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In this paper, we investigate the dynamical quantum phase transitions appearing in the Loschmidt echo and the
time-dependent order parameter of a quantum system of harmonically coupled degenerate bosons as a function
of the power-law decay σ of long-range interactions. Following a sudden quench, the nonequilibrium dynamics
of this system are governed by a set of nonlinear coupled Ermakov equations. To solve them, we develop an
analytical approximation valid at late times. Based on this approximation, we show that the emergence of a
dynamical quantum phase transition hinges on the generation of a finite mass gap following the quench, starting
from a massless initial state. In general, we can define two distinct dynamical phases characterized by the
finiteness of the post-quench mass gap. The Loschmidt echo exhibits periodical nonanalytic cusps whenever
the initial state has a vanishing mass gap and the final state has a finite mass gap. These cusps are shown to
coincide with the maxima of the time-dependent long-range correlations.
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I. INTRODUCTION

Recent experimental advances, especially in cold atoms
[1–7] and trapped ions [8], made the investigation of the quan-
tum dynamics of many-body systems feasible and aroused
great interest in the theoretical characterization of dynamical
critical phenomena [9]. These phenomena are related to the
existence of dynamical phases of matter and of the associated
dynamical quantum phase transitions (DQPTs) [10,11].

DQPTs were first characterized in analogy to Landau
theory by studying the behavior of dynamical order pa-
rameters [12–16]. More recently a second characterization
appeared, based on the appearance of nonanalytic cusps in the
Loschmidt echo rate function [10,11]. The existence of such
nonanalyticities has been traced back to the analogy between
the amplitude 〈�0|�(t )〉 ≡ 〈�0| exp(−iHt )|�0〉 of the initial
and time-evolved states and the classical partition function
Z (β ) = tr exp(−βH ). Theoretical evidence of DQPTs in the
Loschmidt echo return rate was found in numerous quantum
systems [10,17–28], and their connection with the singular
dynamics of the order parameter has been explicitly analyzed
in the Ising model [29].

Experimental evidence of DQPTs in many-body quantum
systems was mainly confined to quantum spin chains, which
can be simulated in trapped ion systems and display extended
nonlocal interactions [30,31]. It is, therefore, not surprising
that theoretical studies of DQPTs in systems with power-
law decaying interactions have been thriving, both on spins
[18,25,29,32–34] and Fermi [20,35–37] systems.

Despite the wide range of investigations, several important
questions regarding the critical dynamics of quantum models
remain open. In particular, the relation between the occurrence
of dynamical quantum phase transitions and the quasiparticle
spectrum in systems with bosonic excitations has been rather
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limited, while nonanalytic kinetic terms due to long-range
interactions are known to produce several anomalous dynam-
ical phases in spin and Fermi systems [34,36–38]. In this
paper we extend the study of dynamical phase transitions into
the bosonic realm, showing that the nonanalytic momentum
terms in the quasiparticle dispersion relation do not produce
additional critical points with respect to the nearest-neighbor
case. Conversely, the nonanalytic dispersion relation is shown
to push the cusps signaling the DQPT to higher derivative
orders in the Loschmidt echo.

The focus of our investigations is the quantum extension
of the spherical model introduced by Berlin and Kac [39],
which describes a system of harmonically coupled quantum
oscillators with a global constraint imposed on the expectation
value of their positions, namely

∑N
i=1〈ŝ2

i 〉 = N/4 [40]. De-
spite its quadratic nature, the presence of the global spherical
constraint induces a quantum critical point in this model,
depending on the number of spatial dimensions and on the
harmonic interaction shape. It is worth noting that in the
classical limit, the spherical model’s free energy corresponds
to the one of O(n)-symmetric spin systems in the n → ∞
limit [41]. Therefore, the scientific interest in the spherical
model is primarily due to its universal behavior, which qualita-
tively describes any quantum critical point where a continuous
symmetry is spontaneously broken. Nevertheless, a concrete
experimental realization of the spherical model has been pro-
posed using multidimensional laser mode lattices [42].

When considering universal properties, this correspon-
dence also extends to continuous O(n) field theories, which
in the n → ∞ limit lie in the same universality class of
the spherical model [43,44]. At equilibrium, the correspon-
dence between quantum critical points and classical phase
transitions [45] allows one to conclude the existence of a
critical point also in the quantum case [46]. Therefore, apart
from the interest in the study of bosonic many-body quantum
systems with long-range interactions, our studies also target
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FIG. 1. Dynamical phase diagram of the spherical model with power-law decay σ for quenches from different initial couplings g0 to final
coupling gf . We identify two different phases based on the long-time limit of the post-quench gap which can either vanish or become nonzero.
The gapless (or ordered) dynamical phase (1) has a vanishing post-quench gap and allows for massless excitations, while the gapped (or
disordered) dynamical phase (2) has a nonzero post-quench gap and massive excitations. The phase diagram strongly depends on g0, and there
are two main cases: For g0 > gc (strong initial quantum fluctuations) there is no ordered dynamical phase if σ > 1 (left and middle plot). For
g0 � gc (weaker quantum fluctuations), there is always an ordered dynamical phase for σ < 2.

important aspects of universality in DQPTs. Indeed, in equi-
librium it is possible to relate the universal behavior of
d-dimensional long-range models with decay exponent d + σ

to that of the corresponding nearest-neighbor system in di-
mension deff = 2d/σ , constituting a superuniversal scaling
relation [47]. Even if the concept of universality does not fully
apply to the dynamical realm [48], we employ the effective di-
mension relation to show that our findings are consistent with
the ones obtained for O(n) models at large n in Refs. [26,49]
and provide evidence of universality also in DQPTs.

The paper proceeds as follows: In Sec. II we will introduce
the spherical model and briefly discuss its equilibrium proper-
ties. Then, in Sec. II B we will consider the time-dependent
case, focusing on the case of an instantaneous quench. An
exact solution to the spherical model dynamics will be ob-
tained by a time-dependent canonical transformation [50,51],
leading to a system of Ermakov equations coupled by the
global constraint. In Sec. III an approximate solution to the
coupled Ermakov equations will be developed, i.e., the step
approximation. The validity of such an approximate solution
will be corroborated by comparing it to a numerical solution
of the differential equations.

Having justified the step approximation, we will employ
it to obtain the dynamical phase diagram for the long-range
spherical model, which is displayed in Fig. 1. Additionally,
analytical expressions for the Loschmidt echo and the long-
range correlations will be derived and numerically evaluated.
The resulting return rate function exhibits periodically spaced
nonanalytic cusps signaling the presence of a dynamical quan-
tum phase transition. The conclusions of our investigations
will be discussed in Sec. IV, where we summarize the results
and give an outlook to future directions of research.

II. THE MODEL

A. Equilibrium

In the absence of any symmetry breaking field, the Hamil-
tonian of the spherical model reads

H = g

2

∑
i

p̂2
i + 1

2

∑
i, j

Ui j ŝiŝ j + μ

(∑
i

ŝ2
i − N

4

)
, (1)

where the ŝi and p̂i are canonically conjugate hermitian op-
erators on a one-dimensional lattice, such that [ŝi, p̂ j] = iδi, j

(with h̄ = 1). The coupling g regulates the strength of quan-
tum fluctuations; in the limit g → 0 the Hamiltonian in Eq. (1)
reduces to the one of the classical spherical model [43]. The
spherical constraint 〈∑

i

ŝ2
i

〉
= N

4
(2)

is enforced by a Lagrange multiplier μ. As mentioned in the
introduction, we are going to consider long-range power-law
decaying couplings of the form

Ui j = − 1

|i − j|σ+1
, (3)

where the lattice spacing has been set to unity for simplicity.
In one dimension the total energy of the system is then only
extensive for σ > 0 [52].

It is convenient to recast the Hamiltonian in Eq. (1) in
Fourier space, yielding

H = g

2

∑
k

p̂k p̂−k + 1

2g

∑
k

ω2
k ŝk ŝ−k (4)

where the frequency reads

ω2
k = 2g(μ + Uk/2), (5)

and a constant term in the Hamiltonian has been neglected.
The Fourier transformed interaction Uk approaches the closed
form

Uk = −2Re[Liσ+1(eik )] (6)

in the thermodynamic limit, where Lis(z) denotes the poly-
logarithm. In Fourier space the Hamiltonian describes N
uncoupled harmonic oscillators and may be recast in the di-
agonal form

H =
∑

k

ωk

(
â†

k âk + 1

2

)
(7)
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by means of the well-known transformations

âk =
√

ωk

2g
ŝk + i

√
g

2ωk
p̂−k, (8a)

â†
k =

√
ωk

2g
ŝ−k − i

√
g

2ωk
p̂k, (8b)

ensuring that the commutation relation [âk, â†
k′ ] = δkk′ holds.

Evaluating the spherical constraint (2) in the ground state
|0〉 = ∏

k |k, 0〉, one obtains

0 = −1

4
+ g

N

∑
k

1

2ωk
. (9)

The existence of a quantum phase transition can be con-
nected with the appearance of a gapless point in the excitation
spectrum of the system. Since the Hamiltonian in Eq. (1) is
homogeneous and isotropic one expects such a soft mode to
appear at zero momentum (k = 0), leading to a homogeneous
order parameter.

Indeed, for a thermodynamic system N → ∞ the summa-
tion in Eq. (9) may be cast into a continuous integral, which
would have to grow indefinitely in the limit g → 0 in order for
the constraint in Eq. (9) to be satisfied. Then, as long as the in-
tegral in Eq. (9) converges for all μ, there must exist a critical
value gc below which the continuous approximation fails and
the system ground state changes. At g = gc the maximum of
the integral is attained and the parameter μ tends to the critical
value μc = −Uk=0/2, where the dispersion relation in Eq. (5)
becomes gapless. Therefore, the critical coupling gc is given
by the equation

0 = −1

4
+

√
gc

2N

∑
k

1√
2μc + Uk

. (10)

Since Uk − Uk=0 ∝ |k|σ for small k, a quantum critical point
(QCP) can only exist for σ < 2. The same procedure can be
applied to locate the finite temperature phase transition, once
the proper thermal occupation is included in Eq. (9), leading
to the threshold σ < 1 for the existence of the classical phase
transition [40]. For the rest of the paper, we will work mostly
in the region 0 < σ < 2, where the energy still scales exten-
sively and the equilibrium phase transition is possible.

B. The dynamical case

Our study focuses on the dynamical behavior of the spher-
ical model after a sudden change of the coupling g. It will be
convenient to first derive the general time-dependent solution
of the model and then focus on the quench case. Since the
spherical model is described by the quadratic Hamiltonian
in Eq. (4) its dynamical behavior can be obtained by the
study of the harmonic oscillators with time-dependent mass
1/g(t ). This problem can be conveniently described in the
time-dependent canonical transformation formalism [51]. We
first introduce the generating function

F (ŝk, P̂k, t )

=
∑

k

[
ŝkP̂−k + P̂k ŝ−k

2ξk (t )
− �k (t )

2ξk (t )
ŝk ŝ−k

]
, (11)

which defines the transformed coordinates and momenta via
the relations p̂k = ∂F/∂ ŝ−k and Ŝk = ∂F/∂P̂−k . Accordingly,
the transformed position and momentum operators read

Ŝk = ŝk

ξk (t )
(12a)

P̂k = ξk (t ) p̂k + �k (t )ŝk, (12b)

where the functions ξ (t ) and �(t ) have to be chosen in
such a way that the problem is reduced to an effective time-
independent one. A convenient choice reads

g(t )�k (t ) + ξ̇k (t ) = 0 and (13a)

ω2
k (t )ξk (t ) − g(t )�̇k = λ2

kg2(t )

ξ 3
k (t )

(13b)

with arbitrary time independent coefficients λk , which have
to be chosen in order to satisfy the initial conditions of the
dynamics.

Equations (13a) and (13b) may be rephrased in terms of the
Ermakov equation

ξ̈k (t ) + γ (t )ξ̇k (t ) + ω2
k (t )ξk (t ) = λ2

kg2(t )

ξ 3
k (t )

(14)

with the initial conditions

ξk (0) = 1 and �k (0) = ξ̇k (t ) = 0. (15)

The damping term γ (t ) = −d log g(t )/dt = 0 for t > 0 in
case of a sudden quench at t = 0. The Hamiltonian for the
transformed variables follows from the relation H ′ = H +
∂F/∂t , yielding

H ′ =
∑

k

g(t )

2ξ 2
k (t )

(
P̂kP̂−k + λ2

k Ŝk Ŝ−k
)
, (16)

which may be recast as a time-independent problem in terms
of the effective time

τ =
∫ t

0

g(t ′)
2ξk (t ′)2

dt ′. (17)

The transformed Hamiltonian can again be diagonalized
using a proper definition of ladder operators (referring to it
as H henceforth),

H =
∑

k

g(t )

ξ 2
k (t )

λk

(
Â†

kÂk + 1

2

)
, (18)

where

Âk = 1√
2λk

(
λ2

k Ŝk + iP̂−k
)
, (19a)

Â†
k = 1√

2λk

(
λ2

k Ŝ−k − iP̂k
)
. (19b)

However, products of eigenstates |k, n〉 of A†
kAk are not

eigenstates of the Hamiltonian anymore because of the factor
g(t )/ξ 2

k (t ). Instead, the eigenstates are given by products of
the states∣∣ψk,nk (t )

〉 = exp

[
−iλk

(
nk + 1

2

)∫ t

0

dt ′g(t ′)
ξ 2

k (t ′)

]
|k, nk〉

(20)
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up to an additional time-dependent phase. Evaluating the
constraint (2) in the time-dependent ground state |�0(t )〉 =∏

k |ψk,0(t )〉, one obtains the dynamical constraint equation

0 = −1

4
+ 1

N

∑
k

ξ 2
k (t )

2λk
. (21)

When the dynamics start from the equilibrium ground state at
t = 0, consistency with the equilibrium constraint (9) requires
that λk = limt→0 ωk (t )/g(t ).

III. QUENCH DYNAMICS

The dynamics under study is the one occurring after a
sudden quench of g at t = 0, in other words

g(t ) =
{

g0 for t � 0,

gf for t > 0.
(22)

In order to satisfy the constraint at all times, the Lagrange
multiplier μ has to remain time-dependent also for t > 0,
where the coupling g is constant. This essentially couples the
equations for all k modes and leads to a nontrivial time de-
pendence of the frequency ωk (t ), and the solution of Eq. (14)
cannot be obtained straightforwardly.

A. Step approximation

In order to simplify the solution of the problem, one may
assume that as g is quenched the Lagrange multiplier also
discontinuously jumps from its initial value μ0 to another con-
stant value μf . The final value μf has to be chosen to coincide
with the t → ∞ limit of the time-dependent Lagrange multi-
plier, which is assumed to thermalize at long times. A similar
approximation has already been introduced for O(n) models
in the n → ∞ limit and it is known as step approximation
[49,53].

Within this approximation, the frequency of the eigen-
modes is simply quenched from ω0,k to ωf,k and the solution
of Eq. (14) is given by

ξk (t ) =
√

1 + εk sin2(ωf,kt ) (23)

with the parameter

εk =
(

gf ω0,k

g0 ωf,k

)2

− 1. (24)

We insert Eq. (23) into Eq. (21) and take the thermodynamic
limit N → ∞, i.e., turn the sum into an integral, which yields

0 =
∫

dk

2π

g0

2ω0,k

[εk

2
(1 − cos 2ωf,kt )

]
. (25)

The time-dependent cosine term shows that a constant μf

cannot satisfy the constraint (25) for short times after the
quench. However, for long times the oscillating terms dephase
for a continuum of k modes, and the step approximation
becomes exact. Therefore, it is sufficient to solve Eq. (25) in
the long-time limit, where the rotating wave approximation
can be applied and the cosine term disregarded, yielding

0 =
∫

dk

2π

εk

ω0,k
. (26)

FIG. 2. The time evolution of the Lagrange parameter μ(t )
is shown following a quench from g0 = 2gc to gf = gc/2 in the
spherical model on a finite one-dimensional lattice (N = 1000) for
different long-range interaction parameters σ . The system of equa-
tions (14) was integrated numerically, ensuring that the spherical
constraint (21) be fulfilled to at least order 10−5 at all times. Dashed
lines show the prediction for μf of the step approximation. Time is
given in units of the post-quench frequency ωf,0, calculated in the
step approximation; μ(t ) is shown in units of the initial Lagrange
parameter μ0. Evidently, all the curves seem to converge to the
predicted long-time values for quenches both into the gapped as well
as into the gapless dynamical phase.

This implicit equation determines the long-time asymptotic
value of μf via the μ dependence of ωf,k .

Therefore, the step approximation for μ is consistent with
the long-time solution of the full constraint Eq. (21). As a
further proof of the applicability of the step approximation
in the long-time limit, we solve the full differential equations
set in Eq. (14), fulfilling the constraint in Eq. (21) at each time
step. In this way the Lagrange multiplier μ(t ) can be obtained
at each point t in time. The results of this procedure are shown
in Fig. 2 for a system of finite size N = 1000 with quench
parameters g0 = 2gc to gf = gc/2 at different σ values. The
resulting picture for the full dynamics is fully consistent with
the equilibration behavior assumed in the step approximation.
Indeed, after a short transient period, the curves μ(t ) steadily
oscillate around the predicted μf values and slowly converge
to the solution of Eq. (26). The aforementioned picture applies
independently of the σ value both in the gapped and gapless
phases of Fig. 1, as long as σ > 0.

The full solution of the time-dependent constraint dis-
played in Fig. 2 justifies the application of the step approxima-
tion in the following study of the dynamical phase transition.
Accordingly, we are going to employ the step approximation
to depict the entire dynamical phase diagram of the model,
both in the region g0 < gc as well as for g0 > gc.

B. Dynamical critical coupling

Let us come back to Eq. (26) and discuss the conditions for
the final Lagrange multiplier μf to attain the critical value μc,
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FIG. 3. The dynamical critical coupling gdyn
c is shown as a func-

tion of σ and initial coupling g0 (in units of the equilibrium critical
coupling gc). The phase diagram contains three different regions:
Region 1 is characterized by g0 � gc where Eq. (29) holds (colored
region below red dashed line). In region 2 one has g0 > gc and σ < 1,
resulting in a finite gdyn

c , which decreases to zero as σ tends to one.
This leads to region 3 where σ > 1 and g0 > gc: In this region there
is no ordered dynamical phase and gdyn

c = 0 everywhere.

at which the equilibrium would display the critical coupling
gc, see Eq. (10). Using the same method, one can define a
dynamical critical coupling gdyn

c , such that for gf = gdyn
c the

system becomes gapless and the constraint parameter μf in
Eq. (26) approaches μc. One, therefore, obtains the following
equation for the dynamical critical coupling,

1

2
= gdyn

c
1√
g0

∫
dk

2π

√
2μ0 + Uk

2μc + Uk
, (27)

which has been derived using the relation 2g0
∫

dk
2π

(ω0,k )−1 =
1, deduced from the equilibrium spherical constraint (9).

Based on Eq. (27) one can identify two regimes: if g0 >

gc, the integrand will diverge for each σ � 1, given that the
denominator scales as kσ , and no dynamical phase transition
is present (gdyn

c = 0). Instead, for σ < 1 the integral becomes
convergent and it can be numerically evaluated to obtain the
value of the dynamical critical coupling. If g0 � gc, on the
other hand, the argument of the square root in the numerator
of Eq. (27) equals the denominator since μ0 = μc in the whole
low-temperature phase, leading to

1

2
= gdyn

c
1√
g0

∫
dk

2π

1√
2μc + Uk

, (28)

which is a rescaled version of the equilibrium relation in
Eq. (10). Accordingly, for g0 � gc, the critical value gdyn

c is
finite in the whole region 0 < σ < 2 and is given by

gdyn
c = √

g0gc (29)

as shown in Fig. 3.

C. Loschmidt echo and correlation function

In the previous section, we have depicted the appearance
of the dynamical quantum phase transition, based on the
vanishing of the gap in the single-particle spectrum. Such a
dynamical quantum phase transition is also connected to the
appearance of dynamical singularities in the Loschmidt echo
rate function. In order to characterize such singularities, we
will now focus on the dynamics of the system after a quench
across the critical boundary gdyn

c .
Let us consider an initial pure state in the ordered phase

with vanishing initial gap �0 = μ0 − μc = 0 and, suddenly,
quench the system into the disordered finite-gap region � f =
μf − μc > 0. In principle, a quench in the opposite direction
from the gapped to the gapless phase may also be consid-
ered. However, in the latter case, the study is complicated by
the divergence of the characteristic time scale of the system
1/ωf,k , given by Eq. (23), in the k → 0 limit. Indeed, the
critical behavior is only influenced by the zero mode and,
therefore, the time at which the first nonanalytic cusp appears
is proportional to 1/

√
�f , which diverges for disorder-order

quenches.
Thus, our focus will remain on order-to-disorder quenches

with g0 < gc and terminating in the gapped phase gf > gdyn
c .

When studying such dynamics, one shall consider that the
spherical model will display a finite order parameter for g0 <

gc, at least in the thermodynamic limit. The dynamics of the
order parameter are coupled to that of the k 
= 0 quantum
modes, similarly to the case of the O(n) models [26]. Equa-
tions of motion for the order parameter do not appear in our
canonical transformation framework, but they can be obtained
employing a time-dependent variational approximation [54],
which describes the dynamics of quadratic models exactly.
However, the resulting equations of motion become numeri-
cally demanding and do not allow for the explicit introduction
of the step approximation, so that it is more convenient to dis-
card the order parameter contribution to the dynamics. Indeed,
since our study will be carried out within the framework of
the step approximation and the order parameter equilibrates
to zero in the long-time limit for gf > gdyn

c , then the omission
of the order parameter contributions is fully consistent with
the following analysis.

Given the quadratic nature of the spherical model, one may
calculate the overlap function

G(t ) = 〈�0(0)|�0(t )〉 = 〈0|e−iHt |0〉 (30)

analytically. The representation of the time-dependent har-
monic oscillator wave functions in position space reads

ψk,0(x, t ) =
(

ω0,k

πg0ξ
2
k (t )

)1/4

e−�k (t )x2/2−iϕk (t ), (31)

where

�k (t ) = ω0,k

g0ξ
2
k (t )

− i
ξ̇k (t )

gfξk (t )
, (32a)

ϕk (t ) = ω0,k

2g0

∫ t

0

dt ′g(t ′)
ξ 2

k (t ′)
. (32b)
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FIG. 4. Upper panel: The Loschmidt echo rate functions r(t ) for different σ are shown following an order-to-disorder quench from g0 =
gc/ 2 to gf = 2gc. Because of the step approximation these are accurate for late times, hence we display the rate functions between the times
t∗
10 and t∗

20. The inset shows the transient behavior of the same rate functions between t∗
0 = 0 and t∗

5 (the units on the axes are the same).
Lower panel: the absolute values of the derivatives of the rate functions with respect to time are shown. At integer multiples of π we observe
divergences in the nth derivative of the rate function whenever nσ > 2.

The overlap is then given by

G(t ) =
∏

k

{√
2e−iϕk (t )

(
ξk (t ) + 1

ξk (t )
− i

g0

gf

ξ̇k (t )

ω0,k

)−1/2
}

.

(33)

The Loschmidt echo rate function is obtained by the logarithm
of the squared overlap

r(t ) = − lim
N→∞

1

N
log |G(t )|2 (34)

= − log 2 +
∫

dk

2π
log |Xk (t )|, (35)

where

Xk (t ) = ξk (t ) + 1

ξk (t )
− i

g0

gf

ξ̇k (t )

ω0,k
. (36)

The integrand Xk (t ) in the expression for the rate function is
a smooth function of time whenever ω0,k is gapped. Hence,
we should only expect to see nonanalytic cusps (and thus a
dynamical quantum phase transition) for quenches starting in
the gapless phase (g0 < gc).

In the upper half of Fig. 4 we show the Loschmidt echo for
a quench from g0 = gc / 2 to gf = 2gc for different values of
σ . At the critical times

t∗
m = mπ

ωf,0
∼ m√

�f
, m ∈ N (37)

there are logarithmic divergences in the integrand in (35)
which reflect as divergences in the derivatives of the rate
function shown in the lower half of Fig. 4. Since the critical
time scale is set by the post-quench gap we do not expect to
see nonanalytic cusps in the Loschmidt echo for a quench into
the gapless phase as we also mentioned previously.

The divergences show up in the nth time derivative of the
rate function whenever nσ > 2, due to the following reasons:
For k → 0 the function Xk (t ) diverges like k−σ/2 because of
the term involving 1/ω0,k . However, at integer and half-integer
multiples of π , the function ξ̇0(t ) is zero and cancels the diver-
gence. Additionally, there is the term 1/ξk (t ) which diverges
only at half-integer multiples of π . All together, we find that
Xk (t ) is divergent for k → 0 except at the critical times t∗

m.
Differentiating (35) with respect to time n times, we then
encounter terms proportional to (1/ω0,k )n when t = t∗

m, which
diverge like k−nσ/2. Since this is still integrated over k, the
nth derivative of the rate function diverges only if nσ/2 > 1
or nσ > 2. This analysis is valid in the whole region where
0 < σ < 2. It does not apply for σ � 2 since there exists no
gapless phase from which to start in that case. For σ � 0, an
entirely different approach is needed due to energy extensivity
breaking down.

The discussion above provides additional evidence that
the nonanalytic cusps are not merely a feature of the step
approximation. Indeed, their emergence is a consequence
of the initial conditions (i.e., starting in the gapless phase)
and the particular form of the function ξk=0(t ) and its time
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derivatives, which will remain the same in the exact calcula-
tion. Moreover, the structure of the cusps remains unaltered in
the long-time limit, where μ(t ) has equilibrated and the step
approximation becomes exact. Following traditional results
on spin systems [29], it would be interesting to connect the
singular dynamics of the Loschmidt echo with the more tra-
ditional characterization of dynamical phase transitions based
on order parameters. However, the contribution of the order
parameter to the dynamics has been discarded in the present
analysis and, in order to characterize the effect of the dynami-
cal quantum phase transition on observables, we will follow a
different route.

A closed expression for the spatial correlation function can
be obtained in terms of the dynamics of the quantum modes
using the formula

C(r, t ) = 〈sis j+r〉 = g0

2N

∑
k

ξ 2
k (t )

ω0,k
eikr (38)

by evaluating the sum at long distances r � 1. In that limit we
can employ the rotating wave approximation and see that the
most important contribution to the sum arises from the values
close to the infrared k → 0 limit.

We do this by splitting the integral into small and large
wave-number contributions,

C(r, t ) = g0

2

[∫ �

−�

dk

2π

ξ 2
k (t )

ω0,k
eikr +

∫
��|k|�π

dk

2π

ξ 2
k (t )

ω0,k
eikr

]
(39)

with cutoff 0 < � � π . Utilizing the rotating wave approx-
imation, it is evident that the second integral asymptotically
approaches zero for large distances r and does so faster than
the first integral. Since the dominant contributions to the in-
tegral then arise from a small shell around k = 0, we can
approximate the first integral by pulling ξ 2

k (t ) evaluated at
k = 0 outside the integral:

C(r, t ) � ξ 2
0 (t )

g0

2

∫ �

−�

dk

2π

eikr

ω0,k
. (40)

Note that for large r

g0

2

∫ �

−�

dk

2π

eikr

ω0,k
� C(r, t = 0) ≡ C0(r) , (41)

such that

C(r, t ) � C0(r)ξ 2
0 (t ) . (42)

For a quench starting in the gapless phase, Eq. (23) yields

C(r, t )

C0(r)
� cos2(ωf,0t ) . (43)

When quenching from the gapless to the gapped phase in
a DQPT, this leads to dips in the correlation function at half-
integer multiples of π as can be seen in Fig. 5. At integer
multiples of π , i.e., at the critical times t∗

m, we observe local
maxima in the correlation function.

IV. CONCLUSION

We have characterized the dynamical quantum phase
transition occurring in the long-range interacting quantum

FIG. 5. The correlation function C(r, t ) in units of the initial
correlations C0(r) is shown as a function of time for different r
after a quench from the gapped to the gapless phase. In the r → ∞
limit Eq. (43) is valid and the correlation function behaves like a
simple sine curve independent of σ (dark blue curve). For finite r
the correlations were numerically calculated using Eq. (38) in the
large N limit. They are clearly converging to the value of the large-r
approximation. Periodic dips and local maxima in the correlation
function can be observed, lining up with the critical points at t∗

m.

spherical model by the study of the nonanalytic cusps in the
Loschmidt echo following a quench of the coupling g. An
approximate solution for the constrained system of differential
equations governing the quench dynamics was developed by
approximating the time-dependent Lagrange multiplier μ(t )
as a step function in time. A similar approximation was in-
troduced by Ref. [53] and employed by Ref. [49] for the
time-dependent effective mass of the O(n) model in the n →
∞ limit. In the short-range limit σ → ∞, our results for μ(t )
are consistent with these previous works. In equilibrium the
n → ∞ limit of continuous O(n) models lies in the same
universality class as the lattice spherical model. Our result
thus constitutes a further observation that the concept of uni-
versality may be extended to dynamical phase transitions.

Using the step approximation we obtained an analytical ex-
pression for the dynamical critical coupling gdyn

c as a function
of initial coupling g0 and the decay exponent σ . The resulting
phase diagram has been depicted in Fig. 3 and presents three
different regions depending on the initial state of the system
as well as on the value of the decay exponent σ . As already
mentioned the short-range limit σ → ∞ reproduces the re-
sults already found in Refs. [49,53].

Our model exhibits a dynamical quantum phase transi-
tion whenever we quench from the gapless equilibrium phase
(g0 < gc) to the gapped dynamical phase (gf > gdyn

c ): Then
we encounter nonanalytic kinks in the Loschmidt echo rate
function. Depending on σ the smoothness of the rate function
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varies; for σ > 1 already the second time derivative of the rate
function is discontinuous, while for lower values of σ we have
to go to higher and higher derivatives to see discontinuities.
The critical times with nonanalytic behavior are spaced apart
by a critical time scale T ∼ �

−1/2
f inversely proportional to

the post-quench gap. Because of this, nonanalytic cusps are
not to be expected when quenching into the gapless phase due
to the diverging time scale.

In equilibrium, the universal behavior of a long-range in-
teracting system in dimension d with decay exponent σ can
be related to the one of the corresponding nearest-neighbor
system in dimension deff = 2d

σ
[43,47,55]. Applying the same

relation to our findings, it is possible to reconstruct the
dynamical phase diagram of the short-range interacting three-
dimensional O(n) model in the n → ∞ limit [26], showing
that the foundations of universality also hold in the dynamical
realm. This can also be seen by noticing that the critical
behavior only depends on the convergence properties of the
integrals in Eqs. (10), (28), and (35) which in turn only depend
on d and σ .

However, it is worth noting that the relation between
large-n O(n) models and the lattice spherical Hamiltonian in
Eq. (1) only holds for universal properties such as the shape
of the dynamical phase diagram, but it does not imply a strict
correspondence between the dynamical behavior of observ-
ables. Indeed, the connection between the Loschmidt echo
and the correlation dynamics implies that local maxima of the

correlations occur at the critical times where the rate function
is nonanalytic. In other words, the rate function becomes
nonanalytic when the time-evolved state recovers the mag-
netization profile of the initial state. When the large-scale
correlations are identified with the order parameter, this result
differs from the one found in O(n) models, where the zero
crossings of the order parameter line up with kinks in the
Loschmidt echo at the critical times [26].

An interesting topic for future work would be to drive the
coupling g(t ) slowly through the quantum phase transition
instead of the instantaneous quench described here. Indeed,
while the effect of long-range interactions on the universal
dynamical scaling of critical Fermi systems has been investi-
gated in detail [38], the effect of a slow drive in systems with
bosonic excitations has mainly been discussed in the limiting
σ = −1 case [56,57]. The spherical model certainly offers a
viable tool to investigate the adiabatic dynamics as a function
of σ in critical systems with bosonic excitations.
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