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The Fermi polaron

• impurity coupled to environment, fundamental condensed matter problem

• here: single mobile ↓ fermion in ↑ Fermi sea: 

• strong polarization limit of:
    BEC-BCS crossover (attractive)
    Stoner ferromagnetism (repulsive)

• cf. Sarma phase Strack+ 1311.4885, Boettcher+ 1409.5232

ferromagnet: Nagaoka 1966

ultracold atoms:
Chevy 2006 (variational);
Combescot et al. 2007 (T-matrix);
Prokof’ev & Svistunov 2008 (diagMC);
Punk, Dumitrescu & Zwerger 2009 (var)

Feynman 1955; Anderson 1967

In this diagram, the upper line hs!v" is completely fixed
by our calculation above of the energy !↓ associated with
adding a single down-spin to an up-spin Fermi sea. Indeed,
since !↑#"F along this line, we have hs= !"F−!↓" /2. In
terms of the constant A!v" introduced in Eq. !2.2", this leads
to hs /"F= !1−A" /2, giving hs=0.81"F at unitarity from the
precise numerical value of the polaron energy $7%. On the
molecular side, Eq. !2.4" gives

hs

"F
= v2 + 1 −

aad/a
2#v

+ ¯ , !4.5"

which is very accurate even at v=vM. The point M along this
line separates a regime where a single down-spin is a well-
defined fermionic quasiparticle from the one, in which it is
bound to the up-spin Fermi sea. The first-order nature of the
transition shows up as a discontinuity of the slope in hs!v" at
M which is, however, hardly visible in Fig. 4. For a finite
density of down spins, the point M appears as an end point of
a line that separates a phase with a finite Fermi surface vol-
ume $↓!0 to its left from one with $↓=0 $26%. Using the
generalized Luttinger theorem derived by Sachdev and Yang
$27%, the expected polarized superfluid !SFp" phase on the
molecular side has a condensate of “dimers” plus an up-spin
Fermi sea, whose volume $↑= !2#"3!n↑−n↓" is set by the
imbalance. This is consistent with the naive picture that the
density of unpaired up spins is simply n↑−n↓ even though the
dimers in the vicinity of the transition are far from local
!↑ ,↓" pairs. In principle, this simple picture of the SFp phase
as a BEC coexisting with a sharp single Fermi surface of
unpaired up spins is unstable with respect to p-wave pairing
due to the induced interactions between the unpaired fermi-
ons through the superfluid $28%. In practice, the nontrivial
superfluid phase of the unpaired up spins is exponentially
suppressed for strong imbalance. Moreover, quantitative re-

sults for the p-wave instability can be derived only in second
order in 1 /v%1, where the resulting energy scales are expo-
nentially small compared with "F. In practice, therefore, the
phase with p-wave pairing among the unpaired up spins
seems hardly accessible experimentally.

A nontrivial issue that has been neglected in the discus-
sion so far is the question whether a gas of polarons or bound
molecules is indeed stable at low but finite densities n↓. On
the weak-coupling side, there is again an induced attractive
interaction in the p-wave channel among both the up spins
and the down spins, mediated by the other species. The
ground state is thus expected to be a two-component p-wave
superfluid and not a normal Fermi-liquid state $28%. Similar
to the situation in the BEC limit, however, the energy scale
for this instability is exponentially small in the regime where
the calculation can be controlled. More importantly, as has
been shown recently by Nishida $29%, the effective interac-
tion between two heavy down-spin fermions immersed in an
up-spin Fermi sea is attractive in the p-wave channel only for
weak coupling. Approaching unitarity, the p-wave interaction
becomes repulsive. Assuming that this result carries over to
the relevant case of equal masses of the up- and down-spin
fermions, a finite density gas of down spins will indeed form
a normal Fermi liquid at unitarity, as was implicitly assumed
in the calculations of the equation of state and density pro-
files of the unitary gas beyond the critical imbalance &c
&0.4, where the balanced superfluid is no longer stable
$11,30%. On the molecular side, the phase immediately below
the saturation field line hs!v" is expected to be a superfluid of
!↑ ,↓" pairs at a very low density n↓→0 immersed in an
up-spin Fermi sea. The fact that the atom-dimer repulsion
aad=1.18a is much larger than the dimer-dimer repulsion
add=0.6a $18%, however, indicates that a low density gas of
molecules tends to phase separate from the up-spin Fermi
gas. This phase separation has indeed been found from an
extended BCS description of the BCS-BEC crossover in an
imbalanced gas $31–34%. It has recently been seen also in the
variational Monte Carlo calculations by Pilati and Giorgini
$25%. Their results indicate that a section between vN&0.73
and a triple point at vT&1.7 along the hs line is actually a
first-order line, where the polarized superfluid disappears
with a finite jump in density as the effective field h increases
through hs. As shown above, the point M lies in the interval
between vN and vT and thus the polaron-to-molecule transi-
tion would not be accessible at any finite minority density, at
least not in an equilibrium situation. Clearly, our variational
calculation for the single down-spin problem cannot address
the question of phase separation. An unexpected feature of
the hs line in the presence of phase separation is the fact that
the transition across hs is predicted to be continuous up to vN,
first order between vN and vT, and continuous again for v
'vT. The rather large value vT&1.7 up to which phase sepa-
ration is predicted also appears surprising. Indeed, in this
regime a mean-field theory describing a Fermi gas coexisting
with a BEC of molecules gives for the energy per volume as
a functional of the density difference (n=n↑−n↓ and the di-
mensionless field h̃=h /"F the simple form

-0.5 0 0.5 1 1.5

1

2

(k a)-1F

h
/ ε

F

M

S

h

hs

c

pp SF

SF

N

fp

0

N

p

?

FIG. 4. Qualitative phase diagram of the imbalanced Fermi gas
as a function of the inverse coupling strength !kFa"−1 and the effec-
tive magnetic field h /"F. The thick line indicates a first-order phase
transition and the different phases are labeled as in $25%, i.e., Nfp:
fully polarized normal phase; Npp: partially polarized normal phase;
SF0: balanced superfluid; SFp: polarized superfluid. The points M
and S are discussed in the text. The precise structure of the phase
diagram in the nontrivial regime hc)h)hs is likely to contain
unconventional superfluid phases in addition to the Npp and SFp
phases, which are not shown in our figure.
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Ultracold atoms

• contact interactions, s-wave scattering length a

• two-body problem:

increasing attraction

1/a

Econtinuum

bound state

�B =
~2

ma2



Polaron to molecule transition

     almost free particle       renormalized fermion      singlet bound state

• ground state properties well understood (variational, Monte Carlo, experiment)

• here: dynamical properties, decay rates, linear response (more involved)

s-wave interaction 1/kFa

Chevy 2006; Prokof’ev & Svistunov 2008; Schirotzek et al. 2009



The model

• two-component Fermi gas with contact interaction, microscopic action

• Hubbard-Stratonovich transformation in Cooper channel: 
exchange of virtual molecules (T-matrix)
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Functional Renormalization Group

• include quantum and thermal fluctuations successively:

⇥k�k[�] =
1
2
Tr

1

�(2)
k [�] + Rk

⇥kRk

functional renormalization group equation     Wetterich 1993

=
1
2

IR: 

RG scale k

UV:

Conclusion

• significant improvement of results by inclusion of w/q dependence of propagators

• analytical continuation -> spectral function, excited states, decay rates

• We have developed an algorithm that is completely general for all types of 
two-point Green‘s functions for bosons and fermions (isotropic interactions)
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• compute two processes:

(a)              : fermions scatter off virtual molecules

(b)              : molecules excite virtual fermion pairs

• need arbitrary frequency/momentum dependence;
use cubic splines to get smooth right-hand side

⌃#(k,!)

⌃�(k,!)



Need for full frequency dependence

S =

Z

P

X
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derivative expansion: �k,�,kin =
�

p,⇥
��[�iAk⇥ + Bkp2 + Ck]�

Ellwanger+ 1994/98, 
Pawlowski+ 2002, Kato 2004, 
Fischer+ 2004, Blaizot+ 2006,
Diehl+ 2008, Bartosch+ 2009,
Benitez, Blaizot+ 2009/10

• single coherent quasi-particle excitation
• no anomalous dimension

-4 0 4 8
w

gap/binding energy

coherent molecule peak

continuum states
incoherent background

A�(�,p = 0)

• most weight in continuum
• anomalous dimension
⌘ = 1

not captured in expansion:

G�(�,p) ⇠
1

�a�1 +
p

��/2 + p2/4� µ� i0+

analytical solution for zero density:
Diehl, Krahl, Scherer 2008,
Moroz, Flörchinger, Schmidt, Wetterich 2009
Schmidt, Moroz 2010



Flowing spectral functions

(1) sharp momentum cutoff: 

(2) reconstruct                from bicubic spline interpolation of 

(3) analytical continuation                                          for spectral function at scale k

(4) compute smooth RHS of flow equation,            and integrate flow down to IR
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spec.fct.: BMW 2006, Dupuis 2009, Sinner+ 2009, Flörchinger 2012, Kamikado+ 2014, Tripolt+ 2014, ...

Schmidt & Enss 2011



Excitation spectrum

1/(kF a)

(⇥
�

µ
�)

/�
F

molecule
A�(�,p = 0)

1/(kF a)

(⇥
�

µ
�)

/�
F

A�(�,p = 0)
polaron

polaron has three characters:
repulsive polaron      attractive polaron      bound molecule

repulsive polaron

molecule

polaron

exc. polaron

exc. molecule

polaronic side molecular side

-1.0

0.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4- 5

- 4

- 3

- 2

- 1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Schmidt & Enss 2011



Excitation spectrum

1/(kF a)

(⇥
�

µ
�)

/�
F

molecule
A�(�,p = 0)

1/(kF a)

(⇥
�

µ
�)

/�
F

A�(�,p = 0)
polaron

polaron has three characters:
repulsive polaron      attractive polaron      bound molecule

repulsive polaron

molecule

polaron

exc. polaron

exc. molecule

polaronic side molecular side

-1.0

0.0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4- 5

- 4

- 3

- 2

- 1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0 0.2 0.4 0.6 0.8 1.0 1.20.0

0.2

0.4

0.6

0.8

1.0

  crossover of quasiparticle weight

Schmidt & Enss 2011



Excitation spectrum
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• polaron to molecule transition at
                          cf. bold diagMC

•                 : ferromagnetism favored

(kF ac)�1 = 0.904(5)
(kF ac)�1 = 0.90(2)

Erep > EF

ferromagnetism

Schmidt & Enss 2011



Polaron decay

repulsive polaron
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• strong binding: stable repulsive branch

• intermediate binding                        :
                       : onset of ferromagnetism
                       : molecule formation

• competition of dynamical phenomena
Jo et al. 2009; Pekker et al. 2011; Cui & Zhai 2010
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Molecule decay

• leading 3-body process (incl. in fRG)

• molecule stable:
Bruun & Massignan 2010

• 1st order transition
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bubble + vertex corrections,
cf. transport Enss, Haussmann, Zwerger 2011
but for polaron they vanish

Radio-frequency response

rf protocol linear response

|2i

|#i

rf current: decay rate of rf photons by coupling to atoms, 
                  imaginary part of photon self-energy:

Irf(!) =
⇡⌦2

rf

2

Z
dp

(2⇡)2
A#(p,! + "p � µ#) nF ("p � µ2)

atom removed
from state 2

atom inserted
in polaron state

Schmidt & Enss 2011
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Experimental confirmation: Innsbruck group

energy spectrum
agrees with theory 
for narrow resonance
(Richard Schmidt, unpubl.)

quasiparticle weight



Fermi polarons in two dimensions

Schmidt, Enss, Pietilä & Demler, PRA 85, 021602(R) (2012)



2D scattering

experimental setup: quasi-2D “pancakes”

longitudinal motion frozen if 
kBT,EF ⌧ ~!0

exact 2D scattering amplitude:

2D: f(k) =
1

ln(1/k2a22D) + i⇡

quasi-2D scattering:

2D: always
bound state

"B =
~2

ma22D

"B = 0.905 (~!0/⇡) exp(�
p
2⇡`0/|a3D|) Petrov & Shlyapnikov 2001

determines        from  a2D a3D

Adhikari 1986

3D: f(k) =
1

�1/a3D � ik



Nozières & Schmitt-Rink 1985;
2D: Engelbrecht & Randeria 1990

Many-body T-matrix



Nozières & Schmitt-Rink 1985;
2D: Engelbrecht & Randeria 1990

step 1: compute many-body T-matrix

two-body T-matrix: T0(E) =
4⇡/m

ln("B/E) + i⇡

many-body: finite density medium scattering    Schmidt, Enss, Pietilä & Demler 2012

T�1(q,!) = T�1
0 (! + i0 + µ" + µ# � "q/2) +

Z
d2k

(2⇡)2
nF ("k � µ") + nF ("k+q � µ#)

! + i0 + µ" + µ# � "k � "k+q

we find compact solution

Many-body T-matrix
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Polaron self-energy

step 2: polaron self-energy

step 3: polaron spectral function

A#(p,!) = �2 Im
1

! + i0 + µ# � "p � ⌃#(p,!)

⌃#(p,!) =

Z

k<kF

d2k

(2⇡)2
T (k+ p, "k � µ" + !)

contains full information about
energy spectrum, quasiparticle weights, decay rates...



Polaron spectral function

repulsive polaron attractive polaron

A#(p,!)A#(p,!)A#(p,!)

A#(p = 0,!)

Schmidt, Enss, Pietilä & Demler 2012



Polaron spectral function

A#(p,!)A#(p,!)A#(p,!)

A#(p = 0,!)

QP weight QP effective mass

Schmidt, Enss, Pietilä & Demler 2012



Cambridge experiment

effective mass

lifetime of rep. polaronenergy spectrum

cf. Ngampruetikorn et al. 2012confirms our prediction



BKT-BCS crossover in 2D Fermi gas
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Conclusion & outlook

‣ full frequency/momentum dependence of self-energy and Cooper vertex
• full self-energy feedback yields transition as accurately as diagMC
• beyond quasiparticle picture, large anomalous dimension
• resolve higher excited states, decay rates, power laws

Schmidt & Enss, PRA 83, 063620 (2011)
Schmidt, Enss, Pietilä & Demler, PRA 85, 021602(R) (2012)
Bauer, Parish & Enss, PRL 112, 135302 (2014)

‣ 2D: predicted repulsive polaron, confirmed by Cambridge experiment

‣ RG flow of spectral functions
• see how many-body correlations emerge in spectrum

‣ outlook
• fRG for 2D polaron to include self-energy feedback
• interaction between impurities, finite impurity density
• dynamical and transport processes

‣ predicted repulsive polaron, confirmed in experiment
• inverse RF protocol to detect short-lived repulsive state


