
PHYSICAL REVIEW B 95, 045121 (2017)

Many-body localization in infinite chains

T. Enss,1 F. Andraschko,2 and J. Sirker2

1Institute for Theoretical Physics, University of Heidelberg, 69120 Heidelberg, Germany
2Department of Physics and Astronomy, University of Manitoba, Winnipeg R3T 2N2, Canada

(Received 19 August 2016; revised manuscript received 3 October 2016; published 17 January 2017)

We investigate the phase transition between an ergodic and a many-body localized phase in infinite anisotropic
spin-1/2 Heisenberg chains with binary disorder. Starting from the Néel state, we analyze the decay of
antiferromagnetic order ms(t) and the growth of entanglement entropy Sent(t) during unitary time evolution.
Near the phase transition we find that ms(t) decays exponentially to its asymptotic value ms(∞) �= 0 in the
localized phase while the data are consistent with a power-law decay at long times in the ergodic phase. In
the localized phase, ms(∞) shows an exponential sensitivity on disorder with a critical exponent ν ∼ 0.9. The
entanglement entropy in the ergodic phase grows subballistically, Sent(t) ∼ tα , α � 1, with α varying continuously
as a function of disorder. Exact diagonalizations for small systems, on the other hand, do not show a clear scaling
with system size and attempts to determine the phase boundary from these data seem to overestimate the extent
of the ergodic phase.
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I. INTRODUCTION

It is by now well established that disorder can drive closed
one-dimensional quantum many-body systems into a many-
body localized (MBL) phase [1–3]. In such a phase, the system
fails to act as a bath for its own subsystems and thermalization
does not occur. Instead, memory of the initial conditions is
retained. The “drosophila” to study properties of the MBL
phase is the spin-1/2 Heisenberg chain
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with � = 1 and Di ∈ [−D,D] a random variable drawn from
a uniform box distribution with disorder strength D. Here,
L is the length of the system and sα

i is the α component
of the spin operator acting at site i. Studies of this model
have been based mainly on exact diagonalization (ED) for
small systems [4–8]. These numerical results have then been
used to determine a critical point Dc between the ergodic
and MBL phase by showing, for instance, that the level
statistics changes from a Wigner-Dyson distribution at small
but nonzero D to a Poisson distribution at D > Dc (MBL)
with Dc ≈ 3.5. Furthermore, deep in the MBL phase, the
entanglement entropy is shown to increase logarithmically
during unitary time evolution [9], confirming results from an
earlier density matrix renormalization group study [10].

ED studies of small systems are, however, ill-suited to
address the properties of weakly disordered systems as well
as the phase transition itself because in both cases the relevant
length scale ξ will be much larger than the achievable system
sizes L. This creates, in particular, a significant obstacle in
understanding this novel type of dynamical phase transition
where the entanglement entropy changes from volume law
(ergodic) to area law (MBL), making it distinct from reg-
ular thermal transitions or ground-state critical points. Two
approaches have so far been used to tackle this problem.
On the one hand, it has been tried to investigate the critical
regime based on extrapolations from ED data to larger systems
[5–8]. Assuming that the transition is described by a single

diverging length scale ξ ∼ |D − Dc|−ν , the obtained results
are mostly consistent with a critical exponent ν ∼ 1. This,
however, would violate a Harris-type bound, which demands
ν > 2/d in d dimensions in order for the transition to be stable
[11,12]. A second recent approach is based on a real-space
renormalization group (RG) applied to effective minimal
models assuming that only two energy scales exist [13,14].
The length scale ξ is then found to diverge with an exponent
ν ≈ 3–3.5 consistent with the Harris bound. However, it is
important to stress that the RG approaches are not based on
microscopic models and contradict the results from previous
ED studies.

In this work, we shed new light on this controversial point
by studying a disordered interacting quantum chain directly
in the thermodynamic limit (TDL). In this way, we avoid
the fundamental obstacle ξ � L one faces in ED studies
of the phase transition. In the following, we focus on the
anisotropic Heisenberg chain, Eq. (1), with binary disorder
Di = ±D instead of the more commonly used box disorder.
This naturally arises as an effective model for a bosonic system
with a mobile and an immobile species in the limit of strong
on-site Hubbard interactions and also exhibits a transition from
an ergodic to an MBL phase [15,16]. As in the noninteracting
case [17], one expects that the chosen disorder distribution
leads to quantitative changes while the qualitative features,
in particular the properties of the transition, are universal.
The goals of this work are to establish the phase diagram of
the model (1) with binary disorder as a function of disorder
strength D and anisotropy � (see Fig. 1) and to study the
ergodic-MBL phase transition directly in the TDL. In order
to obtain an exact disorder average in a single simulation,
we introduce an ancilla spin-1/2, sz

i,anc at each site and replace
Dis

z
i → 2Dsz

i s
z
i,anc. The state of sz

i,anc = ±1/2 then determines
the local binary disorder Di = ±D [15,18]. We consider the
unitary time evolution starting from an initial product state
|�(0)〉 ⊗ |dis〉 in the Hilbert space of spins and ancillas, where
|dis〉 = ⊗

j (|↑〉j,anc + |↓〉j,anc)/
√

2 represents a superposi-
tion of all possible disorder configurations. Following recent
experiments [19–21], we prepare the spins in the Néel state
|�(0)〉 = |↑↓↑↓ · · · 〉 (|1010 · · · 〉 in the equivalent fermionic
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FIG. 1. Spin chain (1) with binary disorder. (a) Phase boundary
for the infinite chain obtained from the order parameter ms(∞). The
relaxation time τ changes substantially near the transition line, see
Sec. II. (Inset) Thermalizing clusters (equal field D) are separated by
barriers (staggered field ±D). (b) ED phase boundary from finite-size
extrapolation limL→∞ ms(L) and the line where the average gap in
the energy spectrum for L = 16 crosses the intermediate value 〈r〉 =
0.4575 between GOE and Poisson, see Sec. IV.

picture). We then study the exactly disorder averaged decay of
the antiferromagnetic order,

ms(t) = 〈dis|〈�(t)|(m̂s ⊗ 1)|�(t)〉|dis〉, (2)

where m̂s = L−1 ∑
j (−1)j sz

j measures the staggered magne-
tization (imbalance) of the physical spins and the identity
operator 1 acts on the ancillas. The time evolved state is defined
by |�(t)〉|dis〉 = exp(−iH t)|�(0)〉|dis〉 where H includes the
coupling between spins and ancillas 2Dsz

i s
z
i,anc. In addition, we

also study the growth of the disorder averaged entanglement
entropy Sent = −Trρred ln ρred. Here, ρred denotes the reduced
density matrix of half of the infinite chain consisting of spins
and ancillas. Because the density matrix includes the ancillas,
the entanglement entropy is quantitatively not the same as for
a semi-infinite chain consisting of spins only. The ancillas are,
however, completely static so that the entanglement entropies
with and without the ancillas show the same scaling with time.
We simulate the translationally invariant system of spins and
ancillas using the light cone renormalization group (LCRG),
a variant of the density matrix renormalization group, which
yields results directly in the TDL [15,22].

We choose the LCRG bond dimension such that the trunca-
tion error always remains smaller than 10−11. By comparing
with results obtained keeping the truncation error smaller than
10−8, we make sure that our results are numerically exact
for the times shown. This requires bond dimensions of up to
20 000 states. The scales we are reaching in these simulations
are unprecedented: at small disorder in the ergodic phase,
correlations spread approximately ballistically as vt , where
v is the maximal velocity of excitations in the lattice. The
maximal times in our simulations therefore test the system
at length scales of at least L ∼ 2vt ∼ 100. While we cannot

exclude the possibility that the scaling of the quantities we
study changes qualitatively at even larger scales, our data
represent substantial progress compared to ED studies, which
are limited to scales of L ∼ 20.

II. DECAY OF ORDER PARAMETER

In the clean free fermion case (D = � = 0), the de-
cay of the order parameter is given by ms(t) = 1

2J0(2t) ∼
(4πt)−1/2 cos(2t − π/4) with J0 being the Bessel function of
the first kind and the time is measured in units of �/J . For
interactions 0 < � < 1, it has been shown that the asymptotic
decay in the clean case is well described by the free fermion
asymptotics multiplied by an exponential decay [23,24].
Turning on disorder introduces barriers between thermalizing
clusters with equal Zeeman field, see inset of Fig. 1(a). In the
ergodic phase, a finite thermalization time across such barriers
τ ∼ eNf (D,�) must exist, where N is the number of jumps of
the Zeeman field within the barrier and f (D,�) a function
depending on disorder D and anisotropy �. The probability
that a particular site is part of a barrier with N jumps is given
by P (N ) = N/2N+1. After time t , only clusters separated
by barriers of size N � N0 = f −1(D,�) ln t will not have
thermalized, and the asymptotic decay in the ergodic phase
follows

ms(t) ∼
∫ ∞

N0

P (N )dN ∼
∫ ∞

f −1(D,�) ln t

N dN

2N+1
∼ t

− const
f (D,�) (3)

up to logarithmic corrections. In the MBL phase, on the other
hand, the staggered magnetization will not decay completely,
ms(∞) ≡ ms(t → ∞) �= 0. Combining the different limiting
cases, we fit the LCRG data for anisotropies 0 < � � 1.25,
disorder 0 < D < 1, and times t � 5 by the functions

ms(t) = A
cos(ωt − φ)e−t/τ

√
t

+
{

Bt−ζ

ms(∞)
, (4)

with lifetime τ and exponent ζ of a power-law decay. We
perform fits using both fit functions and check for consistency,
i.e., in the ergodic phase ms(∞) ≈ 0 and in the MBL phase
ζ ≈ 0 with B ≈ ms(∞). As shown in Fig. 2, this leads to
excellent fits, which allow to extract an estimate for ms(∞) in
the MBL phase, ζ in the ergodic phase, as well as the lifetime
of the oscillations τ , see Figs. 3(a)–3(c). In Appendix A, we
show that the fit parameters depend only weakly on the time
window used for the fit, cf. Fig. 7. In particular, the asymptotic
value of the order parameter ms(∞) is very robust in all fits,
cf. Fig. 8. As in the clean case [23,24], we cannot find any
fitting function which describes the data for small disorder in
the regime 1.25 < � � 3 well. For � � 3, on the other hand,
we find that the asymptotics is very well described by a pure
nonoscillating exponential decay ms(t) ∼ ms(∞) + Ae−t/τ ,
see Fig. 2(c).

Based on the RG analysis of a minimal model, an
exponential sensitivity of the residual imbalance ms(∞) ∼
m0 exp [−(D − Dc)−ν] in the MBL phase (D > Dc) has been
predicted [14]. As shown in Fig. 3(a), we obtain an excellent
data collapse for different � with a critical exponent ν ∼ 0.9
using m0 ∈ [0.255,0.282] and Dc as fitting parameters. The
critical values Dc(�) obtained from the data collapse lead
to the phase boundary shown in Fig. 1(a). We note that ν ∼
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FIG. 2. Decay of the order parameter ms(t) from LCRG for (a)
� = 0.25, (b) � = 1, and (c) � = 4. Left column D = 0.02 and right
column D = 0.3. Error bars are smaller than the symbol size. The
lines are fits with absolute statistical errors for ms(∞) of the order of
10−3–10−4. The relaxation time τ decreases with increasing disorder
for � = 0.25 and 4 while it increases for � = 1.

0.9 < 2 violates the Harris bound, see below. For comparison,
the power-law exponent ζ is shown in Fig. 3(b); in a theory
with a single length scale ξ , one would expect that ζ ∼ 1/z ∼
1/ξ ∼ |D − Dc|ν , where z is the dynamical critical exponent
[14]. However, the fits yield absolute statistical errors in the
power-law exponent ζ between 0.05–0.2 making it impossible
to extract a ζ (D) scaling close to ζ (D) ∼ 0. The Dc values
determined by ζ (Dc) = 0 nevertheless are consistent with,
although slightly larger than, the values based on the data
collapse for the magnetization. The relaxation time τ , on
the other hand, can be extracted with statistical errors of
less than 2% and is shown in Fig. 3(c). For very small
disorder, we qualitatively find the same behavior as in the clean
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FIG. 3. (a) Data collapse of the magnetization ms(∞). (b) Power-
law exponent ζ [same symbols as in (a)] and (c) relaxation times τ

for small disorder D. Symbols: results from fits of the LCRG data;
lines in (b) and (c) are guides to the eye.

case [23,24]. The relaxation time decreases approximately as
τ ∼ | ln �| for � < 1 and increases proportional to τ ∼ �2

for � � 3. For � � 1 and � > 3, we find that the relaxation
times immediately decrease when disorder is added; in a region
around � ∼ 1, however, the relaxation times remain stable
at first before increasing at larger disorder strengths. When
plotting the value of the smallest disorder where τ deviates
substantially (by more than 10%) from the clean case for
different anisotropies �, we find that this change in relaxation
time does occur when crossing from the ergodic to the MBL
phase, see Fig. 1(a).

Similarly to the phase diagram for the XXZ chain with box
disorder—obtained by ED in Ref. [7]—we observe reentrant
behavior: for fixed D and small � in the MBL phase,
increasing interactions can first drive the system into the
ergodic phase before localization is again stabilized at large
interactions.

III. ENTANGLEMENT GROWTH

To investigate the properties of the phase transition in more
detail, we now turn to an analysis of the entanglement entropy
Sent(t). Using the same type of argument as for the decay
of the order parameter, a power law Sent ∼ tα is expected in
the ergodic phase.1 If the RG theories of Refs. [13,14] do
describe the transition correctly then α = 1/z ∼ 1/ξ holds. On
the MBL side, on the other hand, we have shown previously
in Ref. [15] that Sent ∼ ln t as is predicted on general grounds
[26–30]. For � < 1, we fit the LCRG data for t > 7.5 to
a power law Sent = c1 + c2t

α and obtain excellent fits with
statistical errors of less than 5%. Furthermore, the exponent α,
shown in Fig. 4(a), is only weakly affected by a modification
of the fit interval provided that the behavior for small times is

1A power law in the entanglement entropy is also found in the
critical Harper model [25].
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FIG. 4. Entanglement entropy. (a) Exponent Sent ∼ tα for differ-
ent anisotropies � at the longest times accessible by LCRG. (b) Sent(t)
for � = 1 and different disorder strengths D on a log-log scale. The
dashed lines are power-law fits.
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excluded. For � � 1 and intermediate disorder, on the other
hand, we find two different regimes: a power law increase
at intermediate times 5 < t � 20 followed by a much slower
increase for t � 20, see Fig. 4(b). Because of the limited time
range available, it is not clear if the latter regime corresponds
to a power-law increase with a smaller exponent or signals a
crossover to logarithmic scaling.

Overall, we find a subballistic spreading including, sur-
prisingly, an extended region of disorder strengths for small
� where the entanglement spreads diffusively, α = 1/2
and Sent ∼ √

t . Remarkably, for the parameters � = 0.5,
D = 0.5, . . . ,0.9 where the entanglement spreads diffusively,
the system seems to be already deep in the MBL phase
according to the phase diagram Fig. 1(a); the order parameter
shown in Fig. 8 signals localization at least up to times
t ∼ 25. Physically, this intermediate diffusive regime might be
explained by the existence of many relatively narrow barriers
between thermalizing segments which lead to diffusion, while
rare wide barriers lead to an exponential enhancement of the
entanglement time and finally prevent the system from fully
thermalizing. Our findings might therefore possibly indicate
that the transition is not described by a single length scale.
In this case, the scaling hypothesis is violated and a Harris
criterion does not apply. The region with z = 2 corresponds
to classical diffusion implying, in particular, that the spin-
spin autocorrelation function decays as Czz(t) ∼ t−β with
β = 1/z = 1/2. Note that even in the clean case the presence
or absence of diffusion at infinite temperatures in Czz(t) is
an open and controversially discussed topic, with numerical
results for short and intermediate times showing a power-law
decay with an exponent depending on the fit interval [31,32].
At small finite temperatures, on the other hand, Czz ∼ 1/

√
t

has recently been established by field theoretical methods in
the TDL and confirmed by numerical data [33].

IV. COMPARISON WITH ED

While the LCRG data for infinite systems support a
consistent interpretation of the MBL transition, it is instructive
to compare to exact diagonalization results for finite systems.
Two commonly used methods to establish the phase diagram
of the disordered model (1) are calculating the level statistics
and studying the time average of an order parameter.

To obtain the level statistics, we define rn =
min(δn,δn−1)/ max(δn,δn−1) with δn = En+1 − En the differ-
ence between adjacent energy eigenvalues. At the integrable
point D = 0 and also in the MBL phase where additional
local conserved charges exist, we expect Poisson statistics
P (r) = 2/(1 + r)2 with an average value 〈r〉 ≈ 0.386, while
Wigner-Dyson statistics with 〈r〉 ≈ 0.529 is expected in the
ergodic phase for D �= 0 [4,34], see Appendix B for details. In
Fig. 5(a), results for model (1) with binary disorder, � = 1, and
system sizes L = 8–16 are shown where the disorder averages
are exact for L � 14, while 4000 inequivalent samples have
been used for L = 16. Contrary to the box disorder case [4],
we do not find a point where 〈r〉(L) appears to be close to
stationary, which has been interpreted as being indicative of the
critical point in the thermodynamic limit. Note, however, that
even in the box disorder case a “drifting” of the crossing points
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FIG. 5. (a) � = 1: 〈r〉 values for open chains of length
L. (b) Time averaged magnetizations ms for disorder D =
0.08,0.24,0.48,0.72, . . . ,2.16 (from bottom to top). The dashed lines
are linear extrapolations in 1/L for L � 10.

of curves with different L has been observed for increasing
system size.

An alternative criterion to estimate the phase boundary is
to fix Dc(L) as the disorder value where 〈r〉(L) crosses the
intermediate value 〈r〉 = 0.4575 between Wigner-Dyson and
Poisson statistics. If there is a sharp transition between an
ergodic and an MBL phase in the thermodynamic limit then
Dc(L) will converge to the critical value in the limit L →
∞. However, even using this alternative criterion the problem
persists that no clear scaling with L is obtained for the limited
system sizes available. For L = 16, 〈r〉 takes an intermediate
value between Wigner-Dyson and Poisson statistics around
disorder D ∼ 1 (see Fig. 9 in the Appendix), which is an order
of magnitude larger than the Dc value for � = 1 established
above for the infinite chain.

With increasing anisotropy � the system approaches the
Ising limit where each local Sz

j becomes approximately
conserved. For small disorder, it would then require very large
systems to see level repulsion and Wigner-Dyson statistics.
We therefore consider only anisotropies � � 2 using ED, see
Fig. 1(b).

A naive linear extrapolation in 1/L of the time averaged
magnetizations ms also yields a critical Dc ∼ 1 for � = 1, see
Fig. 5(b). LCRG, on the other hand, shows quite clearly that
D = 1 is already deep inside the MBL phase [see Fig. 2(b2)].
Using both 〈r〉 and ms to extract a phase boundary shows
that the ED results can lead to a significantly larger extent
of the ergodic phase for all �, see Fig. 1. This might not
be completely unexpected because any system with length L

much smaller than the localization length ξloc will look ergodic.
The difference between infinite and finite systems is

exemplified clearly in the time evolution of the order parameter
ms(t) for � = 1, D = 0.3 shown in Fig. 6. According to the
finite-size scaling of the time averaged ms obtained by ED, this
is far in the ergodic phase [cf. Figs. 5(b) and 12]. However,
we observe that ED for L � 14 and LCRG for L = ∞ only
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FIG. 6. Time evolution of the staggered magnetization ms(t) at
the isotropic point � = 1 for small disorder D = 0.3 from ED for
L � 14 with periodic boundary conditions (PBC) and LCRG (L =
∞). Already for short times J t ∼ 4, the time evolution differs visibly
due to finite-size effects in ED.

agree up to t � 4. LCRG, instead, shows that ms(t) saturates
for t � 10 at least up to t ∼ 16, which corresponds to an
effective system size L ∼ 2vt ∼ 64. Since the LCRG data for
the infinite chain test the dynamics at length scales, which are
a factor 4–6 larger than the length scales reached in ED, the
most plausible explanation for this discrepancy appears to be
that the scaling of Dc(L) is nonmonotonic. In order to check
this tentative explanation, one would need to diagonalize much
larger systems.

V. CONCLUSIONS

Using time-dependent density matrix renormalization
group calculations we have established the phase diagram of
the XXZ spin-1/2 chain with binary disorder in the TDL.
For weak disorder in the ergodic phase, we are able to test
the dynamics on length scales of the order of 100 lattice
sites, which is significantly larger than the lengths that can
be studied in exact diagonalization. Our results generalize
previous studies of the decay of Néel order (imbalance),
ms(t), from clean to disordered systems, which is highly
relevant to interpret recent [19–21] and future cold atomic
gas experiments. We find that ms(∞) in the MBL phase shows
an exponential sensitivity on disorder with a critical exponent
near the ergodic-MBL phase transition of ν ∼ 0.9. For the
entanglement entropy Sent(t), we find a power-law growth at
intermediate times with an exponent which varies continuously
as a function of disorder. For small �, we find, in particular,
a diffusive growth of entanglement Sent ∼ √

t at intermediate
times in the MBL phase near the transition while Sent ∼ ln t is
expected at long times. This intermediate time behavior might
indicate a second relevant length scale in the problem. In this
case, the scaling hypothesis is violated and a Harris bound
ν � 2 does not apply.
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APPENDIXES

In the Appendixes, we provide technical details regarding
the fitting of the LCRG data and the exact diagonaliza-
tions. Furthermore, we present spectra of time averaged
magnetizations for individual disorder realizations, which
show qualitative differences in the ergodic and deep in the
MBL phase and might be a useful tool for experimental
analysis.

APPENDIX A: FITS OF THE ORDER PARAMETER

Using the LCRG algorithm, we have obtained data for
the decay of ms(t) directly in the thermodynamic limit. To
analyze these data, we have used the two fit functions given
in Eq. (4). Here we want to show that these fits are quite
stable with regard to the time window chosen provided that one
excludes the initial fast decay which is not well described by
the fit functions. We always start with the data for the smallest
disorder, D = 0.02, using the values for the free fermion case
without disorder A = 1/

√
4π , ω = 2, φ = π/4, τ = ∞, and

B = ζ = ms(∞) = 0 as initial guess. The fitting parameters
obtained from the converged least square fit are then used as
initial parameters for the fit of the data set with the next larger
disorder.

As an example, we show here different fits and additional
data for the particularly interesting case � = 0.5. In Fig. 7,
we compare the parameters of three different fits. For D �
0.2, all three fits give parameters which are quite close to
each other and which change smoothly as a function of
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FIG. 7. Fit parameters for � = 0.5 using the fit function Eq. (4).
Fit 1: t � 1 with power law Bt−ζ , fit 2: t � 3 with ms(∞), and fit
3: t � 5 with ms(∞). The values obtained for ms(∞) are shown in
Fig. 8(b).
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denote the time average for t ∈ [5,tmax]. (b) ms(∞) extracted from
the fits (see Fig. 7 for the other fitting parameters) for D � 0.5 and
from a time average for D > 0.5.

disorder. For larger disorder values, most parameters remain
stable except for the phase shift φ. We want to stress
again that the fit functions are based on the asymptotics
for the clean free fermion case and are not expected to
yield good fits for large disorder and/or interaction strengths.
For � = 0.5, we can obtain reasonable fits up to disorder
D = 0.5.

For D � 0.5, we extract the remaining magnetization at
infinite times, ms(∞), from the fits while for D > 0.5 we
simply take the average of ms(t) in the specified time window.
The results are shown in Fig. 8(b) and are almost independent
of the time window. We have found that there appears to
be a diffusive entanglement spreading for � = 0.5 and D ∈
[0.5,0.9], see Fig. 4. From the magnetization data it appears,
however, that for these disorder strengths we are already in the
MBL phase, see Fig. 8(a). A possible interpretation is that the
diffusive entanglement spreading only holds at intermediate
times while a crossover to the expected logarithmic scaling
will happen at larger times, inaccessible to our numerical
calculations.

APPENDIX B: EXACT DIAGONALIZATION (ED)

We use ED for small XXZ chains of length L to study
the level statistics of the disordered Hamiltonian (r values)
as well as the time evolution of observables such as the
staggered magnetization ms(t). For each disorder configura-
tion, the Hamiltonian (1) conserves the total spin quantum
number Sz = ∑

i s
z
i . Here, we consider chains with no average

magnetization, Sz = 0, for even L. The energy spectrum
En determines the level statistics, while all eigenvectors
are needed for expectation values such as the staggered
magnetization. The computation is repeated for different
disorder realizations and the results averaged. In particular,
in the case of binary disorder, we explicitly average over
all Ndis = 2L possible disorder configurations. By symmetry,
the configurations with flipped disorder Di �→ −Di or with
left-right mirrored disorder Di �→ DL+1−i yield equivalent
results. This reduces the number of inequivalent configurations
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FIG. 9. 〈r〉 values for open XXZ chains for different anisotropies
� with L = 16. The critical disorder strength where 〈r〉 crosses over
from GOE to Poisson is used as criterion for the ergodic-MBL phase
transition.

to ∼ 2L/4 in the case of open boundary conditions (OBC).
For periodic boundary conditions (PBC), the shift symmetry
Di �→ Di+1 leads to a further reduction to ∼ 2L/4L. For
instance, for L = 16, the dimension of the Sz = 0 Hilbert
space is 12 870, and there are 16512 (OBC) and 1162 (PBC)
unique disorder configurations, resp. For L � 14 and L = 16
(PBC), we typically perform complete disorder averages;
for L = 16 (OBC), we sample 4000 inequivalent random
configurations. This is in contrast with the LCRG algorithm
which works in the much larger Hilbert space of spins and
ancillas and produces the complete disorder average in a single
run [15].

1. ED Level statistics

For each disorder configuration, we define the level spacing
δn = En+1 − En between adjacent energy eigenvalues En.
In order to normalize the energy scale, we consider the
ratios rn = min(δn,δn−1)/ max(δn,δn−1) which lie between 0
and 1. The level distribution P (r) is then averaged over
all binary disorder configurations. In the presence of an
extensive set of local conserved charges, the level spacing δn is
Poisson distributed with P (r) = 2/(1 + r)2 and average value
〈r〉Poisson ≈ 0.386. In the ergodic phase, instead, a Wigner-
Dyson distribution (GOE) of δn favors larger ratios with
〈r〉GOE ≈ 0.529.

Level spectra for open boundary conditions show less
degeneracies as compared to those for periodic boundary
conditions and are therefore better suited to determine the
phase boundary. In Fig. 9, we show the 〈r〉 values for different
anisotropies � as a function of disorder D at fixed L = 16.
The points where these curves cross the intermediate 〈r〉crit ≈
0.4575 determine the phase boundary shown in Fig. 1(b) in
the main text.
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FIG. 10. Time evolution of the staggered magnetization ms(t) at
the isotropic point � = 1 for disorder D = 0.9 from ED for L � 16
with open (OBC) and periodic boundary conditions (PBC) and LCRG
(L = ∞). While OBC results converge slowly to the L = ∞ limit,
the PBC results are quite accurate up to J t ∼ 20. Disorder averages
are exact except for L = 16 with OBC where 950 samples have been
used.

2. ED magnetization

a. Time evolution

The time evolution of the staggered magnetization from an
initial Néel state |�(0)〉 is computed as the disorder average
of the quantum evolution

ms(t) = 〈〈�0|eiHt m̂se
−iH t |�0〉〉dis.

In the eigenbasis |φi〉 for each disorder configuration, one can
write

ms(t) =
〈∑

ij

ei(Ej −Ei )t 〈�(0)|φj 〉〈φj |m̂s |φi〉〈φi |�(0)〉
〉

dis

.

Figure 6 shows the time evolution of the staggered magneti-
zation for a Heisenberg chain � = 1 with small disorder D =
0.3. The LCRG results are exact for an infinite system L = ∞
and extend to finite times J t ∼ 18. They provide strong
evidence that ms(∞) �= 0 and that the system is therefore in the
MBL phase in accordance with the phase diagram Fig. 1(a) in
the main text. The ED time evolution for L � 14 can be com-
puted for arbitrarily long times but deviates from the LCRG
L = ∞ result already for short times J t ∼ 4 due to finite-size
effects. The localization length just beyond the MBL transition
is much larger than any system size accessible by ED so that
ED can only capture the short-time dynamics correctly, making
an extrapolation of time averaged data to lengths L � ξloc

impossible.
For larger disorder D = 0.9 shown in Fig. 10, the ED

results for periodic boundary conditions are much closer to
the LCRG L = ∞ result and differ visibly only for J t � 20
(L = 16 PBC). This is likely due to the proliferation of
small localized clusters which are well captured by ED
and which dominate the dynamics well inside the MBL
phase. In contrast, the ED time evolution for open boundary
conditions (upper set of curves) is far from the L = ∞ result
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FIG. 11. Time averaged magnetizations at the isotropic point
� = 1 as a function of disorder D for different lengths L (ED with
OBC).

even for L = 16 (OBC) and converges only slowly with
increasing L.

b. Time averaged magnetization

At long times, the staggered magnetization oscillates
around the average magnetization

ms = lim
T →∞

1

T

∫ T

0
dt ms(t)

=
〈∑

ij

δEi ,Ej
〈�0|φj 〉〈φj |m̂s |φi〉〈φi |�0〉

〉
dis

. (B1)

The contributions with unequal energy dephase and do not
contribute to the time average, such that only the energy
diagonal terms remain. Note that matrix elements of m̂s

 0.01
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FIG. 12. Time averaged magnetizations at the isotropic point
� = 1 as a function of system size 1/L for different disorder D (ED
with PBC). The finite-size scaling is compatible with ms(L) ∼ L−3/2.
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FIG. 13. ms as a function of disorder configuration for a chain
with length L = 14, � = 1 (ED with PBC) where (a) D = 0.2, and
(b) D = 2.0.

between different degenerate states vanish, such that the sum
in (B1) reduces to a single sum with i = j .

The dependence of the average magnetization ms on
disorder D and system size L is shown in Fig. 11. A nonzero
value ms > 0 is obtained for any disordered system with
L < ∞. Note that ms(L) decreases with increasing L for

small D, while it increases for larger D. While a crossing
point exists, it does not agree with the phase transition point
found by a 1/L finite-size scaling analysis in Fig. 5(b) nor
with the phase boundary obtained in LCRG for the infinite
chain.

A finite-size scaling analysis for the average magnetization
ms(L) from ED with periodic boundary conditions (PBC) is
shown in Fig. 12 for the isotropic point. In the ergodic phase,
we expect the magnetization to decay for an infinite system
as ms(t) ∼ t−1/z where z is the critical exponent. Since the
total magnetization is conserved,

∑
j Sz

j = const, we expect
that spin transport occurs as a random walk similar to energy
transport leading to a scaling t(L) ∼ Lz+1 [13,14]. This scaling
argument would suggest that ms(L) ∼ L−(1+1/z). For D � 1.2,
we find that the scaling of the magnetization in Fig. 12 appears
to follow a power law with exponent 1 + 1/z = 3/2, or z = 2.
This seems to further support our findings from the analysis of
the entanglement entropy for infinite chains presented in the
main text that the dynamics at intermediate times (intermediate
lengths) in the MBL phase close to the transition is diffusive.
For larger disorder, the average magnetization saturates to a
finite value. The apparent position of the MBL phase transition
with PBC is consistent with, but slightly larger than, the phase
boundary obtained for open boundary conditions as shown in
Fig. 1(b) in the main text.

c. Magnetization spectra

Using ED we can calculate a time averaged magnetization,
Eq. (B1), for each disorder configuration. In Fig. 13, the
ms values as a function of the disorder configuration are
exemplarily shown for � = 1 and D = 0.2 and 2.0. The two
magnetization spectra are qualitatively very different. While
the spectrum shown in Fig. 13(b) for large disorder D = 2.0
(deep inside the MBL phase) shows a gap, there is no gap
for D = 0.2 (near the phase transition) visible, see Fig. 13(a).
For fixed L = 14, we find that the gap for D = 1.6 is about
a factor 10 larger than the gap for D = 1.2. This provides
an estimate for the phase transition which is consistent with
the estimate based on the level spectra for the same system
size.
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