note: unpublished figures had to be removed from the slides

Polarons in ultracold atomic gases

- flowing spectral functions -

Tilman Enss (ITP, Uni Heidelberg)

Richard Schmidt (TU München) Ville Pietilä (Harvard) Eugene Demler (Harvard) Marianne Bauer (Cambridge) Meera Parish (Cambridge)

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

ERG 2014, Lefkada, 26 September 2014

The Fermi polaron

- impurity coupled to environment, fundamental condensed matter problem Feynman 1955; Anderson 1967
- here: single mobile ↓ fermion in ↑ Fermi sea:

- strong polarization limit of: BEC-BCS crossover (attractive) Stoner ferromagnetism (repulsive)
- cf. Sarma phase Strack+ 1311.4885, Boettcher+ 1409.5232

ferromagnet: Nagaoka 1966

ultracold atoms: Chevy 2006 (variational); Combescot et al. 2007 (T-matrix); Prokof'ev & Svistunov 2008 (diagMC); Punk, Dumitrescu & Zwerger 2009 (var)

Ultracold atoms

- contact interactions, s-wave scattering length a
- two-body problem:

Polaron to molecule transition

- ground state properties well understood (variational, Monte Carlo, experiment) Chevy 2006; Prokof'ev & Svistunov 2008; Schirotzek et al. 2009
- here: dynamical properties, decay rates, linear response (more involved)

The model

two-component Fermi gas with contact interaction, microscopic action

$$S = \int_{P} \sum_{\sigma=\uparrow,\downarrow} \psi_{\sigma}^* [-i\omega + p^2 - \mu_{\sigma}] \psi_{\sigma} + g \int_{X} \psi_{\uparrow}^* \psi_{\downarrow}^* \psi_{\downarrow} \psi_{\uparrow}$$

 Hubbard-Stratonovich transformation in Cooper channel: exchange of virtual molecules (T-matrix)

Functional Renormalization Group

• include quantum and thermal fluctuations successively:

Need for full frequency dependence

$$S = \int_{P} \sum_{\sigma=\uparrow,\downarrow} \psi_{\sigma}^* [-i\omega + p^2 - \mu_{\sigma}] \psi_{\sigma} + \phi^* G_{\phi,\Lambda}^{-1} \phi + h \int_{X} (\psi_{\uparrow}^* \psi_{\downarrow}^* \phi + h.c.)$$

derivative expansion: $\Gamma_{k,\phi,\rm kin} = \int_{\mathbf{p},\omega} \phi^* [-iA_k \omega + B_k \mathbf{p}^2 + C_k] \phi$

- single coherent quasi-particle excitation
- no anomalous dimension

analytical solution for zero density:

$$G_{\phi}(\omega, \mathbf{p}) \sim \frac{1}{-a^{-1} + \sqrt{-\omega/2 + \mathbf{p}^2/4 - \mu - i0^+}}$$

$$\mathcal{A}_{\phi}(\omega, \mathbf{p} = 0)$$
coherent molecule peak
$$(\omega, \mathbf{p} = 0)$$
continuum states
incoherent background
$$(\omega, \mathbf{p} = 0)$$
continuum states
incoherent background
$$(\omega, \mathbf{p} = 0)$$

Ellwanger+ 1994/98, Pawlowski+ 2002, Kato 2004, Fischer+ 2004, Blaizot+ 2006, Diehl+ 2008, Bartosch+ 2009, Benitez, Blaizot+ 2009/10

Diehl, Krahl, Scherer 2008, Moroz, Flörchinger, Schmidt, Wetterich 2009 Schmidt, Moroz 2010

not captured in expansion:

- most weight in continuum
- anomalous dimension

 $\eta = 1$

conclusion

Flowing spectral functions

$$\Gamma_{k} = \int_{\mathbf{p},\omega} \left\{ \psi_{\uparrow}^{*} [-i\omega + \mathbf{p}^{2} - \mu_{\uparrow}] \psi_{\uparrow} + \psi_{\downarrow}^{*} G_{\downarrow,k}^{-1}(\omega, \mathbf{p}) \psi_{\downarrow} + \phi^{*} G_{\phi,k}^{-1}(\omega, \mathbf{p}) \phi \right\} + \int_{\vec{x},\tau} h(\psi_{\uparrow}^{*} \psi_{\downarrow}^{*} \phi + h.c.)$$

(1) sharp momentum cutoff:

$$G^{c}_{\downarrow,k}(\omega,\mathbf{p}) = \frac{\theta(|\mathbf{p}|-k)}{P_{\downarrow,k}(\omega,\mathbf{p})}, \quad G^{c}_{\phi,k}(\omega,\mathbf{p}) = \frac{\theta(|\mathbf{p}|-k)}{P_{\phi,k}(\omega,\mathbf{p})}, \quad G^{c}_{\uparrow,k}(\omega,\mathbf{p}) = \frac{\theta(|\mathbf{p}^{2}-\mu_{\uparrow}|-k^{2})}{P_{\uparrow,k}(\omega,\mathbf{p})}$$

(2) reconstruct $P_k(i\omega, \mathbf{p})$ from bicubic spline interpolation of $P_{kij} = P_k(i\omega_i, \mathbf{p}_j)$

(3) analytical continuation $P_k(i\omega, \mathbf{p}) \rightarrow P_k(\omega + i0, \mathbf{p})$ for spectral function at scale k

(4) compute smooth RHS of flow equation, $\tilde{\partial}_k P_{kij}$ and integrate flow down to IR

Excitation spectrum

Excitation spectrum

Excitation spectrum

Schmidt & Enss 2011

• $E_{\rm rep} > E_F$: ferromagnetism favored

Polaron decay

polaronic side molecular side \rightarrow 1 repulsive polaron 0 molecule $\frac{1}{E} - 1$ polaron - 3 - 4 - 5 0.2 0.4 0.6 0.8 1.2 0.0 1.0 1.4 $1/(k_F a)$ 1.0 $k = 0 k_F$ 0.8 2.5 2.0 $\Gamma_{ m rep}/\epsilon_{F}$ 51 g 1.0 0.5 0.0 0.2 0.6 0.8 0.4 1.0 0.2 p/k_F 0.0 0.2 0.4 0.6 0.8 1.0 1.2 $1/(k_F a)$

Schmidt & Enss 2011

- strong binding: stable repulsive branch
- intermediate binding $(k_F a)^{-1} < 0.6$: $E_{rep} > E_F$: onset of ferromagnetism $\Gamma_{rep} > 0.2 E_F$: molecule formation
- competition of dynamical phenomena Jo et al. 2009; Pekker et al. 2011; Cui & Zhai 2010

Molecule decay

Schmidt & Enss 2011

- leading 3-body process (incl. in fRG)
- molecule stable: $\Gamma \propto \Delta \omega^{9/2}$ Bruun & Massignan 2010
- 1st order transition

Radio-frequency response

rf protocol

linear response

bubble + vertex corrections, cf. transport Enss, Haussmann, Zwerger 2011 but for polaron they vanish

rf current: decay rate of rf photons by coupling to atoms,

imaginary part of photon self-energy:

$$\begin{split} I_{\rm rf}(\omega) &= \frac{\pi \Omega_{\rm rf}^2}{2} \int \frac{d\mathbf{p}}{(2\pi)^2} \underbrace{\mathcal{A}_{\downarrow}(\mathbf{p}, \omega + \varepsilon_{\mathbf{p}} - \mu_{\downarrow})}_{\bigwedge} \underbrace{n_F(\varepsilon_{\mathbf{p}} - \mu_2)}_{\bigwedge} \\ \text{atom inserted} \\ \text{in polaron state} \\ \end{split}$$

Experimental confirmation: Innsbruck group

Fermi polarons in two dimensions

Schmidt, Enss, Pietilä & Demler, PRA 85, 021602(R) (2012)

2D scattering

experimental setup: quasi-2D "pancakes"

longitudinal motion frozen if $k_B T, E_F \ll \hbar \omega_0$

exact 2D scattering amplitude:

2D: always bound state

3D:
$$f(k) = \frac{1}{-1/a_{3D} - ik} \longrightarrow \left(2D: f(k) = \frac{1}{\ln(1/k^2 a_{2D}^2) + i\pi} \right) \quad \varepsilon_B = \frac{\hbar^2}{m a_{2D}^2}$$

Adhikari 1986

quasi-2D scattering:

$$\varepsilon_B = 0.905 \left(\hbar \omega_0 / \pi \right) \exp\left(-\sqrt{2\pi} \ell_0 / |a_{3D}| \right)$$

Petrov & Shlyapnikov 2001

determines a_{2D} from a_{3D}

Many-body T-matrix

Nozières & Schmitt-Rink 1985; 2D: Engelbrecht & Randeria 1990

Many-body T-matrix

Nozières & Schmitt-Rink 1985; 2D: Engelbrecht & Randeria 1990

step 1: compute many-body T-matrix

two-body T-matrix:
$$T_0(E) = \frac{4\pi/m}{\ln(\varepsilon_B/E) + i\pi}$$

many-body: finite density medium scattering Schmidt, Enss, Pietilä & Demler 2012

$$T^{-1}(\mathbf{q},\omega) = T_0^{-1}(\omega + i0 + \mu_{\uparrow} + \mu_{\downarrow} - \varepsilon_{\mathbf{q}}/2) + \int \frac{d^2k}{(2\pi)^2} \frac{n_F(\varepsilon_{\mathbf{k}} - \mu_{\uparrow}) + n_F(\varepsilon_{\mathbf{k}+\mathbf{q}} - \mu_{\downarrow})}{\omega + i0 + \mu_{\uparrow} + \mu_{\downarrow} - \varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k}+\mathbf{q}}}$$

we find compact solution

$$T(\mathbf{q},\omega) = T_0 \left(\frac{1}{2}z \pm \frac{1}{2}\sqrt{(z-\varepsilon_{\mathbf{q}})^2 - 4\varepsilon_F \varepsilon_{\mathbf{q}}}\right) \qquad z = \omega + i0 - \varepsilon_F + \mu_{\downarrow}$$

many-body: finite density medium scattering Schmidt, Enss, Pietilä & Demler 2012

$$T^{-1}(\mathbf{q},\omega) = T_0^{-1}(\omega + i0 + \mu_{\uparrow} + \mu_{\downarrow} - \varepsilon_{\mathbf{q}}/2) + \int \frac{d^2k}{(2\pi)^2} \frac{n_F(\varepsilon_{\mathbf{k}} - \mu_{\uparrow}) + n_F(\varepsilon_{\mathbf{k}+\mathbf{q}} - \mu_{\downarrow})}{\omega + i0 + \mu_{\uparrow} + \mu_{\downarrow} - \varepsilon_{\mathbf{k}} - \varepsilon_{\mathbf{k}+\mathbf{q}}}$$

we find compact solution

$$T(\mathbf{q},\omega) = T_0 \left(\frac{1}{2}z \pm \frac{1}{2}\sqrt{(z-\varepsilon_{\mathbf{q}})^2 - 4\varepsilon_F \varepsilon_{\mathbf{q}}}\right) \qquad z = \omega + i0 - \varepsilon_F + \mu_{\downarrow}$$

Polaron self-energy

step 2: polaron self-energy

$$\Sigma_{\downarrow}(\mathbf{p},\omega) = \int_{k < k_F} \frac{d^2k}{(2\pi)^2} T(\mathbf{k} + \mathbf{p}, \varepsilon_{\mathbf{k}} - \mu_{\uparrow} + \omega)$$

step 3: polaron spectral function

$$\mathcal{A}_{\downarrow}(\mathbf{p},\omega) = -2 \operatorname{Im} \frac{1}{\omega + i0 + \mu_{\downarrow} - \varepsilon_{\mathbf{p}} - \Sigma_{\downarrow}(\mathbf{p},\omega)}$$

contains full information about

energy spectrum, quasiparticle weights, decay rates...

Polaron spectral function

Schmidt, Enss, Pietilä & Demler 2012

Polaron spectral function

Schmidt, Enss, Pietilä & Demler 2012

Cambridge experiment

LETTER

31 MAY 2012 | VOL 485 | NATURE | 619

doi:10.1038/nature11151

223

Attractive and repulsive Fermi polarons in two dimensions

Marco Koschorreck1*, Daniel Pertot1*, Enrico Vogt1, Bernd Fröhlich1, Michael Feld1 & Michael Köhl1

energy spectrum

lifetime of rep. polaron

222

221

B (G)

cf. Ngampruetikorn et al. 2012

effective mass

BKT-BCS crossover in 2D Fermi gas

Conclusion & outlook

In the full frequency/momentum dependence of self-energy and Cooper vertex

- full self-energy feedback yields transition as accurately as diagMC
- beyond quasiparticle picture, large anomalous dimension
- resolve higher excited states, decay rates, power laws

RG flow of spectral functions

- see how many-body correlations emerge in spectrum
- predicted repulsive polaron, confirmed in experiment
 - inverse RF protocol to detect short-lived repulsive state

outlook

- fRG for 2D polaron to include self-energy feedback
- interaction between impurities, finite impurity density
- dynamical and transport processes

```
Schmidt & Enss, PRA 83, 063620 (2011)
Schmidt, Enss, Pietilä & Demler, PRA 85, 021602(R) (2012)
Bauer, Parish & Enss, PRL 112, 135302 (2014)
```

