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Fermi polarons in two dimensions
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We theoretically analyze inverse radio-frequency (rf) spectroscopy experiments in two-component Fermi
gases. We consider a small number of impurity atoms interacting strongly with a bath of majority atoms. In
two-dimensional geometries we find that the main features of the rf spectrum correspond to an attractive polaron
and a metastable repulsive polaron. Our results suggest that the attractive polaron has been observed in a recent
experiment [B. Fröhlich et al., Phys. Rev. Lett. 106, 105301 (2011)].

DOI: 10.1103/PhysRevA.85.021602 PACS number(s): 67.85.Lm, 03.65.Ge, 32.30.Bv, 68.65.−k

The behavior of a mobile impurity (polaron) interacting
strongly with a bath of particles is one of the basic many-body
problems studied in condensed-matter physics [1–4]. With
the advent of ultracold atomic gases [5], the Fermi polaron
problem in which a single spin-↓ atom interacts strongly
with a Fermi sea of spin-↑ atoms, has become a subject
of intensive research [6]. In three dimensions it was found
that the polaron state splits into two branches, a low-energy
state interacting attractively with the bath of fermions, and the
repulsive polaron, which is an excited, metastable state [7–9].
In this way the polaron exemplifies a more general paradigm of
a many-body system driven into a nonequilibrium state where
a small number of high-energy excitations interact strongly
with the surrounding degrees of freedom [10,11]. The polaron
is the limiting case of a Fermi gas with strong spin imbalance,
and the repulsive polaron provides insight into the question
whether a quenched, repulsive Fermi gas may undergo a
transition to a ferromagnetic state even though it is highly
excited [7–9,12,13]. Similarly, the ground state of the polaron
problem has important implications for the phase diagram of
a strongly interacting Fermi gas [14–16].

It is a key question how many-body properties are affected
by reduced dimensionality, and the polaron is a case in
point. The combination of optical lattices and Feshbach
resonances [5] provides a unique setting to experimentally
study strongly interacting low-dimensional systems using
ultracold atoms [17,18]. Recent advances in radio-frequency
(rf) spectroscopy afford to measure energy spectra [14]
and give access to excited states as well as full spectral
functions using momentum-resolved rf [19,20]. So far, only
the ground state of the two-dimensional polaron problem has
been investigated theoretically [21–23] with the focus on a
possible polaron to molecule transition. This is similar to the
three-dimensional (3D) situation where for strong interactions
it becomes energetically favorable for the impurity to form
a molecular bound state [24]. The structure of high-energy
excitations and the experimental polaron signatures in rf
spectroscopy have remained open questions which we address
in this Rapid Communication. We derive the spectral functions
of both the molecule and the impurity atom (Fig. 1, left) and
find that the impurity state splits into the attractive and the
repulsive branch. We compute rf spectra for homogeneous
two-dimensional (2D) systems (Fig. 1, right) as well as for

the experimentally relevant quasi-2D geometries (Fig. 4).
Finally, we argue that our calculation provides an alternative
explanation of the recent experiment by Fröhlich et al. [17] in
terms of the polaron picture.

A quasi-2D geometry can be realized experimentally using
an optical lattice in one direction with associated trapping
frequency ωz. In this case, a confinement-induced two-body
bound state exists for an arbitrarily weak attractive interaction

FIG. 1. (Color online) Left: Spectral function A↓(q,E − μ↓) for
impurity atoms interacting with a 2D Fermi sea. Red/dark gray
lines indicate the free-particle dispersion and white (black) dashed
lines mark the dispersion of the attractive (repulsive) polaron. Right:
Corresponding rf spectra illustrating how weight is shifted from
the attractive polaron state (peak at negative frequencies) to the
new repulsive polaron state at positive frequencies. The two-body
bound-state energy is (a) εB/εF = 0.1, (b) εB/εF = 1, and (c)
εB/εF = 5.
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[25–27] with binding energy εB > 0. The spatial extent of
the bound state is related to the 2D scattering length given
by a2D = h̄/

√
mεB > 0. In the weak-coupling BCS regime

of small 3D scattering length a3D < 0 [5] these dimers are
large and weakly bound (εB � h̄ωz); in the Bose-Einstein
condensate (BEC) limit of small a3D > 0, the weakly interact-
ing molecules are too tightly bound to feel the confinement
[εB ∼ h̄2/(ma2

3D) � h̄ωz]. Around the Feshbach resonance
(a−1

3D = 0) there is a strong-coupling regime where the binding
energy attains the universal value εB = 0.244 h̄ωz [5,27].

At finite densities the majority atoms form a Fermi gas with
Fermi energy εF and the two-body scattering is replaced by
many-body scattering, which gives rise to important qualitative
differences, most notably the emergence of two polaron
branches. Spectral weight is shifted from the attractive to
the repulsive polaron in the nonperturbative regime where
the interaction parameter 1/ ln(εB/2εF ) diverges [28] and the
confinement-induced resonance appears [5,29].

We consider a two-component 2D Fermi gas in the limit
of extreme spin imbalance, described by the grand canonical
Hamiltonian

H =
∑
kσ

(εkσ − μσ )c†kσ ckσ + g

A

∑
kk′q

c
†
k↑c

†
k′↓ck′−q↓ck+q↑,

with single-particle energies εkσ = k2/2mσ for species σ (h̄ =
1), chemical potentials μσ , and system area A. Having in mind
the experiment of Ref. [17], we focus on the case of equal
masses m↑ = m↓ = m. Generalizations to mass imbalanced
situations are straightforward [21,22]. In the low-energy limit
the attractive s-wave contact interaction g can act only between
different species due to the Pauli principle. The majority atoms
are not renormalized by the presence of a single impurity with
finite mass such that μ↑ = εF = k2

F /2m at zero temperature.
The chemical potential μ↓ of the impurity atom is determined
such that the impurity state |↓〉 has vanishing macroscopic
occupation. Furthermore, μ↓ is negative due to the attractive
interaction between ↑ and ↓ atoms.

Dressed molecule. The two-body scattering of a spin-↑
atom and a spin-↓ atom is described by the exact two-body
T -matrix [26]

T0(E) = 4π/m

ln(εB/E) + iπ
. (1)

The pole of the T -matrix at E = −εB corresponds to the
molecular bound state, and the associated vacuum scattering
amplitude for two particles with relative momenta k and
−k in the center-of-mass frame is f (k = |k|) = mT0(2εk) =
4π/[ln(1/k2a2

2D) + iπ ] [5].
In the presence of a Fermi sea of spin-↑ atoms, the

molecular state is dressed by fluctuations and described
by the many-body T -matrix. This can be calculated in the
Nozières–Schmitt-Rink approach [30], as done in the 2D case
by Engelbrecht and Randeria [31,32]. We generalize these
results to the case of spin imbalance and obtain

T −1(q,ω) = T −1
0 (ω + i0 + μ↑ + μ↓ − εq/2)

+
∫

d2k

(2π )2

nF (εk − μ↑) + nF (εk+q − μ↓)

ω + i0 + μ↑ + μ↓ − εk − εk+q
,

(2)

FIG. 2. (Color online) Molecular spectral function Amol(q,ω) for
different values of the two-body binding energy εB/εF : (a) 0.1,
(b) 0.5, (c) 1.0, and (d) 2.5. The dashed lines mark the log continuum
ω0, and the dashed-dotted and solid lines the root continuum ω±.

with the Fermi function nF (ε). At zero temperature where
μ↑ = εF and μ↓ < 0, we obtain an analytical expression for
the many-body T -matrix

T (q,ω) = T0
(

1
2z ± 1

2

√
(z − εq)2 − 4εF εq

)
, (3)

with z = ω + i0 − εF + μ↓ and ± = sgn Re(z − εq). Due
to the constant density of states in 2D, the many-body T -
matrix can be expressed as the two-body T -matrix with the
argument shifted by Pauli blocking. The molecular spectral
function Amol(q,ω) = −2ImT (q,ω) is shown in Fig. 2 for
several values of the interaction strength parametrized by the
two-body binding energy εB . One observes a bound-state peak
at low energies and the particle-particle continuum at higher
energies.

The continuum of dissociated molecules arises mathe-
matically from the branch cut of the square root (3) in
the region ω−(q) < ω < ω+(q), ω± = εF (1 ± q/kF )2 − μ↓
(dashed-dotted and solid lines in Fig. 2), as well as from
the branch cut of the logarithm (1) for ω > ω+(q) and for
ω0 = εq/2 − εF − μ↓ < ω < ω−(q) if q > 2kF (dashed lines
in Fig. 2).

The bound-state pole of the many-body T-matrix has the
dispersion relation [21]

ωb(q) = εq/2(εq/2 − εF ) + εB(εF − εB)

εq/2 + εB

− μ↓, (4)

which changes qualitatively with the two-body binding energy
εB (see Fig. 2): For εB < 2εF the bound state has minimum
energy at a finite wave vector with positive effective mass
m∗/m = (2 − 2/kF a2D)−1 [33].
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FIG. 3. (Color online) Polaron spectral function A↓(q = 0,E −
μ↓) vs the interaction parameter η. The dashed lines indicate the
perturbation theory of Ref. [28]. Left: Effective mass m∗/m of the
attractive and repulsive polaron as well as the molecule. Right:
Crossover of the quasiparticle weight Z from the repulsive to the
attractive polaron.

Polaron and quasiparticle properties. The impurity atom is
dressed with virtual molecule-hole excitations and becomes a
quasiparticle with self-energy [32–34]

�↓(q,ω) =
∫

k<kF

d2k

(2π )2
T (k + q,εk − μ↑ + ω), (5)

which leads to the same ground-state energy as a variational
ansatz [35]. Here we have used the fact that in the zero-
temperature polaron problem the molecule has vanishing
macroscopic occupation. Hence it has spectral weight only
at positive frequencies (cf. Fig. 2) where the Bose distribution
vanishes. We perform the integral in (5) numerically and obtain
the spectral function of impurity atoms

A↓(q,ω) = −2Im[ω + i0 + μ↓ − εq − �↓(q,ω)]−1. (6)

The frequency and momentum dependence of the spectral
function is shown in Fig. 1 (left panel) for three values
of the interaction strength. In Fig. 3 we display the zero-
momentum spectral function A↓(q = 0,E − μ↓) versus in-
teraction parameter η = ln(kF a2D) = − ln(εB/2εF )/2. In both
figures we set the reference energy to the free-atom threshold
by subtracting the chemical potential μ↓.

At weak binding εB � εF [Fig. 1(a)] the attractive polaron
is a well-defined quasiparticle at small momenta but for q � kF

it scatters off virtual molecules and acquires a large decay
width. For intermediate binding [Fig. 1(b)] a new repulsive
polaron state appears at positive energies. It is a metastable
state with broad decay width, and it is shifted to higher
energy due to the repulsive interaction with the Fermi sea
of spin-↑ atoms. The dispersion of the repulsive polaron has

a minimum at finite momentum q ∼ kF , reflecting a similar
feature in the molecular spectral function [Fig. 2(c)]; for larger
momenta it approaches the free-particle dispersion. Finally,
for strong binding [Fig. 1(c)] both polaron branches are well
separated and the repulsive polaron becomes an increasingly
long-lived and stable quasiparticle. Between the attractive
and the repulsive polaron branches appears the molecule-hole
continuum (see also Fig. 3). Its spectral weight is small in
the case of a broad Feshbach resonance studied here, but
it is enhanced for narrow resonances by an admixture of
closed-channel molecules [8].

It is instructive to see how the quasiparticle properties of the
polaron change as the interaction parameter η is varied. The
right inset of Fig. 3 shows a continuous crossover where the
quasiparticle weight Z = 1/[1 − ∂ω�(q = 0,ω)] evaluated at
the quasiparticle pole shifts from the attractive to the repulsive
polaron branch: For small binding (η > 0), the attractive
polaron is the dominant excitation and the weight is gradually
transferred toward the repulsive branch for increasing binding
(η < 0). This crossover is also reflected in the effective mass
m∗/m (Fig. 3, left inset). Our strong-coupling calculation
reproduces the perturbative results [28] for the attractive and
repulsive polaron energies in the weak and strong binding
limits (dashed lines in Fig. 3).

Radio-frequency spectroscopy. The spectral properties of
the imbalanced Fermi gas can be accessed experimentally
using rf spectroscopy. We assume that an rf pulse is used
to drive atoms from an initial state |i〉 to an initially empty
final state |f 〉. We choose the final state to be strongly
interacting with a bath of a third species |↑〉 such that |f 〉 is
in fact the impurity state, |f 〉 = |↓〉. This inverse rf procedure
interchanges the roles of |i〉 and |f 〉 with respect to Ref. [14]; it
has been proposed in Refs. [8,9] and realized in the experiment
by Fröhlich et al. [17].

Within linear response theory, the rf transition rate is given
by [36]

Irf(ωrf) = −2	2
rfImχR(−ωrf − μi + μf ), (7)

where 	rf is the Rabi frequency, ωrf the detuning of
the rf photon from the bare transition frequency, and
μi(f ) the initial- (final-) state chemical potential. The
retarded correlation function χR can be computed from
the corresponding time-ordered correlation function
−iθ (t − t ′)〈[ψ†

f (r,t)ψi(r,t),ψ†
i (r ′,t ′)ψf (r ′,t ′)]〉 [34,37]. In

general, vertex corrections are crucial [38,39], but we find that
they vanish in the case of negligible initial-state interactions
as appropriate for the experiment [17]. At T = 0, we obtain

Irf (ωrf) = 	2
rf

∫
εq<μi

d2q

(2π )2
A↓(q,ωrf + εq − μ↓). (8)

The integral in equation (8) is calculated numerically and
the resulting rf spectra are shown in Fig. 1 (right panel).
The rf probes the final |↓〉 state spectral function along
the free-particle dispersion up to the initial state chemical
potential μi . As in the experiment [17], we assume a balanced
initial-state mixture with μi = μ↑. We find a peak in the
rf spectrum once the detuning ωrf reaches the final-state
chemical potential μ↓ (μ↓ is negative in the polaron problem).
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FIG. 4. (Color online) Trap averaged rf spectra of a quasi-2D
Fermi gas: rf detuning vs magnetic field B. The experimental data
points (blue circles and red diamonds) are taken from Ref. [17]. Also
shown are the energy of the repulsive (dashed) and attractive (dashed-
dotted) polaron as well as the two-body binding energy (solid, white)
in a homogeneous system.

The transfer of spectral weight from the attractive to the
repulsive polaron can be directly observed in Fig. 1.

Comparison to experiments. In order to relate our results
to harmonically confined Fermi gases, we have to connect
the strict 2D calculation to the quasi-2D geometry relevant
to experiments [5,27]. Well below the confinement energy
h̄ωz where only the lowest transverse mode is occupied,
this can be done by replacing εB with the exact quasi-
2D two-body binding energy. Thus εB becomes a function
of both the 3D scattering length a3D and the confine-
ment length z = √

h̄/mωz (see Ref. [27], cf. Eq. (82) in
Ref. [5]).

Recently the quasi-2D geometry has been realized experi-
mentally with a Fermi gas of 40K atoms [17]. Following the
inverse rf procedure described above, an initially noninteract-
ing balanced mixture is driven into a strongly interacting final
state. As long as its occupation remains small, the final state is

a Fermi polaron, and our calculation predicts the experimental
rf response.

In Fig. 4 we show our trap averaged rf spectra versus mag-
netic field. We use the experimental parameters of Ref. [17]
with ωz = 2π × 80 kHz, ω⊥ = 2π × 125 Hz, and express a3D

in terms of the magnetic field [5,40]. We incorporate the radial
trapping in the 2D plane using the local density approximation;
the local Fermi energy is εF (r) = εF − mω2

⊥r2/2 with peak
Fermi energy εF = 9 kHz. Finally, we average over 30 pan-
cakes in the z direction [17].

We observe that the lower branch of the experimental
spectra (circles) agrees well with the attractive polaron
picture (Fig. 4), and our calculation provides an alternative
interpretation to the two-body bound state (solid line) put
forward in Ref. [17]. We note that also the measured frequency
shift in 3D as shown in Ref. [17] fits the polaron picture [8].
Our results show a second rf peak at positive detunings
corresponding to the repulsive polaron. The dashed line in
Fig. 4 indicates its quasiparticle energy in the bulk (cf. Fig. 3).
As similar for the attractive polaron energy (dashed-dotted
line), the trap average leads to a significant shift of the rf peaks
to lower energies. The experimental data (diamonds) in this
magnetic field range agrees qualitatively with our calculation.
One possible reason for the remaining discrepancy is the large
final-state occupation in the experiment.

In conclusion, we studied Fermi polarons in two dimensions
which exhibit an attractive and repulsive branch and computed
their rf spectra. Additional work is needed to understand
discrepancies between theory and experiment for repulsive
polarons. As an example, pump and probe experiments in the
form of a sequence of two short pulses may shed further light
on this issue.
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