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A light impurity in a Fermi sea undergoes a transition from a polaron to a molecule for increasing interaction.
We develop a method to compute the spectral functions of the polaron and molecule in a unified framework based
on the functional renormalization group with full self-energy feedback. We discuss the energy spectra and decay
widths of the attractive and repulsive polaron branches as well as the molecular bound state, and confirm the
scaling of the excited-state decay rate near the transition. The quasiparticle weight of the polaron shifts from the
attractive to the repulsive branch across the transition, while the molecular bound state has a very small residue
characteristic for a composite particle. We propose an experimental procedure to measure the repulsive branch
in a 6Li Fermi gas using rf spectroscopy and calculate the corresponding spectra.
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I. INTRODUCTION

A single impurity ↓-atom immersed in a background of
↑-fermions is a screened Fermi polaron [1] below a critical
interaction strength. For larger interaction the ground state
changes its character and the impurity forms a molecular
bound state with the bath atoms. This qualitative change
marks the polaron-to-molecule transition and was predicted by
Prokof’ev and Svistunov [2]. The transition can be regarded
as the modification of the two-body problem due to medium
effects: For two nonrelativistic particles with an interaction
characterized by the s-wave scattering length a, a weakly
bound molecule is the ground state for positive a, whereas for
negative a the molecular state ceases to exist and the ground
state is given by the free atoms.

Related impurity models have been studied for many years,
in particular the Kondo effect for a fixed impurity with discrete
energy levels immersed in a Fermi sea of conduction electrons
[3]. A mobile but very heavy impurity loses its quasiparticle
character in low dimensions d = 1, related to the orthogonality
catastrophe [4]. The transition of the light mobile impurity
poses a challenging many-body problem.

The polaron-to-molecule transition is observable with ultra-
cold atoms where the scattering length can be tuned via Fesh-
bach resonances [5]. Using radiofrequency (rf) spectroscopy
the line shape, ground-state energy, and polaron quasiparticle
weight have been measured across the transition [6]. The
ground-state properties near the transition have been calculated
using variational wave functions [7–13], non-self-consistent
T-matrix approximations [8], 1/N expansions [14], Wilsonian
renormalization group [15], variational Monte Carlo [16], and
diagrammatic Monte Carlo (diagMC) [2].

It turns out that even beyond the critical interaction strength
the polaron remains as a long-lived excitation above the
molecular ground state and, conversely, the molecule becomes
an excited state on the polaronic side of the transition. The
proper description of these excited states and, in particular,
their finite lifetime remains a difficult problem. Using a
phenomenological model in a three-loop calculation, Bruun
and Massignan have shown that the decay rates of the excited
states decrease rapidly as �ω9/2 toward the transition, where

�ω is the energy difference between the ground and excited
states [17].

Recently, interest has focused on an additional feature
present in the polaron-to-molecule transition: The renormal-
ization of the ↓-spectral function by the strong interactions
leads to the appearance of an additional quasiparticle excitation
for positive energies. This excitation corresponds to a Fermi
polaron interacting repulsively with the ↑-Fermi sea. The
repulsive polaron has a finite lifetime which becomes very
small at unitarity, a → ∞. In the opposite limit of weak
coupling a → 0, the repulsive polaron is long-lived and its
spectral weight approaches unity. This justifies perturbative
methods which neglect the presence of the molecular channel
[18,19]. The repulsive polaron has been studied theoretically in
the context of ultracold gases by Cui and Zhai [20] and more
recently by Massignan and Bruun [21]. Experimentally, the
repulsive polaron has not yet been observed in the strong-
coupling regime. However, it has important implications
for the stability of a ferromagnetic phase in Fermi gases
[20,22–26]. Furthermore, a single ↓-fermion in an ↑-Fermi
sea corresponds to a strongly imbalanced, two-component
Fermi gas near full polarization, and the polaron-to-molecule
transition sheds light on a region of the zero-temperature phase
diagram of the polarized Fermi gas [10,15,27].

So far, there is a lack of theoretical work which describes
all of these features within one unified approach. In this paper
we present a method capable of doing this. By devising a new
numerical implementation of the functional renormalization
group (fRG) we are able to determine both the full spectral
functions and the quasiparticle features of the polaron-to-
molecule transition.

With the renormalization group one usually limits one-
self to a few running couplings. In this work we develop
a computational tool which allows us to keep track of
the renormalization group flow of fully momentum- and
frequency-dependent Matsubara Green’s functions based on
an exact renormalization group equation [28]. By introducing
an auxiliary bosonic field which mediates the interaction
between ↑- and ↓-atoms, we are able to accurately capture the
momentum and frequency dependence of both vertex functions
and propagators. In particular for nonuniversal quantities,
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our approach, which complements the proposal by Blaizot,
Méndez-Galain, and Wschebor [29], may prove vital, and we
demonstrate its efficiency in the polaron problem.

Our main results from the fRG are the following: We give
not only the spectral functions of the ↓-fermion but also of the
molecule in a wide range of interaction values. From this we
extract the quasiparticle properties including energies, decay
rates, and residues for both the polaron and the molecule.
We connect the quasiparticle weight of the molecule with a
measure of its compositeness introduced by Weinberg [30].
We propose a new experimental procedure to measure the
repulsive polaron in a 6Li Fermi gas using rf spectroscopy, and
we employ our spectral functions to predict the expected rf
response.

The paper is organized as follows: in Sec. II we introduce
the model of the polaron-to-molecule transition and derive
appropriate fRG flow equations. These equations are solved
in Sec. III for the full frequency- and momentum-dependent
spectral functions, which are presented and interpreted in
Sec. IV. Section V is devoted to rf spectroscopy, and we
conclude with a discussion in Sec. VI. In the appendix the
fRG flow equations are solved using the simpler derivative
expansion, which already gives qualitatively correct results.

II. MODEL AND RG FLOW EQUATIONS

In this work we study a two-component Fermi gas in
the limit of extreme population imbalance at T = 0. The
microscopic action describing the system is

S =
∫

x,τ

{ ∑
σ=↑,↓

ψ∗
σ [∂τ − � − µσ ]ψσ + gψ∗

↑ψ∗
↓ψ↓ψ↑

}
,

(1)

in natural units h̄ = 2m = 1 and with imaginary time τ . The
Grassmann-valued, fermionic fields ψ↑ and ψ↓ denote the up
and down fermions, respectively, which have equal mass m.
The associated chemical potentials µσ are adjusted such that
the ↑-fermions have a finite density n↑ = k3

F /(6π2) while there
is only a single impurity ↓-fermion. The atoms interact via a
contact interaction with coupling constant g which is related
to the s-wave scattering length a via g = 8πa. The T-matrix
acquires a complicated frequency and momentum dependence
in the strong-coupling limit. It is then convenient to perform
a Hubbard-Stratonovich transformation of the action (1) by
introducing a bosonic molecule (pairing) field φ ∼ ψ↓ψ↑
which mediates the two-particle interaction gψ∗

↑ψ∗
↓ψ↓ψ↑. The

resulting action is given by

S =
∫

x,τ

{ ∑
σ=↑,↓

ψ∗
σ [∂τ − � − µσ ]ψσ

+φ∗G−1
φ,	φ + h(ψ∗

↑ψ∗
↓φ + H.c.)

}
, (2)

with a real Yukawa coupling h for the conversion of
two fermions into a molecule. Integrating out the bosonic
field φ shows that (2) is equivalent to the single-channel
model (1) provided that −h2Gφ,	 = g and h → ∞ [14,31].
As h2 ∼ �B this limit corresponds to a broad Feshbach
resonance [5].

The physical properties can be accessed via Green’s
functions which are derivable from generating functionals.
The one-particle irreducible vertex functions 
(n) are obtained
from the effective quantum action 
, which can, for instance,
be computed perturbatively in a loop expansion. As we
are interested in the intrinsically nonperturbative regime of
fermions close to a Feshbach resonance where the scattering
length a diverges, we employ a different approach. 
 includes
quantum fluctuations on all momentum and energy scales.
The main idea of the functional renormalization group (fRG)
is to introduce an interpolating effective flowing action 
k

which includes only fluctuations on momentum scales q >∼ k

larger than the renormalization group scale k. At the UV
scale k = 	 → ∞ the effective flowing action reduces to the
microscopic action S which does not include any quantum
corrections. In the infrared limit k → 0, 
k equals the full
quantum action 
.

The evolution, or flow, of 
k with the RG scale k is given
by the exact renormalization group equation [28]

∂k
k = 1

2
STr

(
1



(2)
k + Rk

∂kRk

)
. (3)

The supertrace symbol STr denotes a loop integration over
frequency and momentum as well as the summation over all
fields and internal degrees of freedom, with a minus sign for
fermions. 


(2)
k is the full, field-dependent inverse two-point

Green’s function at scale k, and Rk is a regulator taking care of
the successive inclusion of momentum scales. The regulator
acts by imposing a large mass term on the modes with momenta
q <∼ k lower than the cutoff scale k. Rk can be chosen freely as
long as Rk→0 → 0 and Rk→∞ → ∞. For further details on the
fRG we refer to the literature [32–34], and to its application to
the Bose-Einstein-condensate– (BEC–) BCS crossover [35].


k is in general a functional of the fields and contains all
possible operators of the fields allowed by the symmetries. For
this reason its exact calculation is usually impossible and one
has to rely on approximations for 
k . In this work we will use
the truncation


k =
∫

p,ω

{
ψ∗

↑[−iω + p2 − µ↑]ψ↑ + ψ∗
↓G−1

↓,k(ω,p)ψ↓

+φ∗G−1
φ,k(ω,p)φ

} +
∫

x,τ

h(ψ∗
↑ψ∗

↓φ + H.c.), (4)

with Matsubara frequency ω. For the momentum and fre-
quency dependence of the k-dependent, or flowing, propaga-
tors of the ↓-fermion G↓,k and the boson Gφ,k we will present
a simple approximation in terms of a gradient expansion in
the appendix. In the following Sec. III we develop a new
numerical method to solve the renormalization group flow of
the propagators as completely general functions of ω and p.
This will enable us to capture decay rates and dynamic effects
which is not possible in a simple gradient expansion.

Within the truncation (4), the Yukawa coupling h is not
renormalized, which can be seen by a simple argument.
In Eq. (4) we neglect a term ψ∗

↑ψ∗
↓ψ↓ψ↑ which would be

regenerated during the flow by particle-hole fluctuations [36].
Similarly, a term ψ∗

↑φ∗ψ↑φ for the atom-dimer interaction is
neglected. Both terms would lead to a renormalization of h.
Due to their omission, however, there is no diagram generating
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a flow of h which is why ∂kh ≡ 0 and h remains independent
of frequency and momentum. Furthermore, we neglect terms
(φ∗φ)n�2 which would give higher-order corrections to the
bosonic self-energy. The majority ↑-atoms are renormalized
only by the single impurity ↓-atom to order 1/N↑, hence
one can neglect the renormalization of the ↑-atoms in the
thermodynamic limit, and the chemical potential µ↑ = εF =
k2
F /(2m) is that of a free Fermi gas (we work in units where

the Fermi momentum kF = 1) [2].
As Eq. (3) is a (functional) differential equation, it has to

be supplemented with appropriate initial conditions at the UV
scale 	, which are obtained from few-body (vacuum) physics.
The s-wave vacuum scattering amplitude for the interaction of
an ↑- and ↓-fermion with momenta q, −q in the center-of-mass
frame is given by (q = |q|)

f (q) = 1

−1/a − iq
. (5)

f (q) is related to the full molecule propagator Gvac
φ,R evaluated

at the infrared RG scale k = 0,

f (q) = h2

8π
Gvac

φ,R(ω = 2q2,p = 0), (6)

where ω = 2q2 is the total kinetic energy of the interacting
atoms. The subscript R indicates that the analytical continua-
tion to the retarded function of real frequencies (iω → ω + i0)
has been performed. In Ref. [37] the exact vacuum molecule
propagator Gvac

φ,R has been calculated using the fRG and agrees
with the well-known result

[
Gvac

φ,R(ω,p)
]−1 = h2

8π

(
− a−1 +

√
−ω

2
+ p2

4
− i0

)
. (7)

This expression for Gvac
φ,R reproduces the correct scattering

amplitude (5) when inserted into Eq. (6), and dictates the form
of the UV propagator G−1

φ,	 for a given choice of regulator.
Furthermore, the initial condition for the fermions is given

by their form in the microscopic action (2), G−1
σ,k=	(ω,p) =

−iω + p2 − µσ . As we will see in the following, the momen-
tum and frequency dependence of both propagators, Gφ,k and
G↓,k , is strongly renormalized during the fRG flow toward
the infrared, which leads to a rich structure of the spectral
functions.

After inserting the truncation (4) into the flow equation (3),
the flow of G↓,k and Gφ,k is derived by taking the appropriate
functional derivatives of Eq. (3) with respect to the fields. One
obtains the fRG flow equations

∂kP↓,k(P ) = h2∂̃k

∫
Q

Gc
φ,k(Q)Gc

↑,k(Q − P ),

(8)
∂kPφ,k(P ) = −h2∂̃k

∫
Q

Gc
↓,k(Q)Gc

↑,k(P − Q),

with the multi-indices P = (ω,p) and Q = (ν,q). The Pk ≡
G−1

k on the left-hand side are the flowing inverse propagators
without the regulator from Eq. (4), while the propagators Gc

k

on the right-hand side are regulated:

Gk ≡ 1/Pk, Gc
k ≡ 1/(Pk + Rk). (9)

The tilde on ∂̃k indicates that the derivative with respect
to the RG scale k acts only on the regulator term Rk

FIG. 1. Diagrammatic representation of the fRG flow
equations (8) for the impurity and molecule propagators.

in the cutoff propagators Gc
k . Specifically, the single-scale

propagators read ∂̃kG
c
k = −(Gc

k)2∂kRk in Eq. (8). Note that
the flow equations (8), which are depicted in Fig. 1, have a
one-loop structure but contain the full propagators at scale
k. By integrating the flow, diagrams of arbitrarily high loop
order are generated and constantly fed back into each other.
It is especially for the latter reason that our approach goes
beyond other approximations used for the description of the
polaron problem, such as, for example, the non-self-consistent
T-matrix approximation [8,21]. The goal of this paper is to
solve the system of differential flow equations (8).

In the following we choose sharp cutoff functions Rk which
strictly cut off all momentum modes with |p| < k while the
frequencies are not restricted.1 Then the regulated Green’s
functions Gc

k take the particularly simple form (for unoccupied
↓-atoms)

Gc
↓,k(ω,p) = θ (|p| − k)

P↓,k(ω,p)
,

Gc
φ,k(ω,p) = θ (|p| − k)

Pφ,k(ω,p)
, (10)

Gc
↑,k(ω,p) = θ (|p2 − µ↑| − k2)

P↑,k(ω,p)
.

For the ↑-atoms it is crucial to regularize the low-energy modes
around the Fermi energy µ↑. Using the Dyson equation

Pk(ω,p) = G−1
k (ω,p) = G−1

0 (ω,p) − �k(ω,p),

where G0 = Gk=	 denotes the free (UV) and Gk the full
Green’s function at scale k, we can in particular identify the
gap term

m2
↓,k := P↓,k(0,0) = −µ↓ − �↓,k(0,0). (11)

1While the solution of the untruncated flow equation (3) does not
depend on the particular choice of the cutoff function, the results
from the truncated flow become cutoff-dependent. We implemented
a class of smooth cutoff functions interpolating between a k2 and the
sharp cutoff and found minimal sensitivity [34,38] and also the best
agreement with Monte Carlo data for the limit of the sharp cutoff.
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TABLE I. Conditions for the polaron and molecule ground states.

Coupling (kF a)−1 < (kF ac)−1 (kF a)−1 > (kF ac)−1

Ground State Polaron Molecule
↓ gap P↓(0,0) = m2

↓ = 0 P↓(0,0) = m2
↓ > 0

φ gap Pφ(0,0) = m2
φ > 0 Pφ(0,0) = m2

φ = 0

The chemical potential µ↓ is the energy required to add one
↓-atom to the system,

µ↓ = E(N↓) − E(N↓ − 1), (12)

and is independent of the cutoff scale k. The interaction effects
on the ↓-fermion, which are successively included during the
flow, are captured by the k-dependent self-energy �k(ω,p).
In the polaron problem we are interested in a two-component
Fermi gas in the limit of extreme population imbalance where
one considers only a single ↓-atom, N↓ = 1, and relation (12)
is used to determine the ground-state energy of the system.
This value of the chemical potential µ↓ then marks the phase
transition from a degenerate, fully polarized ↑-Fermi gas to
a phase of finite ↓-fermion density [10]. Accordingly, for all
choices of µ′

↓ � µ↓ there has to be a vanishing occupation
of both ↓-fermions and molecules at every RG scale k, which
leads to the condition

P↓,k(0,0,µ′
↓) � 0, Pφ,k(0,0,µ′

↓) � 0 ∀ µ′
↓ � µ↓. (13)

In order to have only a single ↓-atom or molecule, µ↓ has
to be determined self-consistently such either the ↓-atom or
the molecule φ is gapless in the infrared, P↓/φ,k=0(0,0) = 0
(ground state). We find that, depending on the value of
the dimensionless coupling (kF a)−1, either the polaron or
the molecule becomes the ground state, see Table I. The
polaron-to-molecule transition occurs at the critical interaction
strength (kF ac)−1 at which m2

φ = m2
↓ = 0.

III. RG FOR FULL SPECTRAL FUNCTIONS

The main goal of this work is to solve the system of
flow equations (8) without imposing any constraints on the
frequency and momentum dependence of the polaron and
molecule propagators. This problem can only be solved numer-
ically, and the inverse, flowing Green’s functions P↓/φ,k(ω,p)
are evaluated on a discrete grid in frequency and momentum
space,

P↓,k(ω,p) → P↓,k(ωi,pj ) = P
ij

↓,k,
(14)

Pφ,k(ω,p) → Pφ,k(ωi,pj ) = P
ij

φ,k.

We choose a logarithmically spaced, finite grid with ωi ∈
(0, . . . ,ωmax) and pj ∈ (0, . . . ,pmax). As a result of rotational
invariance, the propagators depend only on the magnitude
of spatial momentum p = |p| and, due to the condition
P ∗(ω) = P (−ω) for Euclidean (Matsubara) propagators, it is
sufficient to consider positive frequencies only [39]. The full

(ω,p) dependence is reconstructed from the finite number of
couplings P

ij

↓/φ,k by cubic spline interpolation,

P↓/φ,k(ω,p) = Spline
({

P
ij

↓/φ,k

})
=

3∑
ξ,ϑ=0

c
ij,ξϑ

↓/φ,k(ω − ωi)
ξ (p − pj )ϑ , (15)

with ω ∈ (ωi,ωi+1), p ∈ (pj ,pj+1), and where c
ij,ξϑ

↓/φ,k are the
corresponding spline coefficients. For the asymptotics of the
propagators for high frequency and momentum modes, ω >

ωmax and/or p > pmax, we choose the simple fit models

P >
↓,k(ω,p) = −iω + p2 − µ↓,

P >
φ,k(ω,p) = h2

8π

(
− a−1 +

√
− iω

2
+ p2

4
+ fφ,k

)
, (16)

with fφ,k determined by a continuity condition from the
numerical value of Pφ,k for the largest momenta |p| = pmax.

In order to keep the numerical cost of computing the flow
equations (8) low, it is advantageous to employ the sharp
momentum regulator functions R↓,k , R↑,k , and Rφ,k defined
by Eq. (10). This reduces the number of loop integrations by
one. The flow equations evaluated by our algorithm are then
given by

∂kP↓,k(ω,p) = − h2

(2π )3

∫ 1

−1
dx

∫ ∞

−∞
dν

∫ ∞

0
q2dq

× χ−
k (p,q,x)

Pφ,k(ν,q)P↑,k(ν − ω,�q − �p)
,

∂kPφ,k(ω,p) = h2

(2π )3

∫ 1

−1
dx

∫ ∞

−∞
dν

∫ ∞

0
q2dq

× χ−
k (p,q,x)

P↓,k(ν,q)P↑,k(ω − ν,p − q)
, (17)

where we have defined the characteristic functions

χ±
k (p,q,x) = δ(q − k)θ (|(p ± q)2 − µ↑| − k2)

+ 2kθ (q − k)δ(|(p ± q)2 − µ↑| − k2), (18)

and x = cos θ expresses the angle θ between the momentum
vectors p and q such that |p ± q|2 = p2 + q2 ± 2pqx.

The initial condition at the UV scale k = 	 is determined by
the few-body calculation (7). As we employ no approximation
for the momentum and frequency dependence of the molecule
propagator we are able to incorporate the exact two-body
scattering amplitude (5), in contrast to the calculation in the
appendix using the derivative expansion where this is not
possible. The vacuum problem can be solved exactly using
the sharp regulators (10), which leads to the UV molecule
propagator

Pφ,	(ω,p) = − h2

8πa
+ h2	

4π2
− h2

2

×
∫

q

[
θ
(∣∣q − p

2

∣∣ − 	
)
θ
(∣∣q + p

2

∣∣ − 	
)

q2 + ( − iω
2 + p2

4 − µvac
)

−θ (q − 	)

q2

]
.
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At each RG step we first perform the q integration in
Eq. (17) which is trivial due to the δ functions in the
characteristic functions χ±

k . Next the frequency integration in
Eq. (17) is carried out. The computational speed is greatly
enhanced by mapping the numerical integration onto an
analytical integration using the spline polynomials in the
interval (−ωmax,ωmax). ωmax is chosen such that the error in
the ω integration of the outer regime ω > ωmax introduced due
to the approximation (16) is smaller than the accuracy of the
numerical solution of the system of differential equations (8).
For the final angular integration in x = cos θ on the right-hand
side of the flow equation (17) we use a numerical integration
with adaptive nodes in order to cope with discontinuities of
the integrand.

In order to obtain a stable numerical result it is sufficient
to calculate the flow of the propagators for roughly 1500
grid points (ωi,pj ) in frequency and momentum space.
The corresponding system of ordinary differential equations
is straightforwardly solved using a Runge-Kutta algorithm,
which we have implemented in a version with adaptive stepsize
in RG time t = ln(k/	). An adaptive stepsize is essential in
order to detect the kinks in the RG flow due to the sharp Fermi
surface of the ↑-fermions at zero temperature. We observe that
about 104 RG steps are necessary to obtain an error smaller
than ε ∼ 10−5.

Finally, when the flow reaches the infrared, k = 0, we
end up with the full Matsubara Green’s functions G↓,k=0(ω,p)
and Gφ,k=0(ω,p). The initial value of µ↓ for a given kF a

is adjusted such that a vanishing macroscopic occupation of
↓-atoms and molecules is obtained at the end of the flow, as
discussed in Sec. II. In order to access the spectral functions
we perform the analytical continuation to real frequencies by
using a Padé approximation.

IV. FULL SPECTRAL FUNCTIONS

We now present our numerical results for the spectral
functions of the polaron and molecule across the whole
transition region. First, the Matsubara Green’s functions at the
end of the RG flow, G↓/φ,k=0(ω,p), are continued analytically
to retarded Green’s functions of real frequency, G↓/φ,R(ω,p),
using the Padé approximation. The spectral functions are
defined as

A↓/φ(ω,p) = 2 Im G↓/φ,R(ω,p). (19)

In Fig. 2 the zero-momentum spectral functions A↓/φ(ω,p =
0) are shown as functions of frequency and coupling (kF a)−1.

The coherent single-particle excitations at zero momentum
are determined by the solutions ωqp of the equation

G−1
↓/φ,R(ω,p = 0)|ω=ωqp = 0 (20)

for ω in the complex lower half-plane. Near each quasiparticle
pole the retarded propagator can be approximated by the form

G↓/φ,R(ω,p = 0) ≈ Z↓/φ

ωqp − ω − i0
, (21)

where the real part of ωqp determines the quasiparticle energy

Eqp = µ↓ + Re[ωqp]. (22)

We have shifted the ground-state energy, which is zero in our
calculation (vanishing gap), to the conventional value µ↓ from
Eq. (12). The imaginary part of the pole position determines
the decay width


qp = − Im[ωqp]. (23)

A Fourier transform in time relates the decay width to the
quasiparticle lifetime

τqp = h̄/
qp. (24)

The quasiparticle weight Z↓/φ is obtained from the frequency
slope at the complex pole position,

Z−1
↓/φ = − ∂

∂ω
G−1

↓/φ,R(ω,p = 0)|ω=ωqp . (25)

Note that an alternative definition of the decay width in terms
of the self-energy evaluated not at the complex pole position
but on the real frequency axis,


alt = Im �↓/φ,R(ω,p = 0)|ω=Re ωqp, (26)

agrees with our definition for 
qp only for a single quasiparticle
pole (21) with Z = 1. However, for the polaron problem there
are further excited states and Z < 1. Hence, only 
qp from
Eq. (23) can be interpreted as the halfwidth of the peaks in the
spectral function and as the inverse lifetime.

We will now in turn discuss the features seen in the spectral
functions—the peak position Eqp, width 
qp, and weight Z—
first for the polaron (upper row of Fig. 2) and then for the
molecule (lower row).

A. Attractive and repulsive polaron

Energy spectrum. Let us first look at the energy spectrum of
the quasiparticle excitations depicted in Fig. 3 in dependence
on the coupling strength (kF a)−1. From our data we find two
coherent quasiparticle states for the ↓-atom, the attractive and
the repulsive polaron, and one bound state for the molecule.
The attractive polaron (red solid line) is the ground state for
(kF a)−1 < (kF ac)−1 (polaronic side) but becomes an excited
state for (kF a)−1 > (kF ac)−1 (molecular side). Conversely,
the molecule is the ground state on the molecular side (blue
dashed line) and an excited state on the polaronic side, in
accordance with the discussion at the end of Sec. II. For
the critical coupling strength we obtain (kF ac)−1 = 0.904(5),
which agrees with the value (kF ac)−1 = 0.90(2) obtained
using diagrammatic Monte Carlo (diagMC) by Prokof’ev and
Svistunov [2]. As shown in the inset of Fig. 3, also the values
for the energies agree well with diagMC (symbols). At uni-
tarity, (kF a)−1 = 0, we obtain the ground-state energy µ↓ =
−0.57εF while diagMC gives the value µ↓ = −0.615εF .
Having treated the full frequency and momentum dependence
of the propagators in the truncation (4), we can attribute the
residual deviation in the ground-state energy to the omission of
the terms ψ∗

↑ψ∗
↓ψ↓ψ↑ and φ∗ψ∗

σφψσ . The latter term describes
the atom-dimer interaction and is expected to further reduce
the ground-state energy in the transition regime in accordance
with the results from the variational wave-function approach
[10,11]. The term ψ∗

↑ψ∗
↓ψ↓ψ↑, generated by particle-hole

fluctuations, is expected to give the main correction in the
unitarity regime [9]. Both terms can be included in the fRG
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(a)
(b)

(c)

(d)

FIG. 2. (Color online) Spectral functions at zero momentum in dependence on 1/(kF a). (a), (b) Polaron spectral function A↓(ω,p = 0).
(c), (d) Molecule spectral functions Aφ(ω,p = 0). In order to make the δ-function peak for the ground state visible we introduced an artificial
width of the quasiparticles of 0.007εF .

flow as additional flowing couplings, or implicitly by using the
Katanin scheme [40] or rebosonization [41].

Until recently [22] most experiments with ultracold Fermi
gases have focused on the lower, attractive branch on the BEC
side (kF a)−1 > 0. There exists, however, also the repulsive
polaron branch (solid green line) which corresponds to a higher
excited state of the ↓-atom interacting repulsively with the

↑-Fermi sea. Our results for the energy of the repulsive branch
agree with the weak-coupling results [18] for (kF a)−1 >∼ 1.
In the strong-coupling regime our energies lie between the
result from the non-self-consistent T-matrix approach [21]
and the MC results for square well potentials [24]. In the
polaron spectral function [cf. Fig. 2(b)], one can clearly discern
the attractive polaron branch as a very sharp peak at low
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FIG. 3. (Color online) Energy spectrum of the single-particle
excitations of the polaron-to-molecule transition. In the inset we
show our fRG result for the ground-state energy [with the universal
dimer binding energy Eb = −h̄2/(ma2) subtracted] in comparison to
the results obtained with diagMC by Prokof’ev and Svistunov [2]
(symbols).

frequencies, and the much broader repulsive polaron branch at
higher frequencies.

Decay widths. The repulsive polaron has a large decay
width 
rep, as calculated from Eq. (23) and depicted in
Fig. 5, and correspondingly a short lifetime. The leading-order
decay channel for the repulsive polaron is the process shown
in Fig. 4 (left) where the repulsive polaron, which is an
excited state, decays to the attractive, and energetically lower
lying, polaron due to the interaction with an ↑-atom. This
diagram can be translated via the optical theorem into a
contribution to the imaginary part of the ↓-atom self-energy, as
depicted in Fig. 4 (right). This self-energy diagram is already
included in the non-self-consistent T-matrix propagator P nsc

↓ ,
and has been studied recently using this approximation
[21]. Of course, this diagram is also included in our fRG
approach.

In the weak-coupling limit (kF a)−1 → ∞, the excitation
becomes sharp, 
rep → 0, and the repulsive polaron is a well-
defined quasiparticle. Toward unitarity, 
rep grows but remains
a well-defined, finite quantity even at unitarity. We find that
indeed 
rep, and not the approximation 
alt

rep from Eq. (26),
is the correct halfwidth at half-height of the respective peak

optical
theorem

FIG. 4. (Color online) Decay channel for the repulsive polaron.
(left) Two-body process which leads to the decay of the repulsive
polaron. (right) Corresponding contribution to the ↓-atom self-energy
via the optical theorem.
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FIG. 5. Decay width 
rep of the repulsive polaron as a function
of the coupling (kF a)−1. We also show the width according to the
approximate formula Eq. (26) (dotted line). Inset: Decay width 
att

of the attractive polaron.

in the polaron spectral function in Fig. 2(b). For (kF a)−1 < 0.6
the energy Erep of the repulsive branch exceeds the bath Fermi
energy; Erep > εF . At this point it is energetically favorable
to spin-flip the impurity atom, which can be interpreted as the
condition for the onset of saturated ferromagnetism [20,26].
At the same time the decay width 
rep > 0.2εF is large, which
potentially destabilizes a ferromagnetic phase [25].

On the polaronic side (kF a)−1 < (kF ac)−1 the attractive
polaron is the stable ground state with decay width 
att = 0,
while on the molecular side it is an excited state with finite
lifetime and decay width 
att > 0, see Fig. 5 (inset). This
decay is much weaker and also qualitatively different from
the repulsive channel. The attractive polaron can decay by a
three-body recombination process as shown in Fig. 6 (left).
Via the optical theorem this process can be translated into a
contribution to the ↓-atom self-energy as depicted in Fig. 6
(right), plus an additional contribution with crossed lines. This
decay channel has recently been studied using an explicit three-
loop calculation [17]. The resulting finite lifetime cannot be
seen in the non-self-consistent T-matrix approximation, where
the self-energy corrections of the ↓-atom—indicated by the

optical
theorem

FIG. 6. (Color online) Decay channel for the attractive polaron.
(left) Three-body recombination process which leads to the decay
of the attractive polaron. (right) Corresponding contribution to the
↓-atom self-energy via the optical theorem (there is also a contribution
with crossed lines).
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FIG. 7. (Color online) Quasiparticle weight Z↓ of the attractive
(solid line) and repulsive (dashed line) polaron. The weights of the
two quasiparticle peaks in the ↓ spectral function almost completely
make up the total spectral weight, and the contribution from the
incoherent background is very small.

inner white box P↓—are not fed back into the T-matrix ∼
P −1

φ [8,21]. In contrast to the non-self-consistent T-matrix
calculation, our fRG includes the full feedback of both the ↓
and φ self-energies, denoted by bold internal lines in the flow
equations in Fig. 1. Therefore, the contributions from the decay
diagram in Fig. 6 (right), and many more, are automatically
included in our approach.

Quasiparticle weights. Figure 7 depicts the quasiparticle
weights of the attractive and repulsive polaron computed
using Eq. (25). On the polaronic side the attractive polaron
state contains most of the weight, but as one moves toward
the molecular side the spectral weight gradually shifts to the
repulsive branch, and the corresponding peak in the polaron
spectral function in Fig. 2(b) becomes larger. We find that
the attractive and repulsive branches almost completely make
up the total spectral weight, hence the contribution from the
incoherent background is very small. This is also apparent in
the polaron spectral function in Fig. 2(b).

Our results for the quasiparticle weights agree well with
those from the non-self-consistent T matrix and variational
wave-function approaches. At unitarity we obtain for the
attractive polaron Z↓,att = 0.796 compared to the variational
value Z↓,att = 0.78 [7,10]. For the repulsive polaron at
(kF a)−1 = 1 we find Z↓,rep = 0.71, in agreement with the
recent non-self-consistent T-matrix calculation [21].

Note that there is an alternative definition of the quasipar-
ticle weight [10]:

Zalt
↓ = lim

t→∞ |G↓(t,p = 0)|. (27)

This definition has to be treated with care. On the molecular
side of the transition the polaron acquires a finite decay
width 
↓ > 0 but nonetheless continues to be a well-defined
quasiparticle with finite spectral weight, as can be seen
from Fig. 2. However, definition (27) yields zero as soon as

↓ > 0 and in this case cannot be interpreted as a measure
of spectral weight anymore. In contrast, the definition (25)
remains correct for a finite decay width and accordingly our
data for Z↓ show no discontinuity at the transition. In the

optical
theorem

FIG. 8. (Color online) Leading decay channel for the excited
molecular state. (left) Three-body recombination process which leads
to the decay of the molecular state. (right) Corresponding contribution
to the molecule self-energy via the optical theorem (there is also a
contribution with crossed lines).

experiment the finite lifetime of the attractive polaron on the
molecular side complicates the direct measurement of Z↓ by
radiofrequency spectroscopy because the molecular state and
not the attractive polaron becomes occupied as the initial state
(cf. Sec. V).

B. Molecule

Energy spectrum. The molecule spectral function in
Fig. 2(d) displays a sharp quasiparticle peak of the bound state
at low frequencies, followed by an incoherent background
at higher frequencies which actually carries most of the
spectral weight. Note that this background is not taken into
account in the simple derivative expansion in the appendix
nor in the Wilsonian RG approach [15]. On the molecular
side (kF a)−1 > (kF ac)−1, the molecule is the ground state
and is clearly separated from the incoherent continuum. On
the polaronic side of the transition the molecule becomes an
unstable, excited state and develops a clearly visible finite
decay width in the spectral function.

Decay widths. The leading decay channel of the excited
molecule state is via the three-body recombination process
shown in Fig. 8 (left). Via the optical theorem this process can
be translated into a contribution to the molecule self-energy as
depicted in Fig. 8 (right). Similarly to the attractive polaron,
in the non-self-consistent T-matrix approximation, the ↓-atom
self-energy corrections in P↓ are not fed back into the T-
matrix ∼ P −1

φ , and the molecule does not decay. In contrast,
the diagram Fig. 6 (right) is included in the fRG, which leads
to the visible broadening in the spectral function.

Reference [17] shows by an analytical calculation of the
phase space for three-loop diagrams of the type in Fig. 8 that
the decay width of the molecule scales as


φ ∝ �ω9/2, �ω = Eφ − E↓,att, (28)

where �ω is the difference between the energy levels of the
excited molecule and the attractive polaron ground state. In
Fig. 9 we show 
φ as a function of �ω in a double logarithmic
plot. The large fluctuations of our numerical data are due to
the accuracy of the Runge-Kutta integration as well as due to
the restriction to a finite number of Matsubara frequencies.
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FIG. 9. The decay width 
φ of the excited molecular state as
a function of the energy difference �ω = Eφ − E↓,att between the
excited molecule and the attractive polaron ground state. The solid
line indicates the power-law scaling 
φ ∝ �ω9/2.

We have estimated the corresponding error by comparing the
results for different grids with varying number and position of
(Matsubara) frequencies. The solid line in Fig. 9 indicates
the power law �ω9/2. The triangles in Fig. 9 correspond
to a calculation with a higher number of frequencies and
we find a convergence to the solid curve for decay widths
larger than our numerical integration accuracy ε = 10−5. This
indicates that the error for larger 
φ can be attributed to the
Padé approximation, while for 
φ < ε the accuracy of our
results becomes limited by the absolute error of our numerical
integration. With our fRG calculation we are thus able to
verify the prediction by Bruun and Massignan [17], and the
correctness of the power law attests to the strength of our
method to describe many features of the polaron-to-molecule
transition in one unified approach.

Quasiparticle weight and compositeness. The quasiparticle
weight Zφ of the molecular bound state in the spectral function
in Fig. 2(d) is very small, Zφ ≈ 0.002 at unitarity, and increases
slowly toward the molecular limit, see Fig. 10 (inset). For broad
resonances, h2 ∼ �B → ∞, the two-channel model (2) is
equivalent to the single-channel model (1) where Zφ = 0 [31].

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
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1.000
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FIG. 10. Compositeness (1 − Zφ) of the molecular bound state.
A value of 100% would indicate that the molecule has no overlap
with elementary closed-channel bosons. Inset: Molecular residue Zφ .

Specifically, we obtain for the weight of the bound state in
vacuum

Zφ = 32π

h2a
(vacuum, 	 → ∞). (29)

This is consistent with the interpretation of Zφ as the closed-
channel admixture (cf. Eq. (28) in [5]). In our calculation we
set the physical UV cutoff scale to 	 = 103kF , which is of
the order of the inverse Bohr radius, and choose h2 < ∞. We
observe Zφ ∝ 1/(kF a) on the BEC side and a deviation from
the vacuum scaling close to unitarity, which may be due to a
combination of finite density corrections and the admixture
of closed-channel molecules in the microscopic action by
choosing finite values of h and 	.

Furthermore, the quasiparticle weight Z can be interpreted
as the overlap between the “true” particles and the “elemen-
tary,” or bare, particles in the microscopic action (2). The
attractive Fermi polaron becomes elementary, Z↓,att → 1, in
the BCS limit (kF a → 0−), while in the opposite limit of
kF a → 0+ the repulsive Fermi polaron becomes elementary,
Z↓,rep → 1. Near unitarity, both excitations have a sizable
weight. In contrast, the molecular bound state is almost
exclusively a composite particle in the whole transition region.
Indeed, the deviation of the quasiparticle weight from unity,
1 − Zφ , is a well-established measure of compositeness in
nuclear physics [30], and in Fig. 10 we show that, for our
choice of Yukawa coupling h, the compositeness of the
molecule is very large (>98%). This is consistent with the
measurement of a small molecular weight Zφ for a balanced
6Li Fermi gas close to a broad Feshbach resonance by Partridge
et al. [42]. In experiments with a narrow Feshbach resonance
the compositeness will decrease and a single-channel descrip-
tion becomes invalid. A strength of the fRG approach is that
both situations are naturally described by tuning the values of
h and Gφ,	.

In the vacuum there exists no molecular state for negative
scattering length a as can easily seen from Eq. (7), which has no
bound-state pole. In the presence of a medium of ↑-fermions,
however, the molecule propagator develops an excited bound-
state pole also for negative scattering length a. This bound
state will become the superfluid ground state if the impurity
density exceeds a critical threshold [10].

V. RF RESPONSE OF THE 6LI FERMI GAS

As a final application we want to connect our results for
the polaronic spectral function to experimentally observable
radiofrequency (rf) spectra. The attractive branch of the
polaron-to-molecule transition has been studied experimen-
tally by Schirotzek et al. [6] using a population imbalanced,
two-component mixture of 6Li atoms. In the experiment the rf
response of the system has been used to infer information about
the low-frequency behavior of the fermionic spectral functions.
For instance, the ground-state energy and the residue Z↓ of
the ↓-fermions were measured and confirmed the theoretical
predictions.

In order to measure the rf response, an rf pulse is applied to
the system which drives the transition of the atoms to a third,
initially empty state. In Fig. 11 we show the scattering length
profile of 6Li versus the magnetic field. In the experiment [6]
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FIG. 11. (Color online) Scattering length profile of 6Li atoms in
the three lowest hyperfine states as calculated by P. S. Julienne based
on the model described in [43]. The stars indicate the magnetic field
values for which we determine the rf response of the imbalanced
Fermi gas in Fig. 13.

a mixture of fermions initially in the hyperfine states |1〉 and
|3〉 had been prepared in a range of the external magnetic
field B = 630 . . . 690 G (shaded area). In this regime the
scattering length a13 in the initial state is large and positive,
while the final-state scattering lengths a12 and a23 are rather
small.

Information about the spectral function can be accessed
from rf spectroscopy; for example, by populating the particle
under investigation up to the energies one is interested in
and then driving the transition to a weakly interacting final
state for which the spectral function is well known. This route
had been taken for the study of the attractive polaron. The
repulsive polaron branch, on the other hand, has not yet been
observed directly in experiments. The main complication is
that the repulsive polaron has a very short lifetime in the
strong-coupling regime of interest (cf. Fig. 5). Hence, its
macroscopic population is inhibited on longer time scales,
and even after a fast ramp to the desired magnetic field most
minority atoms will have decayed into the respective ground
state. A similar situation arises in the detection of Efimov
trimers in a three-component mixture of 6Li atoms [44,45].
The decay of the repulsive branch is also of relevance for the
balanced system and the competition between ferromagnetic
order and molecule formation [22,25].

In this section we propose an experimental procedure to
circumvent these difficulties and directly analyze the spectral
function of the repulsive polaron. A strongly imbalanced
two-component 6Li Fermi gas is prepared in hyperfine states
|1〉 and |3〉 for magnetic fields B > 690 G across the (1,3)
Feshbach resonance. In this regime the initial scattering length
is negative, a13 < 0. One then drives an rf transition to
the final state |2〉 which is characterized by large, positive
scattering lengths a12 and a23 and thus strong interactions.
Because the attractive polaron spectral function of the ini-
tial state, with its negative scattering length a13, is well
understood both experimentally and theoretically, the final-
state spectral function can then be analyzed in a controlled
fashion.

Within linear response theory the induced transition rate
from the initial state |i〉 to the final state |f 〉 is given by [46–48]

I (ωL) = 2�2 Im χR(µf − µi − ωL), (30)

where the Rabi frequency � is given by the coupling strength
of the rf photon to the atomic transition, µi (µf ) is the
initial (final) state chemical potential, and ωL denotes the rf
frequency offset with respect to the free rf transition frequency.
Neglecting the momentum of the rf photon, the retarded rf
susceptibility χR is given by the analytical continuation to real
frequencies of the correlation function in imaginary time τ

(Matsubara frequency ω)

χ (ω) = −
∫

r

∫
r′

∫
τ

eiωτ 〈Tτψ
†
f (r,τ )ψi(r,τ )ψ†

i (r′,0)ψf (r′,0)〉,
(31)

where Tτ is the imaginary time-ordering operator. Eq. (31)
leads to various diagrammatic contributions which are in
general difficult to handle if the final-state interactions are
not negligible [49]. Here we will calculate Eq. (31) in a
simple approximation with full Green’s functions but without
vertex corrections. In this approximation Eq. (31) yields the
susceptibility in Matsubara frequency:

χ (ω) =
∫

k,ν

Gi(k,ν)Gf (k,ν + ω). (32)

The rf response in real frequency is then given by

I (ωL) = �2
∫

k

∫ µi−µf +ωL

0

dν

2π

×Af (k,ν) Ai(k,ν + µf − µi − ωL), (33)

where µi − µf + ωL > 0.
In Eq. (33) the initial-state spectral function Ai is probed

for negative frequencies only. Hence, there is no rf response for
the pure polaron problem at vanishing density and chemical
potential µ

(0)
↓ . In the experiment one has, however, a small but

finite concentration x = n↓/n↑ of ↓-fermions which leads to
an observable rf response. In order to describe the experimental
situation we therefore need a calculation for a finite minority
(↓) density characterized by a chemical potential µi = µ↓ >

µ
(0)
↓ . Within the fRG framework such a calculation requires

the regulator R↓ in Eq. (10) to be adjusted in order to cope
with the finite Fermi surface of ↓-fermions which complicates
the computation. Fortunately, our calculation for the polaron
problem shows that, for negative scattering length, where the
polaron is the ground state and decay processes do not matter,
the fRG results are in excellent agreement with the results from
a non-self-consistent T-matrix approach. We may therefore use
this approach instead of a full-feedback fRG for the calculation
of the imbalanced Fermi gas of finite densities n↑ and n↓
in order to determine the initial-state spectral function. The
non-self-consistent calculation was also done by Punk and
Zwerger [46] and is obtained in our fRG formulation by simply
switching off the feedback of the ↓-atom self-energy into the
molecule flow.

Because the occupation of ↓-atoms is small only the
low-momentum modes are relevant. The ↓-atoms form a
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degenerate Fermi gas of polaronic quasiparticles and the
spectral function can be approximated by [16]

Ai(ω,p) = 2πZiδ

(
ω − p2

2m∗
↓

+ �

)
, (34)

where Zi is the residue and m∗
↓ is the effective mass of the

impurity atoms. � determines the impurity concentration x.
We have calculated the parameters m∗

↓, Zi , and � as
functions of (kF a)−1 via the non-feedback (non-self-consistent
T-matrix) calculation. µi is determined self-consistently to
ensure the correct impurity density. Inserting the spectral
function Eq. (34) into the susceptibility (33) we obtain for
the rf response

I (ωL) = �2Zi

2π2

∫ √
2m∗

↓�

0
dkk2

×Af

(
k,µi − µf + ωL − � + k2

2m∗
↓

)
. (35)

For the final state |f 〉 we use the spectral function obtained
in Sec. IV from the full fRG calculation. In Fig. 12 we show
an example of the full final-state spectral function dependent
on frequency and momentum which enters the momentum
sum in Eq. (35). One can clearly discern the broadening of
the attractive polaron branch at larger momenta, as well as
the broad repulsive branch at higher frequencies. A similar
feature appears in the spectral function for the balanced
Fermi gas above Tc as calculated by Haussmann et al. [48].
The fermionic spectral functions and rf spectra in this work
were determined using state-of-the-art self-consistent T-matrix
(2PI) approximations and form the basis for a full linear
response calculation including vertex corrections [50].

FIG. 12. (Color online) Full momentum and frequency
dependence of the polaron spectral function A↓(ω,p) at unitarity
(kF a)−1 = 0.

TABLE II. Interaction parameters at the four transitions indicated
in Fig. 11, using kF↑ = 0.000 15a−1

0 .

B field [G] (kF a13)−1 (kF a23)−1 (kF a12)−1

(a) 810.3 −1.88 0.0 0.39
(b) 800.8 −1.80 0.2 0.58
(c) 788.2 −1.70 0.5 0.86
(d) 780.6 −1.62 0.7 1.04

Initially, the gas is prepared in a |1〉 and |3〉 mixture, and
both states can serve as minority or majority species; for
example, |↑〉 = |3〉 and |↓〉 = |1〉 such that |i〉 = |1〉 and |f 〉 =
|2〉. The initial occupation of the minority |↓〉 states is small
and, for our numerical calculation, we use x = n↓/n↑ = 0.01.
The energy scale is set by the Fermi momentum of the majority
species kF↑ = 0.000 15a−1

0 as appropriate for the experiment
in Ref. [6]. We calculate the rf spectra at the four values of
the magnetic field indicated as stars in Fig. 11, and listed in
Table II. The resulting spectra are shown in Fig. 13: the solid
blue lines indicate the response for minority species |1〉, while
the dashed red lines correspond to minority species |3〉. In
the latter case the sign of the frequency offset ωL is changed
because the state |3〉 is energetically above the final state.

The position of the sharp attractive polaron peak at negative
frequency offset ωL shifts with the interaction parameter

0
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FIG. 13. (Color online) rf spectra I (ωL) for minority species |1〉
(solid blue lines) and minority species |3〉 (dashed red lines). The
interaction parameters correspond to the four magnetic field values
marked in Fig. 11, and listed in Table II: (a) top–(d) bottom.
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(kF af )−1 in accordance with the energy spectrum Fig. 3.
One observes that the attractive polaron loses quasiparticle
weight on the molecular side (cf. Fig. 7). In contrast, the
repulsive polaron branch gains quasiparticle weight toward
the molecular side, and the respective peak in the rf spectra
becomes both larger and narrower, and one can read of the
increasing lifetime.

The spectra in Fig. 13 are convolved with the sinc function
sinc2(ωT/2), which gives the response to an rf pulse with
a rectangular profile of length T = 20 ms [48]. While our
curves are computed for zero temperature, a finite temperature
∼0.01TF would lead only to a slight broadening of the
experimental rf peaks. The broadening of the attractive polaron
due to the finite lifetime on the molecular side (kF af )−1 >

(kF ac)−1, however, is too small to be resolved. Note that we
have included both final-state and initial-state interactions in
our calculation: the knowledge of the spectral function for the
initial state allows for a detailed study of the final-state spectral
function.

VI. DISCUSSION

We have developed and presented a computational method
to solve the nonperturbative, exact renormalization group
equation (3) and have demonstrated its efficiency for the Fermi
polaron problem as a specific example. The inclusion of the
full frequency and momentum dependence of the propagators
opens up new perspectives to apply the functional renormal-
ization group to problems where the detailed dynamics of
the relevant degrees of freedom becomes important [51]. In
particular, the method draws its strength from the possibility
to successively bosonize further channels of the interaction via
additional auxiliary fields (Hubbard-Stratonovich transforma-
tion) [52]. In this way one can partially capture the complicated
analytical structure of higher-order vertex functions 
(n),
including possible quasiparticle poles and branch cuts, as we
have explicitly shown for the s-wave scattering channel in the
polaron problem. In combination with the recently developed
flowing rebosonization technique [41] our numerical method
can be extended to also incorporate re-emerging vertices.
Our approach complements the proposal for bosons [29] and
additionally includes fermions.

For the Fermi polaron problem we achieve a unified
description of many dynamical effects beyond thermodynam-
ics. We verify the nontrivial power-law scaling of decay
rates [17] and determine the properties of the repulsive
polaron with a method beyond the non-self-consistent T-
matrix approximation [20,21]. This is of value in the ongoing
debate about the possible occurrence of ferromagnetism in
ultracold Fermi gases with short-range interactions [20–26].
The polaron problem sheds light on this question in the limit
of strong population imbalance. For the repulsive polaron we
find the critical interactions strength kF a = 1.57 from our
numerical data (Fig. 3). Going to a finite density of ↓-fermions
is straightforward within the fRG and involves only a slight
modification of the regulator of the ↓-fermions (10) as long
as no spontaneous symmetry breaking occurs. By continuity
we can infer that the repulsive branch will remain to exist for
small but finite ↓-population and will exceed the critical energy
εF for the presumed onset of saturated ferromagnetism. It is

an open question whether, for larger impurity concentrations,
the repulsive branch is so strongly renormalized that saturated
ferromagnetism can be ruled out [26], or whether competition
with molecule formation may preclude the observation of
ferromagnetic domains [25]. Answering these questions will
require a full nonequilibrium calculation.

There has been much theoretical progress on the repulsive
Fermi gas with short-range interactions, but relatively few
experiments have been completed. While the repulsive 3He
Fermi gas has been studied extensively in experiment, it is
not dilute and has a large repulsive hard-core potential [53].
In contrast, ultracold Fermi gases offer the realization of a
proper contact interaction of tunable strength. We predict rf
transition rates for the repulsive branch and propose a possible
route to measure these excited states in a 6Li Fermi gas. This
is a challenging problem because the final repulsive polaron
state is highly unstable. One possible approach could involve
fast tomographic imaging similar to the MIT experiment [6],
another might be to measure the loss in the final state which
is expected to scale with the rf transition rate for a constant
rf pulse time but may be suppressed by the quantum Zeno
effect [44]. Hence, the possible observation of the repulsive
polaron represents not only a test of theoretical predictions
but poses an interesting challenge touching several aspects of
many-body physics.
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APPENDIX: DERIVATIVE EXPANSION

In this appendix we qualitatively study the polaron-to-
molecule transition using a simple approximation for the renor-
malized Green’s functions G↓,k and Gφ,k . As we have seen,
G↓,k and Gφ,k generally develop a complicated frequency and
momentum (ω,p) dependence. Here, we will use an expansion
in small frequencies and momenta (derivative or gradient
expansion) which allows for an analytical evaluation of the
loop integrals on the right-hand side of the flow equation (8).
The derivative expansion proves to be a good approximation if
one is interested in the physics determined by the structure
of the Green’s functions close to their poles, such as, for
example, in the description of phase transitions and critical
phenomena [32]. In the derivative expansion the dependence
of the inverse propagators P↓/φ,k(ω,p) on the RG scale k is
approximated by

P↓,k(ω,p) = A↓,k(−iω + p2) + m2
↓,k,

(A1)
Pφ,k(ω,p) = Aφ,k(−iω + p2/2) + m2

φ,k.

In this approximation, which is similar to the one used in
the Wilsonian RG approach to the polaron problem [15],
we assume that the renormalization of the frequency and
momentum coefficients is given by common wave-function
renormalizations A↓,k and Aφ,k , respectively, which in turn
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are related to the quasiparticle weights via Z↓/φ = A−1
↓/φ . The

flowing gap terms m2
↓,k and m2

φ,k are related to the flowing
static self-energy via Eq. (11).

From equation (8) one can derive the flow equations for
the four running couplings A↓,k , Aφ,k , m2

↓,k , and m2
φ,k . The

↑-fermions are not renormalized; A↑,k = 1 and m2
↑,k = −µ↑.

With the sharp cutoff (10), the frequency as well as the
momentum integrations can be performed analytically. The
resulting flow equations read

∂kA↓ = − 2h2k

π2Aφ

θ (µ↑ − 2k2)

[ √
µ↑ − k2(

k2 + µ↑ + 2m2
φ

/
Aφ

)2

+ k(−k2 + 2µ↑ + 2m2
φ

/
Aφ

)2

]
,

∂km
2
↓ = h2k

π2Aφ

θ (µ↑ − 2k2)

[ √
µ↑ − k2

k2 + µ↑ + 2m2
φ

/
Aφ

+ k

−k2 + 2µ↑ + 2m2
φ

/
Aφ

]
, (A2)

∂kAφ = − h2k

2π2A↓

√
µ↑ + k2

(2k2 + µ↑ + m2
↓/A↓)2

,

∂km
2
φ = h2k

2π2A↓

√
µ↑ + k2

(2k2 + µ↑ + m2
↓/A↓)

.

The initial conditions for this system of differential
equations (A2) are specified at the UV scale k = 	. We
note that the derivative expansion (A1) of the molecule
propagator Pφ,k(ω,p) cannot account for the correct vacuum
scattering amplitude (5), because the term iq is rooted in
the nonanalytical structure of the molecule propagator (7).
We therefore focus only on the correct calculation of the
scattering length a for q = 0, which leads to the infrared
condition (mvac

φ,k=0)2 = −h2/(8πa) for µ↓ = µ↑ = 0. In this
case of two-body physics P↓,k is not renormalized, A↓,k = 1
and m2

↓,k = 0, and the differential equations for Aφ,k and m2
φ,k

decouple and can be solved analytically. The integration of
(A2) in the vacuum limit yields

(
mvac

φ,k=0

)2 = m2
φ,	 − h2	

4π2
. (A3)

This leads to the UV condition for the molecule gap,

m2
φ,	 = h2

8π
(2	/π − a−1), (A4)

which incorporates the correct regularization of the UV
divergence 	 in Eq. (A3). At the UV scale the momentum
and frequency dependence of Pφ,	 can be neglected due to the
large bosonic gap m2

φ,	, and we set Aφ,	 = 1.
For a finite density of ↑-atoms the system of differential

equations (A2) is solved numerically. The initial values for the
↓ propagator are then given by m2

↓,	 = −µ↓ and A↓,	 = 1.
The down chemical potential µ↓ is determined in the way
discussed in Sec. II. We find that the polaron is indeed
the ground state for interaction strengths (kF a)−1 < (kF ac)−1

whereas the molecule becomes the ground state for (kF a)−1 >

(kF ac)−1, with (kF ac)−1 = 0.96.
The energy spectrum from the simple derivative expansion

is in qualitative agreement and even in rough quantitative
agreement with the results obtained from our new numerical
method and other theoretical calculations. A drawback of
the derivative expansion is that it is impossible to extract a
reasonable spectral function from an ansatz of the form (A1) as
it only accounts for a single coherent quasiparticle excitation.
Neither higher-excited states, such as the repulsive polaron,
nor the incoherent background, which comprises the major
weight for the molecule (cf. Sec. IV), can be captured with
this ansatz. Furthermore, although decay processes lead to a
finite lifetime of the excited polaron and molecule branches,
in the simple approximation (A1) these states have a vanishing
decay width. Note that the finite lifetime of excited states can
be obtained neither from simple variational wave functions [7]
nor from the non-self-consistent T-matrix approach [8]. Their
description requires the full self-energy feedback developed in
Sec. III.
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