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Damping of the quadrupole mode in a two-dimensional Fermi gas
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In a recent experiment [Vogt et al., Phys. Rev. Lett. 108, 070404 (2012)], quadrupole and breathing modes of
a two-dimensional Fermi gas were studied. We model these collective modes by solving the Boltzmann equation
via the method of phase-space moments up to fourth order, including in-medium effects on the scattering cross
section. In our analysis, we use a realistic Gaussian potential deformed by the presence of gravity and magnetic
field gradients. We conclude that the origin of the experimentally observed damping of the quadrupole mode,
especially in the weakly interacting (or even noninteracting) case, cannot be explained by these mechanisms.
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I. INTRODUCTION

Two-dimensional (2D) Fermi systems are particularly in-
teresting, since both quantum and interaction effects are in this
case stronger than in three dimensions. The first experimental
realization of a 2D Fermi gas with trapped atoms was reported
in 2010 [1]. The configuration obtained in this experiment
and in the subsequent ones is an array of pancake-shaped
clouds, obtained by slicing a three-dimensional (3D) cloud
with a one-dimensional periodic potential. These gases can be
considered as 2D ones if the motion of particles in the axial
direction is frozen to the lowest energy level.

In a recent experiment, the collective breathing and
quadrupole modes of a gas of 40K atoms trapped in this
geometry were studied [2]. The interaction strength between
the two hyperfine states and the temperature were varied
in order to identify the transition from the collisionless to
the hydrodynamic regime in the case of the quadrupole
mode, and to confirm, in the case of the breathing mode,
the dynamical scaling predicted a few years ago [3]. In a
hydrodynamic picture, the damping of the quadrupole mode
is related to the shear viscosity of the 2D gas: in particular,
from the experimental results one can extract the temperature
dependence of the shear viscosity.

A number of theoretical studies dealing with this exper-
iment have already appeared [4–8]. In Refs. [4,5] the shear
viscosity and spin-diffusion coefficients were computed from
kinetic theory in the hydrodynamic regime. Surprisingly, it was
found that the quantitative agreement with data was better in
the collisionless regime. In Ref. [6], in-medium modifications
of the scattering cross section were included in the calculation
of the shear viscosity, leading to a maximum damping rate as
high as the experimental one under the assumption that the
hydrodynamic approach was valid. In Ref. [7], the Boltzmann
equation was numerically solved in the local relaxation-time
approximation (the relaxation time being calculated with the

free-space cross section). The authors found a reasonable
agreement with the experimental data in the case of moderate
quantum degeneracy and not too strong interactions, if the
computed damping was shifted upwards by a small constant
value, introduced to account for additional effects like trap
anharmonicity that had to be there since the experiment
observed a finite damping of the dipole mode. In the most
recent work by Baur et al. [8], the in-medium scattering
cross section was included in the Boltzmann equation (as
it was done before in three dimensions [9,10]) which was
then solved in an approximate way by using the method
of second-order phase-space moments. They conclude that
they can well describe the experimental results, apart from
an offset in the damping rate (see caption of Fig. 2 of
Ref. [8]).

In the case of collective modes in 3D Fermi gases, it
was found that in order to quantitatively reproduce the result
of a numerical solution of the Boltzmann equation [11],
the method of second-order moments was insufficient and
higher-order moments had to be included. The inclusion of
fourth-order moments improved a lot the agreement between
theory and experiment in the case of the quadrupole mode [12].
Furthermore, by using moments up to third order, it was
possible to describe the effects of the trap anharmonicity
(frequency shift and damping) on the sloshing mode [13] in
three dimensions. Higher-order moments were also used in the
context of 2D systems to describe collective modes in dipolar
Fermi gases [14].

In the present work, we will extend the analysis of the paper
by Baur et al. [8]. We will include all phase-space moments
up to fourth order and study the effect of a realistic form of
the trap potential having a Gaussian shape with additional
linear terms due to gravity and magnetic-field gradients. All
this causes some damping of the quadrupole mode even in the
noninteraction regime, but not as strong as the one observed in
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the experiment. We will also discuss other possible sources of
damping like dephasing between different slices and the time
of flight (TOF) before the measurement of the quadrupole
moment, but they are all too weak to explain the data.

Our paper is organized as follows. In Sec. II, we briefly
summarize the formalism. In Sec. III we investigate the
convergence of the moments method to existing numerical
solutions of the Boltzmann equation. In Sec. IV, we try to
model as closely as possible the experiment [2], and in Sec. V
we draw our conclusions.

Throughout the paper, we use units with h̄ = kB = 1
(h̄ = h/2π and kB being the reduced Planck constant and the
Boltzmann constant, respectively). In a harmonic trap with
average frequency ω̄r , it is convenient to work with so-called
“trap units”, e.g., the energy unit h̄ω̄r , the length unit lho =√

h̄/mω̄r , etc, m being the atom mass. Furthermore, the Fermi
energy EF = kBTF and Fermi momentum kF of a 2D trapped
gas are defined by EF = h̄ω̄r

√
N and kF = √

2mEF /h̄.

II. FORMALISM

A. Boltzmann equation in two dimensions

We consider a two-component (↑,↓) Fermi gas of N atoms
of mass m that can move only in two dimensions (x,y).
For a balanced mixture and “spin”-independent modes, it is
enough to consider a single phase-space distribution function
f = f↑ = f↓, normalized to

∫
d2rd2p/(2π )2f (r,p) = N/2,

where r = (x,y), p = (px,py). Averages are computed as

〈q〉(t) = 2

N

∫
d2rd2p

(2π )2
f (r,p,t)q(r,p). (1)

At equilibrium, the distribution is given by the Fermi function,

feq(r,p) = 1

eβ[ p2

2m
+VT (r)−μ0] + 1

, (2)

where β = 1/T , VT , and μ0 are the inverse temperature,
the trap potential, and the chemical potential, respectively.
Note that we neglect a possible mean-field potential, since in
Refs. [10,13] we have shown (in the 3D case) that it does not
substantially affect the properties of the collective modes.

For small deviations from equilibrium, the change of the
phase-space distribution δf = f − feq can be written as [15]

δf (r,p,t) = feqf̄eq�(r,p,t), (3)

where f̄ = 1 − f . The prefactor feq(1 − feq) takes care of the
rapid variation of δf around the Fermi surface, so that � can be
considered a smooth function of r and p. Then the linearized
Boltzmann equation becomes

feqf̄eq

(
�̇ +

{
�,

p2

2m
+ VT (r)

}
+ β

p
m

· ∇rδV

)
= −I [�],

(4)

where {·,·} denotes the Poisson bracket and δV is a perturbation
of the trap potential used to excite the collective mode. Usually
we consider a perturbation of the form of a δ pulse,

δV (r,t) = δ(t)V̂ (r). (5)

The linearized collision integral I [�] reads

I [�] =
∫

d2p1

(2π )2

∫ 2π

0
dθ

dσ 2D

dθ

|p − p1|
m

feqfeq1f̄
′
eqf̄

′
eq1

× (� + �1 − �′ − �′
1), (6)

where the short-hand notation f = f (r,p), f1 = f (r,p1),
f ′ = f (r,p′), etc., has been used. Momentum and energy
conservation imply p + p1 = p′ + p′

1 and |p − p1| = |p′ −
p′

1|, and θ denotes the scattering angle between p − p1 and
p′ − p′

1.

B. Cross section

In two dimensions, the differential cross section that enters
Eq. (6) has the dimension of a length. In free space, it is given
by [16]

dσ 2D
0

dθ
= 2π

q

1

ln2
(
q2a2

2D

) + π2
, (7)

where q = (p − p1)/2 is the momentum of the atoms in the
center-of-mass frame, θ is the scattering angle, and a2D is
the 2D scattering length [17] which is related to the dimer
binding energy EB by |EB | = 1/(ma2

2D). At finite density, the
scattering cross section is obtained from the in-medium T
matrix as

dσ 2D

dθ
= m2

8πq
|T (k,ω)|2, (8)

where k = p1 + p2 is the total momentum of the pair and
ω = k2/(4m) + q2/m − 2μloc(r) is the total energy of the pair.
Here we use the in-medium T matrix from Ref. [6], which is
calculated in the non-self-consistent ladder approximation,

T −1(k,ω) = m

4π
ln

−1/
(
ma2

2D

)
ω + 2μloc(r) − k2

4m
+ i0

+ Imed. (9)

The in-medium term Imed incorporates Pauli blocking in the
intermediate states of the ladder and is given by

Imed =
∫

d2p

(2π )2

feq(r,p) + feq(r,k − p)

ω + 2μloc(r) − p2

2m
− (k−p)2

2m
+ i0

=
∫

dp p

2π

feq(r,p)sgn(	)√
(	 + i0)2 − k2p2/(4m2)

,

with 	 = ω/2 + μloc(r) − k2/(4m) − p2/(2m). In the second
line the angular integration has been performed, while the
radial integral is known analytically only at zero temperature.
The in-medium T matrix depends on k, ω, a2D , T , and the
local chemical potential μloc(r) = μ0 − VT (r).

In Fig. 1 we show the ratio of the in-medium cross section
and the free-space one as a function of the relative momentum
for a pair with k = 0 for different values of interaction strength
and temperature. At fixed interaction strength, there is a
strong enhancement of the cross section when the temperature
T/TF decreases, a precursor effect of superfluidity (cf. Fig. 2
of Ref. [10] for the 3D case; see also Ref. [18] for the
analogous effect in nuclear matter). This enhancement is
most pronounced in the strongly interacting regime [small
ln(kF a2D)]. Note that, throughout this paper, we consider
only the fermionic regime in the normal phase, i.e., the case
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FIG. 1. (Color online) Ratio of in-medium and free-space cross
section for total momentum k = 0 as a function of the relative
momentum q for various combinations of interaction strength
ln(kF a2D) = ln(2EF /|EB |)/2 and temperature T/TF .

ln(kF a2D) > 0 at temperatures above the superfluid transition
temperature.

C. Method of phase-space moments

We look for approximate solutions of the Boltzmann
equation using the method of phase-space moments. By fixing
the functional form of � as

�(r,p,t) =
n∑

j=1

cj (t)φj (r,p), (10)

the basis functions φj (r,p) being monomials in r and p, one can
obtain a closed set of n coupled equations for the coefficients cj

by multiplying Eq. (4) by φi and integrating over phase space.
After Fourier transformation, the equations become algebraic
and can be written in matrix form as

∑n
j=1 Aij (ω)cj (ω) = ai ,

where A is related to the transport and collision part and a to
the perturbation δV ; see Refs. [12,13]. Once the coefficients
ci are found, the deviation of any one-body observable from
its equilibrium value, δ〈q〉 = 〈q〉 − 〈q〉eq, can be expressed in
the form δ〈q〉 = ∑n

i=1 bici , bi being appropriate projections
of the observable on the basis.

The choice of the φi , of the excitation V̂ and of the
observable 〈q〉 depends on the mode one is interested in. In
general, the response function 〈q〉pulse(ω) = δ〈q〉(ω) for the
δ-pulse excitation, Eq. (5), has n poles at complex frequencies
ωi . In simple cases, the real and imaginary parts of ωi can
directly be interpreted as the frequency and damping rate of
the collective mode, as it was done, e.g., in Ref. [8]. In general,
however, it is necessary to analyze the full response function
in order to extract the frequency ω and damping rate � of the
collective mode [12].

In the present paper, we will follow as closely as possible
the experimental procedure. Note that in real experiments the
mode is not excited by a δ pulse of the form Eq. (5), but the
perturbation is adiabatically switched on and then suddenly
switched off at t = 0. The corresponding response 〈q〉step can
easily be calculated (see Appendix for more details) if the
response 〈q〉pulse for the δ pulse is known. Then we fit the
response 〈q〉step(t) with a function of the form,

Q(t) = Ae−�t cos(ωt + ϕ) + Be−γ t , (11)

as it is done in the analysis of the experimental data, in order
to determine ω and �.

III. COMPARISON BETWEEN MOMENTS METHOD
AND NUMERICAL CALCULATIONS

In this section we will discuss the quadrupole mode in an
isotropic harmonic trap, VT = 1

2mω2
r r

2. The minimal ansatz
function � is in this case given by

� = c1(x2 − y2) + c2
(
p2

x − p2
y

) + c3(xpx − ypy). (12)

The excitation operator is V̂ ∝ x2 − y2 and the observable
is the quadrupole moment of the cloud, 〈q〉 = 〈x2 − y2〉.
This defines the method of moments at second order. Within
this approximation, the frequency and damping rate of the
quadrupole mode depend only on a single parameter, the
average relaxation time τ [8]. In the hydrodynamic limit
τ → 0, one finds ω → √

2ωr and � → 0. In the collisionless
limit τ → ∞, one finds ω → 2ωr and � → 0. The maximum
damping of � ∼ 0.354ωr is reached for τ ∼ 0.471/ωr . Hence,
whether one includes a medium-modified cross section or not
changes only the dependence of τ on a2D, T , etc., but it cannot
lead to a damping rate higher than 0.354ωr , which is far below
the observed maximum damping of ∼0.6ωr [2].

In the 3D case, we have shown by comparing with numeri-
cal simulations that the second-order method overestimates the
collision effects [11]. In the 2D case, the results of numerical
calculations are already available [7]. Although they still use
a relaxation-time approximation, they include the essential
effect that is missing in the second-order method, namely the
position dependence of the local relaxation time τ (r). Since
τ (r) depends on collisions, it strongly increases if one goes
from the trap center (high density) to the surface of the gas
(low density).

As discussed in Refs. [11,12], this effect is automatically
taken into account if one extends the method of moments to
higher orders. As in the 3D case, we will include all the relevant
moments up to fourth order,1 i.e.,

� = c1(x2 − y2) + c2
(
p2

x − p2
y

) + c3(xpx − ypy)

+ c4r
2(x2 − y2) + c5r

2
(
p2

x − p2
y

) + c6r
2(xpx − ypy)

+ c7p
2(x2 − y2) + c8p

2
(
p2

x − p2
y

) + c9p
2(xpx − ypy)

+ c10r · p(x2 − y2) + c11r · p
(
p2

x − p2
y

)
. (13)

Let us now compare the second- and fourth-order results
with the numerical results of Ref. [7]. The damping rate � as
a function of the interaction strength ln(kF a2D) is shown for
different temperatures in Fig. 2. For the sake of comparison,
we used the free-space cross section in our calculation, and we
also removed the constant shift of 0.05ωr from the numerical
damping rates that was added in Ref. [7] to account in a simple
way for the anharmonicity of the experimental trap potential
(anharmonicity effects will be discussed in detail in the next

1The term r · p(xpx − ypy) that was present in Eq. (D1) of Ref. [11]
is not needed in two dimensions since it is equal to 1

2 [r2(p2
x − p2

y) +
p2(x2 − y2)].

053616-3



CHIACCHIERA, DAVESNE, ENSS, AND URBAN PHYSICAL REVIEW A 88, 053616 (2013)

 0

 0.1

 0.2

 0.3

 0.4
Γ/

ω
r

(a) T/TF=0.30

2nd order
4th order

Wu-Zhang

 0

 0.1

 0.2

 0.3

 0.4

Γ/
ω

r

(b) T/TF=0.47

 0

 0.1

 0.2

 0.3

 0.4

Γ/
ω

r

(c) T/TF=0.65

 0

 0.1

 0.2

 0.3

 0.4

0 2 4 6 8 10

Γ/
ω

r

ln(kFa2D)

(d) T/TF=0.89

FIG. 2. (Color online) Damping rate � of the quadrupole mode
as a function of the interaction strength for a system of N = 3500 40K
atoms with the free-space cross section in a harmonic isotropic trap
with ωr = 2π × 125 Hz at different temperatures: (a) T/TF = 0.3,
(b) 0.47, (c) 0.65, (d) 0.89. (Dashed lines) Second-order moments,
(solid lines) fourth-order moments, (points) numerical results by Wu
and Zhang [7].

section). We observe that within the second-order moments
method (dashed lines) the transition from hydrodynamic
to collisionless behavior, i.e., the maximum of �, lies at
slightly weaker interaction [larger ln(kF a2D)] than within
the numerical calculation (points). This is in line with our
results for three dimensions, where the second-order method
overestimates the collision effects, too [11]. The fourth-order
results are in very good agreement with the numerical ones,
especially at higher temperature [Figs. 2(c) and 2(d)], where
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FIG. 3. (Color online) Frequency ω of the quadrupole mode as
a function of the interaction strength. The parameters of the system
and the meaning of the different lines are the same as in Fig. 2(b).

the difference between the second- and fourth-order results
becomes more pronounced.

In Fig. 3 we also show the frequency ω as a function of
ln(kF a2D) for the temperature 0.47TF for which numerical
results are available. At first glance it looks as if the numerical
result was in better agreement with the second-order calcula-
tion than with the fourth-order one. However, one sees that in
the weakly interacting regime the numerical frequency stays
systematically 2% below both the second- and the fourth-order
results. If we multiply the numerical frequencies by 1.02, they
lie between the second- and fourth-order results in the range
ln(kF a2D) � 2.

In conclusion, the second-order method overestimates the
role of collisions. Especially at higher temperatures, the inclu-
sion of fourth-order moments reduces the effects of collisions
and significantly improves the agreement between the damping
rates obtained within the method of moments and those ob-
tained from a numerical calculation. However, at low temper-
atures, the corrections due to fourth-order moments are small.

IV. COMPARISON WITH EXPERIMENT

A. Effect of the in-medium cross section

From now on, we will concentrate on results obtained
with the fourth-order method, and compare them with the
experiment of Refs. [2,8].2 As a first step, we approximate
the experimental system again by an isotropic harmonic trap
with ωr = 2π × 125 Hz. In contrast to the preceding section,
we will now include the in-medium cross section into the
collision term. Within the moments method this is feasible,
while it would be tremendously time-consuming in a numerical
simulation like that of Ref. [7].

In Fig. 4, we show the frequency and damping rate of the
quadrupole mode as functions of the interaction strength for
the case of N = 4300 atoms (EF = h × 8.2 kHz) at T/TF =
0.47. Since the in-medium cross section is enhanced, its main
effect is that the system is more hydrodynamic (weaker damp-
ing) for strong interactions [small values of ln(kF a2D)] and

2In fact, the data presented in Refs. [2,8] result from different
analyses of the same experiment. In the more recent Ref. [8] the
analysis has been refined for T/TF = 0.47.
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FIG. 4. (Color online) Frequency (top) and damping rate (bottom)
of the quadrupole mode in a harmonic isotropic trap containing N =
4300 atoms at T/TF = 0.47. The dashed and solid lines represent
fourth-order results obtained with the free-space and in-medium
cross sections, respectively. The experimental data are taken from
Refs. [2,8].

the transition to the collisionless regime (maximum damping)
takes place at weaker interactions [higher values of ln(kF a2D)]
than with the free-space cross section. A similar effect of the
in-medium cross section was already found in Ref. [8] within
the second-order method (cf. Fig. 2 of Ref. [8]). Concerning
the agreement with the experimental data, one notes that the
frequencies are qualitatively correctly described, but the rise
from the hydrodynamic to the collisionless frequency happens
at too weak interaction, and the disagreement gets worse if the
in-medium cross section is used instead of the free-space one.
The theoretical results for the damping are significantly too
weak in almost the whole range of ln(kF a2D), especially in the
very weakly interacting regime [ln(kF a2D) � 10].

B. Realistic trap potential

As mentioned before, the damping of the quadrupole mode
one obtains with the second-order method cannot exceed
0.354ωr , independently of the cross section that is used in
the collision term. In the fourth-order method, the damping
can be somewhat stronger, but it stays far below the maximum
damping 0.6ωr that was observed in one case in the experiment
by Vogt et al. [2]. Furthermore, in this experiment, the
quadrupole mode remains damped in the limit of vanishing
interaction strength. This clearly shows that there are other
sources of damping than the collision term, for instance, the
anharmonicity of the trap potential and the broken rotational
symmetry. (By the way, damping of collective modes in the
noninteracting gas was also observed in three dimensions, for

instance, in Ref. [19] where it was consistent with the trap
anharmonicity.)

In Ref. [13], we showed that in three dimensions the
damping of the sloshing mode in an anharmonic potential
could be described within the method of moments once
moments of higher order were included. Therefore we expect
that the inclusion of higher-order moments in the description
of the quadrupole mode will also allow us to describe its
additional damping in an anharmonic trap.

The breaking of rotational invariance leads to a coupling
of modes of different multipolarity, that can also result in an
additional damping. For instance, in Ref. [8], the coupling
of quadrupole and monopole (breathing) modes caused by
the small ellipticity of the trap potential was studied. In an
elliptic trap, the monopole mode and the two degenerate
quadrupole modes (in two dimensions) are replaced by three
new eigenmodes that have all different frequencies. Notice
that a beat caused by the superposition of two eigenmodes
with slightly different frequencies looks like a damping if the
oscillation is only observed during a short time interval, as it
is usually the case.

In the experiment [2] there is another effect that might play
a role. Since the z direction of the laser beam generating the
potential is horizontal, the additional gravitational potential
shifts the minimum of the potential downwards. While this
would not have any effect in a purely harmonic potential, it
leads in the anharmonic case to a potential that is no longer
symmetric about its minimum. As a consequence, modes with
opposite parity (e.g., sloshing and breathing) will be coupled.
Actually, the symmetry in the x direction is broken, too,
because of the presence of magnetic field gradients that shift
the minimum in both x and y directions [20].

We write our model potential as

ṼT (r̃) = −V0e
−2(x̃2/w2

x+ỹ2/w2
y ) − (mg + μ∇B) · r̃, (14)

where V0 is the depth of the Gaussian potential, wx and wy are
the waists of the laser beam in x and y directions, g = −gey

is the gravitational acceleration (g = 9.81 m/s2), μ is the
magnetic moment (approximately equal to the Bohr magneton
μB in the case of alkali atoms), and B = |B| is the strength of
the magnetic field. For the sake of simplicity, we shift the min-
imum of the potential to the origin by defining r = r̃ − r0 and

VT (r) = ṼT (r0 + r) − ṼT (r0), (15)

where r0 = (x0,y0) is related to g and ∇B by

mgi + μ∇iB = 4V0r0i

w2
i

e−2(x2
0 /w2

x+y2
0 /w2

y ) (i = x,y). (16)

The average trap frequency ω̄r can be obtained from

mω̄2
r =

∣∣∣∣∣
∂2VT

∂x2
∂2VT

∂x∂y

∂2VT

∂x∂y
∂2VT

∂y2

∣∣∣∣∣
1/2

r=0

= 4V0

wxwy

√
1 − 4x2

0

w2
x

− 4y2
0

w2
y

e−2(x2
0 /w2

x+y2
0 /w2

y ). (17)

Using the parameters of the experiments [2,20], we obtain
the potential shown in the upper panel of Fig. 5. As one
can clearly see, the principal axes of the potential near the

053616-5



CHIACCHIERA, DAVESNE, ENSS, AND URBAN PHYSICAL REVIEW A 88, 053616 (2013)

y 
(tr

ap
 u

ni
ts

)

x (trap units)

-120

-80

-40

 0

 40

 80

 120

-120 -80 -40  0  40  80  120
 0
 500
 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

 0

 500

 1000

 1500

 2000

 2500

 3000

-120 -80 -40  0  40  80  120

V
(y

) (
tra

p 
un

its
)

y (trap units)

harmonic
6th order

full
EF

FIG. 5. (Color online) Trap potential in units of h̄ω̄r as a function
of x and y in units of lho (top) and as a function of y for x = 0
(bottom). We have used ω̄r = 2π × 125 Hz [2] and wx = 139 μm,
wy = 142 μm, ∇xB = 3.2 G/cm, and ∇yB = −0.75 G/cm [20]
(as a consequence, V0 = 2617h̄ωr , x0 = 4.8lho, and y0 = −12.2lho).
(Solid line) Potential according to Eq. (14), (dashed line) harmonic
approximation, (dash-dotted line) Taylor expansion up to sixth order.
The Fermi energy EF corresponding to N = 4300 atoms is shown as
the dotted line.

minimum are not aligned with the x and y axes. The trap
frequencies along the principal axes are split by approxi-
mately 5%.

As explained in Ref. [13], it is strictly speaking not possible
to calculate the chemical potential μ0 as a function of the
particle number N if the potential does not go to +∞ for
r → ∞. We avoid this problem in the same way as in Ref. [13]
by expanding the potential up to sixth order (i.e., keeping terms
∝ xkyl with k + l � 6) around r = 0. In the present case, this
expansion is very accurate up to energies of about 10 times the
Fermi energy. This is illustrated in the lower panel of Fig. 5.

As mentioned above, the asymmetry of the potential leads to
a coupling between all kinds of modes, even those of different
parity. If we want to describe this in the framework of the
moments method, we have to make the most general ansatz,
i.e., include all possible moments up to a given order. Our
ansatz for � contains now 70 terms (1 of zeroth order, 4 of
first order, 10 of second order, 20 of third order, and 35 of
fourth order) and reads

�(r,p,t) =
∑

k+l+m+n�4

cklmn(t)φklmn(r,p), (18)

where k,l,m, and n are non-negative integers and

φklmn(r,p) = xkylpm
x pn

y . (19)
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FIG. 6. (Color online) Fourth-order results with in-medium cross
section for the frequency (top) and damping rate (bottom) of the
quadrupole mode in a trap containing N = 4300 atoms at T/TF =
0.47. Long and short dashes represent, respectively, results for a
harmonic isotropic trap and for the realistic trap shown in Fig. 5. The
solid lines are the results for the realistic trap, normalized, as in the
experiment, by the average sloshing frequency ωS ≈ 0.98ωr instead
of ωr given by Eq. (17). The experimental data are taken from Ref. [2]
(open circles) and [8] (solid circles).

The zeroth-order (constant) term is necessary for the conser-
vation of the particle number during the oscillation [14]. This
choice of �, together with the same excitation operator and
observable as before, V̂ ∝ x2 − y2 = q, define our method at
fourth order.

In Fig. 6 we display results obtained within the full
calculation (moments up to fourth order, in-medium cross
section) for the case of a harmonic isotropic trap (long dashes)
and for the realistic trap (short dashes and solid lines). One
can see that the damping in the weakly interacting limit
[ln(kF a2D) � 10] is significantly enhanced in the realistic
trap. Actually, the main reason for the additional damping
� is not the anharmonicity but the ellipticity of the trap.
As discussed in the beginning of this subsection, this effect
was already considered in [8] but not analyzed in the same
way. In our analysis, the beat caused by the two quadrupole
modes that no longer have the same frequencies results in
a finite damping rate � when the response is fitted with a
single damped cosine function, Eq. (11), on a relatively short
time interval. However, the effect is far too weak to explain
the experimentally observed damping. At smaller values of
ln(kF a2D), the damping is not substantially modified by the
anharmonicity and ellipticity of the trap.

The main effect of the anharmonicity is to reduce the
frequency of the quadrupole mode (cf. the short and long
dashed lines in the upper panel of Fig. 6). This looks
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FIG. 7. (Color online) Damping rates of the quadrupole mode in
a realistic trap as functions of temperature for different interaction
strengths. The lines represent fourth-order results with in-medium
cross section in the realistic trap potential. The data points are
taken from Ref. [2]. The particle numbers for T = 0.3,0.47,0.65,
and 0.89 TF are, respectively, N = 2620,4300,5180, and 5300,
corresponding to the Fermi energies given in Ref. [2].

incompatible with the data. However, if we normalize our
quadrupole mode frequency, as in the experiment, by the
average sloshing frequency ωS = 0.98ωr instead of the av-
erage trap frequency defined by the second derivatives at
the minimum, Eq. (17), this effect disappears (solid line)
because the anharmonicity reduces quadrupole and sloshing
frequencies by approximately the same factor.

The damping rates of the quadrupole mode for other
temperatures are shown in Fig. 7. To be consistent with
the experiment, for each temperature the calculations are
performed with a different value of N (see caption of Fig. 7).
The agreement between theory and data varies from each
data point to the other, but two clear trends are visible: First,
the experimentally observed damping is much stronger than
the theoretical result at low temperature, T/TF = 0.3, for all
values of the interaction strength. Second, the experimental
damping in the weakly interacting case, ln(kF a2D) � 9.7, is
also stronger than the theoretical one for all temperatures.
Surprisingly, the experimental damping rate in the weakly
interacting limit decreases with increasing temperature, while
one would expect the opposite behavior if this damping
was related to anharmonicity effects [cf. dashed-dotted line
corresponding to ln(kF a2D) = 18].

C. Other possible effects

As we have seen, the agreement between theory and data is
not satisfactory. While one maybe cannot trust the Boltzmann
equation in the limit of strong interaction, it should at least be
valid at large ln(kF a2D), but even there a systematic disagree-
ment between the theoretical and experimental damping rates
persists. Possible effects one might think of are as follows:

(a) The excitation V̂ is not of the form x2 − y2, but it
consists in squeezing the laser in one direction and stretching
it in the other direction. This leads to anharmonic terms. In
addition, it shifts the minimum of the potential and thereby
excites not only the quadrupole but also the sloshing mode.

(b) The observable q is not x2 − y2, but it is the quadrupole
moment of the cloud after a free expansion during a time of

flight (TOF) tTOF = 12 ms. This can easily be modeled, one
just has to replace x by x + tTOFpx/m and analogously for y.

(c) In the experiment, there is not a single 2D gas, but about
30 layers (“pancakes”) containing different particle numbers.
The measured response is the sum of the responses of all of
these layers. In Ref. [2] it was suggested that the dephasing
between the different layers might be an explanation of the
observed damping.

The effects (a) and (b) do not change the eigenvalues,
i.e., the poles ωi of the response function in the complex
plane, but they change the relative weight of the different
eigenvalues and therefore have some effect if one determines
the quadrupole frequency ω and damping rate � by fitting
the response function. In this respect, we note that, since
with the full perturbation also a sloshing mode is excited,
the fitting function has to be extended to take it into account.
We studied in detail the case T/TF = 0.47 and found that
in the collisionless regime [ln(kF a2D) � 7] the results of the
fits are not significantly changed. In the transition region
from the hydrodynamic to the collisionless regime around
ln(kF a2D) = 4 the effect (a) tends to increase � (by �10%)
while (b) reduces it (by �10%), so that the net effect is
even smaller. In the strongly interacting (near-hydrodynamic)
regime [ln(kF a2D) � 2] the Fermi-surface deformation gets
so weak that the corresponding quadrupole moment after
the TOF is comparable with the quadrupole moment of the
cloud before the TOF. Since both oscillate out of phase,
the resulting amplitude can become very weak and the fit for
the determination of ω and � fails. In all three cases, the result
of the fit depends very sensitively on details such as how the
center-of-mass motion is taken into account.

We also studied (c) the possible dephasing of the different
layers. When summing up the responses of layers having
a distribution of particle numbers as shown in Fig. 3.7(a)
of Ref. [21], we found that the total response is strongly
dominated by the central layers having the largest numbers
of particles, since these have also the largest radii. As a
consequence, the effect of the peripheral layers on the fitted
frequency and damping rate is very weak. For example, we
studied the case ln(kF a2D) = 3, T/TF = 0.28. Since this case
is right in between the hydrodynamic and the collisionless
regimes, the frequency is supposed to depend strongly on the
parameter ln(kF a2D) that changes from one layer to the next
because of the different particle number in each layer. One
might therefore think that the dephasing could be important.
Nevertheless we found that by summing the responses of all
the layers [weighting each response with the particle number
of the corresponding layer to compensate the factor 1/N in
Eq. (1)] the frequency and damping rate changes only by ∼2%.

V. CONCLUSIONS

We studied the quadrupole mode of a normal-fluid 2D
trapped Fermi gas in the framework of the Boltzmann equation.
The Boltzmann equation was solved approximatively within
the method of phase-space moments. We showed that by
including moments of up to fourth order in r and p, we could
nicely reproduce the results of the numerical study of Ref. [7].
In contrast to the 3D case [11], the second-order moments
alone were already in good agreement with the numerical
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results, and the effect of the fourth-order moments was quite
small.

In order to compare with the experimental data of
Refs. [2,8], we then included the in-medium cross section,
calculated within the ladder approximation [6], into the
collision integral. In Ref. [6], a rough estimate based on the
shear viscosity of the uniform gas suggested that the inclusion
of the in-medium cross section instead of the free-space one
could result in a much stronger damping of the quadrupole
mode. However, in agreement with [8], we found that the
effect of the in-medium cross section was much less dramatic
and consisted mainly in shifting the transition from the
hydrodynamic to the collisionless regime to slightly weaker
interactions or higher temperatures. The strong damping rates
observed in the experiment for ln(kF a2D) = 2.7 at T/TF = 0.3
and 0.47 cannot be reproduced by our calculation.

There is also a strong discrepancy between theoretical
and experimental damping rates in the (almost) collisionless
regime. In an attempt to reconcile the theoretical results for
the damping with the much stronger damping observed in the
experiment in this regime, we included also the anharmonic
shape of the experimental trap potential into our calculation.
In Ref. [13], we were able to explain in this way the
experimentally observed damping of the sloshing mode in
three dimensions. In the present 2D case, however, it turned
out that the anharmonicity effects were very weak and did not
substantially increase the damping of the quadrupole mode.
Other effects, such as the expansion of the cloud or the
summation over many 2D gases in the optical lattice, were
not able to explain the experimental data either.

In the strongly interacting regime (0 � ln(kF a2D) � 1),
it is maybe not so surprising that the Boltzmann equation
does not reproduce the experimental data, since one might
still be at the edge of the pseudogap phase [22] where the
quasiparticle picture breaks down. However, it is very puzzling
that it also fails to describe the data in the weakly interacting
case. Actually, in the experiment [2], a finite damping of
the quadrupole mode persists even in the noninteracting limit
[ln(kF a2D) = 545]. Since all effects considered in the present
paper were too weak to explain this damping, it must come
from a different mechanism which has not yet been identified.
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APPENDIX: RESPONSE FUNCTION
AND DETERMINATION OF FREQUENCY

AND DAMPING RATE

As it was explained in [12] and briefly mentioned in
Sec. II C, the moments method gives at higher order a number
of complex eigenvalues ωi whose real and imaginary parts
cannot directly be interpreted as frequencies and damping rates
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FIG. 8. (Color online) Example for response functions in the
frequency (top) and time (bottom) domains. The upper panel shows
−Im〈q〉pulse(ω) for the case N = 4300, T/TF = 0.47, ln(kF a2D) =
5.3 in the trap potential shown in Fig. 5. The lower panel shows
the Fourier transform 〈q〉pulse(t) (long dashes), the corresponding
〈q〉step(t) (solid line), and the fit (short dashes) that yields the results
ω = 1.876ωr and � = 0.234ωr .

of different collective modes. One rather has to look at the total
response function. The response to the δ-pulse perturbation
Eq. (5) can be written in the form,

〈q〉pulse(ω) =
n∑

j=1

Zj

ω − ωj

. (A1)

This is Eq. (25) of Ref. [12] if one replaces ωj − i�j by a
complex frequency ωj . The complex frequencies ωj satisfy
Imωj < 0 (in the case of a real ωj one has to add an
infinitesimal negative imaginary part). A Fourier transform
gives

〈q〉pulse(t) = i

n∑
j=1

Zj e−iωj t θ (t). (A2)

The response to a more realistic excitation which is adiabati-
cally switched on at t = −∞ and which is suddenly switched
off at t = 0 is given by

〈q〉step(t) =
∫ 0

−∞
dt ′〈q〉pulse(t − t ′)

=
n∑

j=1

Zj

ωj

e−iωj t θ(t). (A3)

Figure 8 shows a typical example for a response function
in the frequency and time domains. As a function of ω (upper
panel), the response −Im〈q〉pulse(ω) has a couple of spikes near
ω = 1 coming from the (weak) coupling between quadrupole
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and sloshing modes due to the asymmetry of the trap potential.
The broad peak corresponding to the quadrupole mode has a
sharp minimum near ω = 2 due to the interference between
the contributions of two complex eigenvalues. There is no
obvious prescription of how to extract a unique ω and � from

this response, so we transform the response to the time domain
(lower panel) and follow the method used in the analysis of the
experiment [2], i.e., we fit Eq. (11) (short dashes) to 〈q〉step(t)
(solid line) on the interval between t = 0 and t = 12 ms ≈
10/ωr [20].
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