4πr)−1/2F (R/L = r/�, t ), in agreement with Eq. (9).

IV. APPLICATIONS

From the analytical quench solution (36) it is now straight-
forward to obtain the dynamical scaling of observables after
the quench.

A. Dynamical scaling of observables

While the energy of the initial state remains unchanged
after the quench, the density profile evolves in time. In par-
ticular, the N-body hyperradial correlation function (s > 0)

g(N )(R, t ) = |F (R, t )|2 = 2

s!
R2se−R2

∣∣∣∣1 − �(−s, ρ2)

�(−s)

∣∣∣∣
2

= C(N )(t )R−2s + O(R−2s+2) (40)

manifests how the overall scale of the gas responds to a change
in the N-body interaction. This is the N-body generalization
of the pair correlation function (10) for N = 2 and s = 1/2.
Figure 1 illustrates how after the quench the inner part R � L
is pulled in, while the outer part R � L is pushed further out.
Despite the internal motion, the average cloud size (virial)

〈R2〉(t ) =
∫ ∞

0
dRR R2g(N )(r, t ) = (1 + s)L2 (41)

remains constant after the quench for generic s, extending our
result for s = 1/2 below Eq. (10).

In the short-distance limit the N-body hyperradial cor-
relations (40) are singular for resonant interaction as a
consequence of the Bethe-Peierls boundary condition (25).
The dynamical scaling of this singularity is given by the N-
body contact parameter

C(N )(t ) = lim
R→0

|RsF (r, t )|2 = 2

s!s2
|λ(t )|4s

= 22s+1

s!s2
| sin ω0t |2s. (42)

As discussed above, for s � 1 a short-distance cutoff R > Rc

can be used and the contact is read off just outside the cutoff
radius. The N-body contact is initially zero for an N-body
noninteracting state and rises as |t |2s for short times to reach a
maximum value at quarter period ω0t = π/2. This generalizes
our earlier result (12) for the time-dependent contact of two
particles with s = 1/2.

Finally, the wave-function overlap of the time evolved ini-
tial and quenched states deviates from unity as t1+s for short
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times,

〈ψ0(t )|ψ (t )〉 = eiE0t
∫ ∞

0
dRR F0(R)F (R, t ) (43)

= 1 − λ2(1+s)
2F1(1, 1 + s, 2 + s,−λ2)

(1 + s)!(−1 − s)!

= 1 − (2iω0t )1+s

(1 + s)!(−1 − s)!
+ · · · , (44)

with hypergeometric function 2F1(a, b, c, x). For s = 1/2 this
recovers the scaling of the Loschmidt echo for two particles
(13).

B. Many-body system in free space: Resonant impurity
in an ideal Bose-Einstein condensate

The quench dynamics of a harmonically trapped gas
straightforwardly includes the dynamics in free space by tak-
ing the limit of vanishing trap frequency ω0 → 0. To see this,
we include again units and find

ρ2 = R2/(h̄/mω0)

e2iω0t − 1
ω0→0−→ mR2

2ih̄t
, (45)

with λ(t ) ≈ √
2iω0t , while exp(−R2/2L2) → 1 in this limit.

The analytical quench dynamics in free space is thus given by
the wave function

Ffree(R, t ) = Rs

(
1 − �(−s, mR2/2ih̄t )

�(−s)

)
. (46)

The exact quench evolution (46) applies directly to an
ideal Bose-Einstein condensate (BEC) with a heavy impurity
particle, which is suddenly quenched to resonant interaction
with the surrounding condensate particles and thereby forms
an ideal Bose polaron [14]. The condensate wave function
φ(r, t ) at distance r from the impurity agrees with the relative
wave function (9), (46) up to an overall normalization factor
for N particles in the condensate, and we find

φ(r, t ) =
√

Nψ rel(r, t )
ω0→0−→

√
N

4πr
Ffree(r, t ). (47)

For a uniform BEC in the ω0 → 0 limit we thus obtain the
quench solution

φ(r, t ) = lim
ω0→0

√
π3/2n�3ψ rel(r, t ) (48)

= √
n

(√
2ih̄t

πmr2
e−mr2/2ih̄t + erf

√
mr2

2ih̄t

)
. (49)

Here m = mB denotes the reduced mass between a boson of
mass mB and the infinitely heavy impurity. This result repro-
duces the exact quench solution for the ideal Bose polaron in
a uniform BEC derived recently in a continuum computation
[14].

C. Borromean system with three-body interaction

To study quench dynamics beyond two particles we con-
sider a bosonic three-body system (N = 3) which is initially
noninteracting (s = 2) with relative ground-state energy E0 =
1 + s = 3. A quench of the three-body interaction imposes
a sudden change of the N-body Bethe-Peierls boundary

condition (25) on the hyperradial wave function, while the
two-body sector in the hyperangular part �(�) remains unaf-
fected. This creates a Borromean system with three-body but
no two-body interaction, which occurs both in nuclei [45,48]
and in ultracold gases [42,49], for instance near a three-body
resonance [10].

For the initially noninteracting gas with integer s = 2 the
Whittaker M function (31) is undefined. Instead, one can
write the quench solution as a linear combination of the two
linearly independent regular solutions W(1+s)/2,s/2(−ρ2) and
W−(1+s)/2,s/2(ρ2). For noninteger s the coefficients are fixed
by the initial condition t → 0 and the boundary condition
R → 0, and we recover (36). For integer s = 2, instead, we
obtain the analytical quench solution

F (R, t ) = e−iE0t R2e−R2/2

[
1 + 2i

π
�(−2, ρ2)

]
. (50)

This wave function develops a node at intermediate distance
at quarter period ω0t = π/2, in analogy to the s = 1/2 case
above. Following the discussion in Sec. IV A, we predict that
the three-body contact grows in time as C(3)(t ) ∼ t4. This is
consistent with a recent experiment which found that three-
body correlations grow slower than two-body ones after an
interaction quench [10]. If, instead, three bosons are already
resonantly interacting in the two-body sector with s = 4.465
[41] in the initial state before the quench, we expect an
anomalous growth law C(3)(t ) ∼ t8.93 reminiscent of unpar-
ticle physics [50,51].

V. DISCUSSION

In conclusion, we have shown that N-particle systems
quenched to resonant N-body interaction exhibit scaling dy-
namics with a complex scale factor, with explicit examples
given for N = 2, 3. This provides a fully analytical form of the
nonequilibrium dynamics as the complex scaling of a single
negative-energy stationary state. The exact few-body quench
dynamics determines also the universal dynamics of a many-
body system at times t � h̄/EF shorter than the many-body
timescale where medium effects become important [16].

The complex scaling flow allows us to predict the dynami-
cal scaling of observables after the quench. We find that the
integrated two-body contact (12) grows linearly in time at
short times after a quench from an ideal to a unitary Fermi gas,
with the growth rate C(t ) ∝ (h̄n/m)t proportional to density
[9]. This could be observed with state-of-the-art cold atom
experiments that measure the two- and three-body contact on
very short timescales [5,6,10]. In general, the N-body contact
scales universally as C(N )(t ) ∼ t2s after the quench, while
the fidelity is anomalously suppressed as M(t ) = 1 − γ |t |1+s.
For a three-body system where resonant three-body interac-
tions are switched on, this leads to a characteristic scaling
with s = 2 (without two-body interaction) or s = 4.465 (reso-
nant two-body interaction in l = 0 state). In our discussion
we assumed scale invariance and did not consider Efimov
three-body bound states with imaginary s = 1.00624i that
break continuous scale invariance and lead to modulations
of the three-body contact [52,53]. Nevertheless, approaching
the threshold for three-body bound states provides a way to
realize resonant three-body interactions in experiment [10].
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Quenches into these states could be a worthwhile topic for
future study.

A different question is how an N > 2 particle system
evolves after a quench in the two-body interaction. In this
case, the quench affects also the hyperangular part of the wave
function, and the nonequilibrium evolution might involve sev-
eral towers of states with the same total angular momentum
but different values of s for their primary states [41,54].

Such strong contact correlations have implications for the
description of fluid flow. In general, transport can be described
by the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY)
hierarchy of particle distribution functions where the evo-
lution of the single-particle distribution f1 depends on the
two-particle distribution f2, which in turn depends on higher
distributions [3]. In a dilute gas, the property of molecular
chaos means that particle distributions are uncorrelated and
one can set f2 = f 2

1 : in this way, the hierarchy of equa-
tions of motion closes and one can explicitly compute the
collision integral in the Boltzmann equation. Our model sys-
tem is very dilute with an interaction range |re| � n−1/3 much
shorter than the mean particle spacing; at the same time,

however, the strong contact correlations g(2)(r, t ) in Fig. 1
violate molecular chaos f2 �= f 2

1 and invalidate a Boltzmann
approach formulated solely in terms of the fermionic single-
particle distribution but without two-particle pair correlations.
Indeed, recent computations of the bulk viscosity [55–60] and
thermal conductivity [61] of strongly interacting Fermi gases
reveal the importance of contact correlations for transport in
extension of the fermionic Boltzmann formulation. The initial
buildup of few-body correlations [53,62] should be part of an
effective fluid description of quench dynamics.
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