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Abstract

We review recent advances in experimental and theoretical understand-

ing of spin transport in strongly interacting Fermi gases. The central

new phenomenon is the observation of a lower bound on the (bare) spin

diffusivity in the strongly interacting regime. Transport bounds are of

broad interest for the condensed matter community, with a conceptual

similarity to observed bounds in shear viscosity and charge conductiv-

ity. We discuss the formalism of spin hydrodynamics, how dynamics are

parameterized by transport coefficients, the effect of confinement, the

role of scale invariance, the quasi-particle picture, and quantum critical

transport. We conclude by highlighting open questions, such as precise

theoretical bounds, relevance to other phases of matter, and extensions

to lattice systems.
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1. INTRODUCTION

Magnetization dynamics in liquids has been studied since the advent of nuclear magnetic

resonance techniques. Spin echos were first observed in water, and in the presence of a field

gradient were used to determine spin diffusivity (1–3). In Fermi liquids, the same probes

revealed spin-wave effects (4–12). Magnetization dynamics of non-degenerate gases were

found to show closely related physics (13–20).

The advent of ultracold atoms has created several new opportunities and renewed in-

terest in spin dynamics. First, spin dynamics can be spatially resolved (21–24). Second,

the strength of the interactions can be tuned, enabling the study of strongly interacting

systems (24–29) and dynamic control of interactions (30). Third, spin locking provides a

pathway to improved coherent time for metrology applications (31, 32).

This review focuses on ultracold fermionic systems in the near-unitary regime, where

atoms become strongly interacting. The central new phenomenon is the observation of a

lower bound in transport coefficients (Figure 1). In typical experiments, a high collision

rate creates a fast local equilibration, which manifests as a slow global equilibration time.

Bounds placed on local dissipation give lower bounds on transport coefficients, whereas

bounds placed on system-wide equilibration are upper bounds on flow or communication

(33, 34). Transport equations connect the global to the local bounds, as discussed in §2.

Bounded diffusivity, discussed in §3, is found in the strongly correlated regime, where Fermi

liquid theory breaks down. Experiments become a testing ground for powerful theoretical

approaches such as holography, quantum critical dynamics, and numerical simulation.

A goal of this review is to connect spin dynamics in ultracold fermions to the broader

discussion of dissipation, which also limits viscosity and conductivity. Study of quantum

bounds provides physical insight into the nature of transport where perturbative calcula-

tions fail, and yet where universal limits relate diverse physical systems. Due to length

constraints, we cannot cover all of vigorous activity in spin dynamics, so do not review

lattice systems (35), integrable systems (36), spintronics (37), or Kondo physics (38). We

conclude in §4 with a discussion highlighting some of the open questions in spin transport

for strongly interacting fermions.
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Figure 1

Evidence for dissipation bounds in spin dynamics. a [from (25):] Longitudinal spin diffusivity versus reduced

temperature T/TF . At low temperature, the diffusivity approaches a constant value of 6.3(6)~/m for a temperature below

about 0.5TF . Correcting for inhomogeneous gradients, the intrinsic value may be lower: see also Figure 4a. b [from
(26):] Normalized global relaxation time ~ω2

z/ΓSDEF↑ of the spin dipole mode of the polarized Fermi gas as a function of

the reduced temperature T/TF↑, where TF↑ is the local Fermi temperature at the center of the majority cloud. The solid
curve is the low temperature limit ∝ T 2 from (39). The dashed curve is the high-temperature limit 0.08

√
TF↑/T . c [from

(28):] Transverse spin diffusivity versus interaction strength for a 3D Fermi gas at initial T/TF = 0.2. Solid line shows a

kinetic theory calculation for a uniform gas. d [from (29)]: Transverse spin diffusivity versus interaction strength for a 2D
Fermi gas with T/TF = 0.31(2) (black circles) and T/TF = 0.21(3) (open squares). The lines are predictions for

T/TF = 0.3 by kinetic theory. The conjectured quantum bound would exclude the shaded areas in (c,d).

2. SPIN TRANSPORT

Spin transport describes how the local magnetization ~M(r, t) of a polarized system evolves

in space and time. We start with the simplest hydrodynamic evolution equation and explain

the basic phenomena of longitudinal and transverse spin transport. Microscopic physics is

contained within transport coefficients, such as diffusivity and spin-rotation parameters,

whose values for ultracold atomic gases we discuss in §3.

~a: Vector notation
for spin-space, i.e.

aα where

α = {x, y, z}.

a: Spatial vector,

i.e. ai where

i = {1, 2, 3}.

2.1. Spin hydrodynamics

The local magnetization obeys the continuity equation

∂t ~M + ∂i ~Ji = ~M × ~ωL. 1.

The magnetization ~M(r, t) is a Bloch vector in spin space, and it changes in time either

by a spin current ~Ji(r, t) to a neighboring volume element in spatial direction i, or by

www.annualreviews.org • Spin Transport of Unitary Fermions 3



external torque with Larmor frequency ~ωL = γd ~H0 in an external magnetic field ~H0(r, t)

with gyromagnetic ratio γd. In the frame rotating with ~ωL, the magnetization is conserved.

For a hydrodynamic fluid, the spin current is given by

~Ji = −D
[
∂i ~M + µ ~M × ∂i ~M + µ ~M(µ ~M · ∂i ~M)

]
, 2.

where D = D0/(1+µ2M2) is an effective diffusion coefficient, and D0 is the bare diffusivity

(6, 7). The Leggett-Rice parameter µ arises from exchange interactions and specifies the

strength of the spin-rotation effect (see §2.1.2). For µ = 0 one recovers Fick’s law ~Ji =

−D0∂i ~M . For general µ 6= 0 this is replaced by the tensor equation ~Ji = −
←→
D ∂i ~M with

diffusivity tensor
←→
D = D[δαβ + εαβγµMγ + µ2MαMβ ]. Although the evolution equation is

nonlinear in ~M , it can be solved in experimentally relevant situations as shown below.

Even for isotropic D0, the diffusivity tensor has two independent components with dif-

ferent diffusion coefficients in the low-temperature limit. The gradient of the magnetization
~M = M~̂e can be decomposed into a change of polarization magnitude M and a change of

spin direction ~̂e,

∂i ~M = (∂iM)~̂e+M(∂i~̂e). 3.

In the first term, ∂i ~M is parallel to ~M and gives rise to a longitudinal spin current

~M : magnetization

~Ji: spin current in

the i spatial

direction, often

broken into ~J
‖
i , ~J⊥i

D0: bare spin

diffusivity

µ: Leggett-Rice
parameter

D: effective spin

diffusivity
←→
D : diffusivity

tensor, in Bloch

space

~J
‖
i = −D0∂i ~M 4.

independent of µ, with bare diffusivity D0. (This is seen from Eq. 2. where the second term

vanishes and the third gives µ2M2∂i ~M .) For a change of spin direction ~̂e, the magnetization

gradient ∂i ~M is perpendicular to ~M and gives rise to a transverse spin current

~J⊥i = −D[∂i ~M + µ ~M × ∂i ~M ] 5.

with reduced effective diffusivity D ≤ D0. For µ 6= 0 the transverse current precesses

around the local magnetization and exhibits the Leggett-Rice effect, discussed further in

§2.1.2.

2.1.1. Spin waves. Spin waves have been studied extensively in both Bose and Fermi gases

(21, 22, 24, 30–32, 40–52). Transverse spin waves arise from the identical spin rotation ef-

fect (ISRE, see §2.1.2 below). Equivalently, a single spin-polarized atom traveling through

a region of different spin polarization precesses and changes its internal spin state, in anal-

ogy to the Faraday effect. For a trapped gas in the nondegenerate regime, the acquired

phase accumulates over many passages through the gas and leads to anomalously large spin

segregation (22, 30, 44, 45).

The continuity equation 1. describes how the magnetization evolves for given spin cur-

rent, and one can combine it with the constitutive relation 2. for the spin current in

terms of the magnetization to obtain a closed evolution equation for the magnetization:

∂t ~M = ∂i
←→
D ∂i ~M + ~M × ~ωL. In the rotating frame and for small deviations around equilib-

rium ~M = ~M (eq) + δ ~M , one has to first order in δ ~M

∂t δ ~M = D[δαβ + εαβγµM
(eq)
γ + µ2M (eq)

α M
(eq)
β ]∇2δ ~M. 6.

With a plane-wave ansatz δ ~M ∝ exp (ik · r − iωt) one finds one longitudinal and two

~M(eq): equilibrium

magnetization

δ ~M : perturbation
from ~M(eq)

4 Enss and Thywissen



0.00

0.25

0.50

0.75

5.7
9.7

18
39

0 10
3040

50

20

time (ms)

0

0 2 4 6 8 10-2
-1
0

2
1

0.1

0.2

0

0.4

0.3

0.5
b

c

a

Figure 2

Transverse spin rotation. Time evolution of transverse magnetization Mxy observed through a

Ramsey sequence. a [from (24)]: Under-damped transverse spin waves in a weakly interacting 2D
Fermi gas (blue curves) are progressively more damped as interaction strength (inversely

proportional to ln(kF a2D)) increases. b,c [from (28)]: In the over-damped regime, spin rotation

modifies demagnetization dynamics. Here the case of tipping angle θ1 = 5π/6 and full initial
polarization is plotted. Dashed lines in b and c show γ = 0, and gray lines show steps of 0.2 up to

γ = ±1, where γ is the dimensionless Leggett-Rice parameter, see Eq. 19.

transverse excitations in spin space, so-called spin waves with frequencies

ω‖ = −iD0k
2 and ω⊥± = −iD(1± iµM (eq))k2 = −iDk2 ± µM (eq)Dk2. 7.

The longitudinal mode has frequency ω‖ independent of µ; it is purely diffusive and has

no dispersion (flat band). On the other hand, there are two transverse modes ω⊥± with

complex effective diffusivity Deff = D(1± iµM (eq)). Its real part D = D0/(1 + µ2(M (eq))2)

depends on µ and is responsible for dissipation and attenuation of spin waves. The imag-

inary part of Deff, instead, gives rise to reactive response and a quadratic spin-wave dis-

persion with curvature µM (eq)D in k space. Depending on the value of µM (eq), there is a

continuous crossover between the diffusive limit |µM (eq)| � 1 of nondispersing modes with

real diffusivity governed by the diffusion equation, and the opposite limit |µM (eq)| � 1

of dispersing spin waves which are only weakly attenuated (see Figure 2a). In the latter

case, the effective diffusivity Deff is nearly imaginary and describes the evolution under a

Schrödinger equation with (nearly real) effective mass meff = i/(2Deff) (17). This crossover

is reminiscent of a damped harmonic oscillator between the overdamped and oscillating

limits (see §2.2 below). For larger deviations δ ~M from local equilibrium, longitudinal and

transverse spin waves couple, see for instance (53, 54).

2.1.2. Leggett-Rice effect. Spin rotation in the strongly diffusive regime was first ana-

lyzed by Leggett and Rice (6, 7). In the presence of an exchange term µ 6= 0, the spin

current precesses around the local magnetization. This can be seen by re-writing 2. as
~Ji = −D0∂i ~M − µ~Ji × ~M. The second term is reactive (i.e., nondissipative), rotating the

spin current away from the direction of the magnetization imbalance and slowing magne-

tization decay. Both this slowing and the reactive term in the spin evolution are referred

to as the “Leggett Rice Effect” (LRE). A two-body perspective on the same effect is the

www.annualreviews.org • Spin Transport of Unitary Fermions 5



Identical Spin Rotation Effect (13–15), in which exchange scattering in the collision term

of a quantum gas rotates the spins out of their original plane in spin space. Note that

this quantum effect in binary collisions remains visible even when the gas is not quantum

degenerate. The perspectives have been shown to be equivalent in the weakly interacting

regime (19).

The LRE is illustrated most clearly by considering a spin-echo sequence in an external

magnetic field γd ~Hext = (ωL +αx3)ẑ along the spin z direction, with a gradient of strength

α = γdG along the spatial x3 direction. The initial z magnetization ~M = (0, 0,M) is rotated

by a θ1 pulse around the y axis into ~M = (M sin θ1, 0,M cos θ1) with finite transverse

magnetization Mx. Over time, the gradient winds the transverse magnetization into a spin

helix in the xy plane. After time t/2 a π pulse is applied, after which the helix is unwound

to give a spin echo at time t. Spin diffusion ruins the perfect re-alignment of spins and

reduces the strength of the echo ~M(t) at the end of the sequence.

α: frequency

gradient from

magnetic field

θ1: rotation angle of

initialization

spin-flip

The transverse magnetization is conveniently parameterized by the complex number

M̃xy = Mx + iMy, and similarly for the spin current Jixy = Jix + iJiy. The magnetization

evolves with local Larmor frequency ωL + αx3 as

∂tM̃xy + ∂iJixy = −i(ωL + αx3)M̃xy and ∂tMz + ∂iJiz = 0 . 8.

For the given protocol only transverse spin currents arise,

J⊥ixy = −D⊥[(1 + iµMz)∂iM̃xy − iµM̃xy∂iMz],

J⊥iz = −D⊥[∂iMz + µ Im(M̃∗xy∂iM̃xy)]. 9.

For homogeneous D⊥ and µ the solution for the longitudinal magnetization Mz(r, t) ≡Mz

remains constant in space and time (7). We make an ansatz for a uniform magnetization

in the rotating frame, M̃xy(r, t) = e−i(ωL+αx3)tMxy(t), and are left with a simple time-

evolution equation

M̃xy: Mx + iMy

Mxy: M̃xy in the

rotating frame

Ji,xy: Ji,x + iJi,y

∂tMxy = −D⊥(1 + iµMz)α
2t2Mxy . 10.

The transverse magnetization Mxy(t) = |Mxy(t)|eiφ(t) can be decomposed into real ampli-

tude |Mxy(t)| and phase φ(t), which satisfy

∂t ln |Mxy| = −D⊥α2t2 and ∂tφ = µMz∂t ln |Mxy| . 11.

The corresponding spin currents are

J⊥3xy = D⊥(1 + iµMz)iαtM̃xy and J⊥3z = D⊥µαt|Mxy|2 . 12.

J⊥3xy precesses around the local magnetization Mz and accumulates a phase φ(t), while J⊥3z,

which arises for µ 6= 0, is constant in space and has no observable effect. In general, the

effective diffusivity D⊥(t) = D⊥0 /(1+µ2(|Mxy(t)|2+M2
z )) itself depends on time through the

transverse magnetization. For µ = 0 where D⊥ = D⊥0 , or more generally for small tipping

angle and transverse magnetization |Mxy| �Mz, one finds the magnetization decay (7)

|Mxy(t)| = |Mxy(0)|e−D
⊥α2t3/3 = |Mxy(0)|e−(RM t)3/3(1+µ2M2

z ),

φ(t) = µMz ln(|Mxy(t)|/|Mxy(0)|) 13.

in terms of the bare diffusion rate RM = (D⊥0 α
2)1/3 which depends both on the diffusivity

and the gradient strength.

RM : magnetization
relaxation rate

6 Enss and Thywissen
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Figure 3

Spin dipole: a [from (55)]: Contour plots of the polarization and spin current density (arrows) in

the xz-plane, for a longitudinal spin dipole mode excited along z. The red dashed contour shows

where the density has fallen to 0.1 of the central value. b,c [From (56)]: A Fermi gas is prepared
by segregating the two spin components into two initially disconnected reservoirs at equilibrium

by means of a thin optical barrier with a waist of about 2µm (green). Spin dipole dynamics show

the local spin relaxation rate ~/τεF , plotted here as a function of 1/kF a for 0.31 ≤ T/TF ≤ 0.7.
Experimental points are obtained by fitting dynamics at t > 50 ms to the solution of the diffusion

model 15. A maximum in the local spin relaxation rate τ−1 corresponds to a minimum in the

global damping rate ΓSD. Lines are predictions from T-matrix kinetic theory, assuming the
nominal initial T/TF and allowing a ±20% temperature variation (shaded areas). These data and

Figure 1b indicate that the minimum τ occurs at moderate degeneracy and near-resonant
interactions.

In a spin-echo sequence, t/2 of winding and t/2 of un-winding yield a replacement

t3/3 7→ t3/12 in the magnetization decay; whereas the phase φ(t) keeps accumulating since

it is reversed synchronously with Mz. Equation 11. can be solved analytically (28) for

arbitrary transverse magnetization. At the spin-echo time,

|Mxy(t)| = |Mxy(0)|
√
η−1W (η exp[η − 2D⊥α2t3/3]) 14.

with the Lambert W function, the initial transverse amplitude η ≡ µ2|Mxy(0)|2/(1+µ2M2
z ),

and the real part of the effective diffusivity D⊥ = D⊥0 /(1 + µ2M2
z ). The behavior is

illustrated in Figure 2b,c. For small |Mxy(0)| it reproduces the Leggett solution 13. but

for η & 1 (large γ = µn/2 in the figure) the initial decay with D⊥(t = 0) = D⊥0 /(1 + η)

is much slower than the µ = 0 case and suggests an apparent diffusivity slowed down by

a factor 1/(1 + η), emphasizing the need to determine µ for accurate determination of D⊥0
from magnetization dynamics. For larger times, the magnetization decay deviates from the

cubic exponential form and accelerates as |Mxy| itself decays.

2.2. Longitudinal trap dynamics

Most experiments with ultracold atoms are performed in an external trapping potential,

that is to first approximation harmonic. The trapped gas has characteristic collective modes

of density, where spin-up and -down move in phase, and spin, where they oscillate out-of-

phase (57). In fact, the longitudinal component of the spin hydrodynamic equations depends

www.annualreviews.org • Spin Transport of Unitary Fermions 7



strongly on local density (55, 58); in contrast, the transverse component is insensitive to

pure density gradients when the mean-free path `mfp is shorter than the cloud size (59).

Therefore, even for a trapped gas, transverse spin transport in a strongly interacting Fermi

gas probes essentially local properties (see Figure 4b). In the following, we focus on the

more significant effects of a trap on longitudinal transport.

Collective spin dipole motion is observed experimentally by separating up- and down-

spin clouds and then letting them collide, see Figure 3 (25, 56). After initial bounces,

the clouds merge through longitudinal spin diffusion. This is exemplified by the spin-dipole

mode shown in Figure 3a, which determines the motion of the relative position of the

centers of mass d(t) = 〈z↑(t) − z↓(t)〉 of the spin-↑ and ↓ clouds, and follows the equation

of a damped harmonic oscillator:

d̈(t) + ḋ(t)/τ + ω2
zd(t) = 0, 15.

where ωz is the trapping frequency and τ a characteristic local relaxation time for longitu-

dinal spin imbalance. The complex solution ω =
√
ω2
z − 1/4τ2 + i0 − i/2τ = ωSD − iΓSD

is characterized by the spin-dipole frequency ωSD and its global spin drag rate ΓSD. In

the hydrodynamic limit ωzτ � 1 one has overdamped dynamics with ωSD = 0 and small

drag rate ΓSD = ω2
zτ . In the collisionless regime ωzτ � 1 one finds almost undamped

oscillations ωSD =
√
ω2
z − 1/4τ2 → ωz with global drag rate ΓSD = 1/2τ (see Figure 3c).

Measurement of the spin-dipole mode gives thermodynamic information on the Fermi gas

because ω2
SD = N/m

∫
dr z2χ is sensitive to the equation of state and in particular the trap

integrated spin susceptibility χ(T, n, a) (60), or, for a polarized gas, the effective quasipar-

ticle interaction (39, 61). Furthermore, the spin-drag rate ΓSD determines longitudinal spin

diffusion at late times.

d(t): c.m.

displacement of

spin-↑ and spin-↓

ωz : trap frequency

along excitation

τ : local relaxation
time

ωSD: spin-dipole

frequency

ΓSD: global damping

rate

The collective trap dynamics are governed by hydrodynamic evolution in the dense trap

center, but collisionless dynamics in the dilute outer regions of the trap. It is a challeng-

ing task to extract local transport coefficients from global measurements of trap collective

modes: an accurate determination requires not only knowledge of the local density profile

and thermodynamic properties (via the local density approximation), but also of the local

velocity profile. Inhomogeneous spin diffusion and spin drag have been computed at high

temperature by an extension of the hydrodynamic diffusion equation to an inhomogeneous

diffusion coefficient (55, 62) and by molecular dynamics simulation of the Boltzmann equa-

tion (63, 64): at high T , fast diffusion occurs along the surface of the cloud and avoids

the nondiffusive core. In the quantum degenerate regime diffusion can only occur via the

cloud center and is much slower (58). With an appropriate density-dependent diffusivity,

spin hydrodynamic equations can interpolate consistently between the dense and dilute

regimes (65). In a more general case when both spin components have slightly different

mass or experience slightly different trapping potentials, the center-of-mass mode decays

very slowly while the different spin clouds experience almost perfect drag (66). For these

reasons, the global minimum measured to be ∼ 6~/m in Figure 1a is interpreted to imply

a local minimum close to ∼ ~/m at peak density (for instance, see Figure 4a).

3. TRANSPORT COEFFICIENTS

The spin transport coefficients D0 and µ can be computed explicitly from microscopic

models of ultracold quantum gases. Specifically, one is interested in how the diffusivity

D0(n, T, a) depends on spin component densities n↑/↓, temperature T , and scattering length

8 Enss and Thywissen
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Inhomogeneity effects on spin transport in a unitary Fermi gas. a [from (25) and (67):] Longitudinal diffusivity D‖

vs. reduced temperature T/TF is compared to Luttinger-Ward calculation (solid red line) and the universal T 3/2

high-temperature behavior, D‖ = 1.1 (T/TF )3/2~/m from kinetic theory 18.. The experimental data (25) (blue squares)

for the trapped gas are rescaled down by a factor of 4.7 to compensate for the effect of the trapping potential. At low

temperature, the inferred local diffusivity approaches a constant value of 1.34(6)~/m. b [from (28) and (59):] Transverse
diffusivity D⊥0 vs. reduced temperature T/TF is compared to uniform calculations (black dashed line) and calculations

that include a trap (red solid line). The trap effects are relatively minor, compared to D‖, near unitarity; but become

significant when `mfp becomes comparable to the system size.

a. For trapped systems, one often computes the transport properties first for a uniform

system and then employs a local-density approximation to define a local diffusivity D0(r) =

D0

(
n(r), T (r), a(r)

)
as input for the hydrodynamic equations 2. (25, 55, 59, 65).

First we argue that the values of transport coefficients for ultracold Fermi gases in fact

determine universal scaling functions which apply to spin transport in generic short-range

interacting Fermi gases. Then we review spin transport measurements and calculations both

for coherent quasiparticle transport and for incoherent transport near a quantum critical

point. Finally, we discuss universal bounds for transport coefficients.

3.1. Universality and scaling

Universality in dilute interacting 3D Fermi gases appears in different forms: for a short-

range interaction |nr3
e | � 1 the low-energy scattering is parametrized by the single s-wave

scattering length a, and thermodynamic functions have a universal scaling form depending

on the dimensionless interaction parameter λT /a, as long as all scales are larger than |re|.
However, the specific scaling form and in particular the scaling exponents depend on the

region of the phase diagram: for small attractive a < 0 the scaling functions are governed by

the weakly coupled BCS fixed point of a dilute gas, while for strong binding with a > 0 the

Fermi gas falls into the universality class of a dilute Bose gas of molecules with weak repulsive

interaction (68, 69). At both weak coupling fixed points, the correlation length diverges

much faster than the particle spacing. Remarkably, at unitarity a−1 = 0 there is a new,

a: s-wave scattering
length

re: Effective range of

the interaction

β: (kBT )−1

λT :
√

2π~2β/m is
the thermal length

kF : Fermi wave

vector

strongly interacting and nonperturbative fixed point, where the correlation length diverges

along with the particle spacing as n → 0. This unitary fixed point at zero temperature

and density is a quantum critical point, which governs the whole phase diagram of the

strongly interacting Fermi gas. Near the fixed point, the scaling functions are not just

generic functions of λT /a but in addition their (anomalous) scaling dimensions are known,

for instance the anomalous scaling of the three-body decay near unitarity (69).

In the strongly interacting Fermi gas, both the thermodynamic and the dynamical
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(transport) properties exhibit universal scaling behavior of the form f(T, µ, a−1, h) =

Tαfs(βµ, λT /a, βh) in terms of a temperature scaling exponent α and a dimensionless

scaling function fs which depends only on dimensionless ratios. In a canonical descrip-

µ: (µ↑ + µ↓)/2
chemical potential,

thermodynamic

conjugate to particle
number

h: (µ↑ − µ↓)/2
differential chemical
potential,

thermodynamic

conjugate to
magnetization

tion at fixed total density n = k3
F /(3π

2) and Fermi energy εF = kBTF = ~2k2
F /2m, the

dimensionless scaling functions can also be expressed as fc(T/TF , (kF a)−1, h/εF ).

Once these universal scaling functions have been measured, or computed, for the

strongly interacting ultracold Fermi gas, universality affords to make predictions about

spin transport in diverse physical situations at vastly different energy scales, such as the

strongly interacting fermionic neutron matter in the crust of neutron stars (70, 71). Beyond

universality, the vicinity to the unitary QCP further constrains the form of the scaling func-

tions, for instance the absence of anomalous temperature scaling in the 3D shear viscosity

η = ~λ−3
T fη. Together with the entropy density s = kBλ

−3
T fs, this implies a finite limit for

the shear viscosity to entropy ratio η/s = (~/kB)fη/fs as T → 0.

3.2. Quasiparticle transport

At high temperature T � TF , kinetic theory and the Boltzmann equation for the atomic

degrees of freedom (see §3.2.1) describe the transport processes as a function of n, T, a; this

is justified in a virial expansion to a certain order in the fugacity as a small parameter.

A Fermi gas at low temperature, instead, is well described by Fermi liquid theory (see

§3.2.2) and the Landau-Boltzmann equation for long-lived fermionic quasiparticle degrees

of freedom (72). In the normal state the quasiparticles correspond to dressed atomic states,

while in the superfluid state they are Bogoliubov quasiparticles. In either limit, the kinetic

paradigm relates the diffusivity in d dimensions

D0 = v`mfp/d = v2τD/d 16.

to a typical quasiparticle velocity v and to the mean free path `mfp, assuming that `mfp is

much larger than the particle spacing. Hence, the diffusivity is large both in the high-

τD: Diffusive

scattering time, or
transport time

`mfp: vτD, mean free

path

σsc: scattering

cross-section

and low-temperature limits, when spin is transported efficiently though weakly interacting

quasiparticles with a large mean free path.

At intermediate temperatures near the superfluid-to-normal phase transition in a

strongly interacting fluid, the mean free path extrapolates to the order of the particle

spacing and the quasiparticle picture breaks down (see §3.3). Transport is then dominated

by incoherent relaxation at a rate given by the temperature, kBT/~, and the diffusivity

attains minimum values of order D0 ' ~/m (see §3.4).

3.2.1. Kinetic theory at high temperature. In the nondegenerate regime at high temper-

ature, kinetic theory based on the Boltzmann equation describes spin transport and gives

a unique value for the diffusivity in both the longitudinal and transverse channels, and for

arbitrary polarization of the Fermi gas (73). This is different from the Bose gas, where a

difference in scattering lengths leads to anisotropy of the diffusivity in the nondegenerate

regime (74). In the dilute 3D Fermi gas the diffusive scattering time is (75, 76)

τD =
3π~β

4
√

2nλTσsc

, where
σsc

λ2
T

= 1− x− x2ex Ei(−x) ≤ 1 17.

and the scattering cross section σsc depends on the dimensionless ratio x = β(~2/ma2) =

λ2
T /2πa

2 of the interaction energy scale to temperature, and Ei(−x) denotes the exponential
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integral. Important limits are the unitary Fermi gas (UFG) with resonant interaction

λT /a → 0 (x = 0) and thermally limited cross section σsc = λ2
T which yields τUFG

D =

3π~β/4
√

2nλ3
T , as well as the weakly interacting limit |a| → 0 with σsc = 4πa2 and τD =

τUFG
D (λ2

T /4πa
2). Together with the thermal velocity v2/d = kBT/m one obtains the high-

temperature diffusion coefficient

D3D
0 =

kBTτD
m

=
3π~

4
√

2m

1

nλ3
T

λ2
T

σsc
=

9π3/2~
32
√

2m

(
T

TF

)3/2
λ2
T

σsc
. 18.

The diffusivity has units ~/m and scales inversely with the phase-space density nλ3
T =

(8/3
√
π)(T/TF )−3/2. At unitarity D0 ≈ 1.1(~/m)(T/TF )3/2 grows as T 3/2 for high

temperature at fixed density (see Figure 1a and 4a). At weak coupling, D0 ≈
1.1(~/m)(kF a)−2(T/TF )1/2. Both τD and D0 grow as σsc decreases for weaker coupling

or higher temperature; this is reflected in a smaller global damping rate ΓSD = 1/2τD of

trap collective modes 15. toward the collisionless limit.

The dimensionless Leggett-Rice parameter

γ = µn/2 = −τDnW/~ 19.

is given in terms of the effective spin-spin interaction W , which depends on the real part of

γ: dimensionless

Leggett-Rice

parameter

the many-body scattering T matrix (59, 73, 76). At high temperature, the T matrix T =

−4π~2f(k)/m is given by the two-particle scattering amplitude f(k) = −1/(a−1 + ik). In

the unitary limit f(k) = i/k is purely imaginary and γ ∝ Re f = 0 vanishes without medium

scattering, while at weak coupling f(k) = −a yields W = 4π~2a/m and γ = −3λT /(8
√

2a),

which grows toward weaker coupling. The Leggett-Rice parameter is negative for repulsive

interaction (and vice versa).

In the 2D Fermi gas the diffusion time τD is given in terms of the effective 2D scattering

cross section σsc as

τD =
π~β

2nλTσsc
,

σsc

λT
=
λ4
T

2

∫ ∞
0

dk k3 exp(−k2λ2
T /2π)

ln2(k2a2
2D) + π2

' π2

ln2(2βεB/3) + π2
≤ 1, 20.

where εB = ~2/ma2
2D > 0 is the binding energy of the two-body bound state which is

always present in the interacting 2D Fermi gas (77, 78). With the phase-space density

nλ2
T = 2TF /T for the two-component Fermi gas at high temperature, the diffusivity is

D2D
0 =

kBTτD
m

=
π~
4m

T

TF

(
1 +

ln2(2εB/3kBT )

π2

)
. 21.

Here D2D
0 is proportional to ~/m and grows linearly with temperature, up to logarith-

mic corrections contained in the cross section σsc. The diffusivity reaches a minimum

value D2D
0 ≥ π~T/(4mTF ) in the BEC-BCS crossover when a ' λT , and grows log-

arithmically toward weak coupling |a| → 0. The Leggett-Rice parameter approaches

γ ' − ln(2εB/3kBT )/π in the high-temperature limit.

Toward lower temperature quantum statistics start to play a role: in a fermionic scat-

tering process the outgoing scattering states must be unoccupied, i.e., outside the Fermi

surface. This Pauli blocking reduces the scattering phase space at low temperature and leads

to longer scattering times, and larger diffusivities than expected from the high-temperature

limit (75). At the same time, the medium scattering cross section for the remaining states
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is enhanced (76), and the competition between smaller phase space and stronger medium

scattering can even reduce the diffusivity below the classical value within kinetic theory, cf.

Figure 3 in Ref. (78). As one enters the quantum critical regime where the thermal length

approaches the particle spacing, reliable results for this competition can be obtained from

strong coupling approaches (see §3.3).

3.2.2. Fermi liquid theory at low temperature. The study of spin transport in spin-polarized

quantum systems has a long tradition in 3He, hydrogen, and other systems (4–11): the

quantum statistics of identical particles and the noncommutativity of spin operators leads

to two major effects, first a strong mean field which gives rise to spin waves and the Leggett-

Rice effect, and second a giant increase of transport coefficients with polarization P = M/n

due to the Pauli principle. For weakly interacting systems (|na3| � 1) these effects are

understood in kinetic theory at arbitrary temperature; in a degenerate polarized gas the

difference of Fermi velocities of the majority and minority components leads to an anisotropy

of the bare diffusion tensor in the direction along (D
‖
0) and perpendicular (D⊥0 ) to the

magnetization (18, 73). However, nonlocal corrections appear already at the order of the

mean field ~γP/kBTτD ∼ (kF a)(TF /T )P . Therefore, strongly interacting Fermi liquids

(|kF a| & 1) pose a challenge for Fermi liquid theory. While longitudinal processes are still

well described, transverse dynamics involve nonlocal interaction and imaginary off-shell

scattering amplitudes beyond standard Fermi liquid theory.

P : M/n polarization
of a spin-half Fermi

system, between 0

and 1.

Let us first consider unpolarized Fermi liquids with isotropic diffusion, and then discuss

the polarized case. At low temperature T � TF in a normal Fermi liquid the fermionic

quasiparticle excitations near the Fermi surface become long-lived and lead to a large trans-

port time τD ∝ T−2 and diffusivity (5–7)

Fermi Liquid
parameters:
Mean-field response
of an interacting

Fermi gas

F s0 : Scalar potential
from a density

fluctuation

F s1 : Vector potential
from a mass current

Fa0 : Effective field

from a polarization

Fa1 : Spin vector

potential from a spin

current

D0 =
v2
F

3
(1 + F a0 )τD ∝ T−2 22.

in terms of the Landau parameters F s,a
` (72). Also the transport time can be expressed

approximately in terms of Landau parameters; for the unitary Fermi gas these have been

determined experimentally and yield D0 ≈ 0.31(~/m)(T/TF )−2 (75). A generalization to

the polarized unitary Fermi gas was given in (79).

In two dimensions the diffusivity acquires additional logarithmic corrections, D2D
0 ∝

1/[T 2 ln(1/T )] (80). The phase space for scattering in 2D is severely restricted such that

only scattering angles 0 and π are allowed, hence the kinetic equation is exactly solvable and

can be expressed in terms of Landau parameters without approximation (81) – an elegant

example of an exact expression for diffusivity.

While in an unpolarized Fermi liquid the transverse spin diffusivity D⊥0 is identical to

the longitudinal D
‖
0 , in the polarized case they differ dramatically: instead of diverging as

D
‖
0 ∝ T−2 for low T , D⊥0 saturates toward a finite value as (18, 73, 82)

D⊥0 ∝
1

T 2 + T 2
a

23.

with an anisotropy temperature Ta ∼M2 that remains finite in the limit T → 0 and grows

Ta: anisotropy

temperature, below
which D‖ and D⊥0
are distinct

with polarization. This is due to the fact that all states between the majority and minority

Fermi surfaces contribute to scattering at low energy, hence the scattering phase space and

the transverse diffusive transport time τ⊥ remain finite in the zero temperature limit, and
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the diffusion coefficients read (18)

D
‖
0 =

τ‖
3

nv2
↑v

2
↓

n↑v2
↑ + n↓v2

↓
and D⊥0 =

τ⊥
5

n↑v
2
↑ − n↓v2

↓

n↑ − n↓
24.

in terms of the spin component densities n↑,↓ and Fermi velocities v↑,↓. This anisotropic

diffusion leads to a modified constitutive relation replacing 2. in the hydrodynamic Leggett-

Rice equation,

~Ji = − D⊥0
1 + µ2M2

[
(∂i ~M)T + µ ~M × ∂i ~M

]
−D‖0(∂i ~M)L, 25.

where the longitudinal projection of the magnetization gradient (∂i ~M)L = M̂(M̂ · ∂i ~M)

and the transverse (∂i ~M)T = ∂i ~M − (∂i ~M)L. Equation 25. applies both in the hydrody-

namic and collisionless limits as long as |µM | � 1. This modified LR equation has been

implemented to simulate the magnetization dynamics of the trapped Fermi gas (59). In a

related effect, the attenuation of transverse spin waves in a polarized paramagnet (D ∼ k2)

is much stronger than in the ferromagnetic Heisenberg model (D ∼ k4, see (83)) due to the

presence of a spin current even at T = 0 (84).

There has been a theory argument that long wavelength transverse spin currents were

undamped at T = 0 (53), but inclusion of the collision term again introduces finite scattering

(54), and in dilute helium mixtures a finite D⊥ for low T in equation 23. was confirmed

experimentally (85). For ultracold fermions at strong interaction, the temperature and

polarization dependence of the transverse and longitudinal diffusivities has been computed

within kinetic theory using the many-body T matrix which incorporates medium scattering

(59, 76). This makes it an interesting proposition to measure D
‖
0 and D⊥0 in ultracold Fermi

gases, if one can reach low enough temperatures, and compare to theoretical predictions.

Finally, the Leggett-Rice parameter in a Fermi liquid is given by (7)

γ = −2nτ⊥
~NF

F a1 /3− F a0
1 + F a1 /3

= −2λ
D⊥0
~/m∗

26.

in terms of the transverse scattering time τ⊥, while the density of states NF yields

NF v
2
F /3 = n/m∗. The effective interaction W in 19. is captured by the dimensionless

exchange interaction parameter

λ =
1

1 + F a0
− 1

1 + F a1 /3
, 27.

which is positive for repulsive and negative for attractive effective quasiparticle interaction.

At weak coupling to first order in g = 2kF a/π, F a0 = −g and F a1 = 0 give λ = 1/(g−1 − 1)

which has the correct asymptotics but diverges at strong coupling |g| ≥ 1 (18, 19). In

order to experimentally determine λ from Eq. 26., one extracts the bare diffusivity D⊥0
from the magnetization decay 14. and the LR parameter γP = µM/2 from the Ramsey

phase φ in 13. to find λ from their ratio, λ = −~γ/2m∗D⊥0 . In the 3D unitary Fermi gas

at low temperature a value of λ ≈ −0.2 was measured, which yields the first experimental

determination of the spin vector potential parameter F a1 ≈ 0.5 (28); even larger values for

λ are found in 2D (29). Furthermore, the sign change of λ reveals at which point in the

BEC-BCS crossover the effective interaction turns from repulsive to attractive, because the

direction of spin rotation depends on an effective spin-spin interaction (see Eq. 27).
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3.2.3. Symmetry broken phases. At low temperature the attractive Fermi gas enters a su-

perfluid (SF) phase. Mesoscopic transport experiments with near-unitary ultracold SF

have observed suppression of spin conductance, consistent with a spin insulator (86–

89). The low-energy phonon excitations of the superfluid are responsible for particle

and mass transport, while spin transport occurs exclusively via thermal fermionic exci-

tations. Here, we shall follow the derivation by Einzel (90). The fermionic excitations

are Bogoliubov quasiparticles with dispersion Ek =
√
ξ2
k + ∆2(T ) and isotropic gap pa-

rameter ∆(T ) for s-wave pairing. Assuming that the external magnetic field is small,

ωL � ∆, and does not destroy superfluidity, the Bogoliubov quasiparticles follow a Fermi

distribution. The thermal occupation number is exponentially suppressed at low tem-

perature, nqp(T ) = 2
∑
k f(Ek)

T→0−→ 2 ln 2NF kBTY0(T ) in terms of the Yosida function

Y0(T ) = −
∫∞
−∞ dξk (∂f(Ek)/∂Ek)

T→0−→
√

2π∆/kBT exp(−∆/kBT ), where f(E) is the

Fermi distribution and NF the density of states at the Fermi surface. Importantly, the

Bogoliubov quasiparticle lifetime from 2-body collisions is exponentially enhanced by the

same factor, τD(T ) ∝ 1/Y0(T ), and hence the spin conductivity σs has a finite limit for low

T . In the superfluid phase the magnetic susceptibility χ(T ) = χ0(T )/[1 + F a0 χ0(T )] with

χ0(T ) = Y0(T ) is again exponentially small, and hence the spin diffusivity (90)

DSF
0 =

v2
rms

3
[1 + F a0 Y0(T )]τD(T ) ∝ exp(∆/kBT ) 28.

is finite at Tc and grows exponentially for T → 0. In contrast, a pseudogap ansatz finds the

spin conductivity exponentially suppressed at low T , while the diffusivity decreases moder-

ately below Tc (91, 92). The Leggett-Rice effect applies also to Bogoliubov quasiparticles:

for s-wave pairing, isotropic bare diffusivity gives rise to anisotropic effective diffusion in

presence of the exchange interaction. In contrast, in the A phase of 3He with p-wave pairing

the Leggett-Rice effect is present already by the tensor structure of the bare diffusivity even

without exchange interaction (90).

On the other hand, a sufficiently repulsive Fermi liquid at low temperature exhibits

an instability toward a ferromagnetic (FM) state, which is again a spin insulator. Just

above Tc, the spin drag rate 1/τD(T ) − 1/τD(Tc) ∝ (T − Tc) ln(T − Tc) becomes small as

T ↘ Tc � TF approaches the critical temperature from above (93). With τD(Tc) finite,

the spin susceptibility χ(T ) ∝ 1/(T − Tc) determines the spin diffusivity

DFM
0 (T ) = nτD/mχ ∝ (T − Tc)κ, 29.

which vanishes near Tc with exponent κ = 1 at mean-field level. Close to the transition,

critical fluctuations in the universality class of the Heisenberg ferromagnet give κ = (1 −
η)ν/2 in terms of the static critical exponents η and ν.

Inside the FM state (F a0 < −1), the sample is spontaneously magnetized without exter-

nal field. In this regime, low-energy excitations are dispersing spin waves with a negative

damping rate ReDFM
0 ∝ −|M(T )|2 (94). Spin waves are thus found to be dynamically

unstable toward transversal inhomogeneous magnetization perturbations, which might ren-

der a pure Fermi liquid description inapplicable. With ultracold fermions this regime can

also be approached from the fully polarized limit by studying the transport and scattering

properties of a single mobile impurity, the Fermi polaron (39, 56, 61).
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3.3. Quantum critical transport

In the strongly interacting 3D Fermi gas, scaling is governed by a quantum critical point

(QCP) at T = 0, µ = 0, a−1 = 0 and h = 0 (68, 69, 95) introduced in §3.1. Deviations

from the QCP to finite values of T , µ, a−1 and h are relevant perturbations, which change

the properties of the Fermi gas according to critical scaling functions f(T, µ, a−1, h). Uni-

versality means that f depends only on these relevant perturbations and no other system

parameters in a whole neighborhood of the QCP, which in the case of the dilute Fermi gas

extends up to the microscopic van-der-Waals scale Evdw = ~2/m`2vdw (69).

Quantum Critical
Point: Conditions in

which a phase

transition occurs at
zero temperature.

The unitary Fermi gas has a low-temperature superfluid and a high-temperature normal

Fermi liquid phase. In the T -µ phase diagram at unitarity a−1 = h = 0, the superfluid

phase boundary βµc ≈ 2.5 (96, 97) separates the superfluid state βµ > βµc from the

normal state for βµ < βµc. The normal state crosses over from a dilute classical gas at

βµ . −1 to a quantum degenerate gas at βµ & −1. In the quantum critical region −1 .
βµ < βµc above the QCP, many low-energy critical fluctuations are excited thermally and

dominate the physical response and the scaling functions. In this region the thermal length

λT is comparable to the particle spacing n−1/3, hence thermal and quantum effects are

equally important (68). Due to abundant quantum critical fluctuations, a local perturbation

relaxes generically at a rate τ−1 . kBT/~ determined only by temperature and the Planck

constant and not by microscopic system parameters, with a universal coefficient of order

unity (68, 98). This applies to relaxation of any nonconserved quantity such as heat,

shear stress, or spin current (however, see (99) for conserved spin current in 2D). Instead,

the conserved particle number or momentum current are governed by the much slower

hydrodynamic evolution. In particular, for the nonconserved spin currents the transport

scattering times can be expressed as universal functions

planckian dissipation:
Relaxation on the
fast time scale

~/kBT

τ‖,⊥ =
~

kBT
f‖,⊥(βµ, λT /a, βh), 30.

and similarly for the dimensionless Leggett-Rice parameter γ = fγ(βµ, λT /a, βh).

The Einstein relation gives the longitudinal diffusivity D‖ = σ‖/χ‖ as a ratio of spin

conductivity σ‖ = (1/~λT )fσ(βµ, λT /a) and static spin susceptibility χ‖ = (β/V )〈(N↑ −
N↓)

2〉 = βλ−3
T fχ(βµ, λT /a) in terms of dimensionless scaling functions, such that

Spin conductivity: σ

Spin susceptibility: χ

Einstein relation:
D = σ/χ

D‖ =
σ‖
χ‖

=
2π~
m

fσ
fχ
. 31.

The dynamical longitudinal spin-current correlation function (67)

gσ(t) = i

∫
dx
〈
[jz↑ − jz↓(x, t), jz↑ − jz↓(0, 0)]

〉
32.

becomes a universal scaling function gσ(βµ, λT /a, t) = (1/~2β2λT )Φσ(βµ, λT /a, t/~β) near

the quantum critical point, where time is expressed in units of the thermal time scale ~β.

The derivation of transport bounds below assumes that gσ is finite in the zero-range limit,

i.e., that the scaling function has no anomalous dimension, as found by explicit calculation in

the zero-range model (67). Although the frequency dependent spin conductivity of the zero-

range model has an anomalously slow decay for large frequency as ω−3/2 in 3D (67, 100), it

satisfies the usual spin f-sum rule
∫
dω σs(ω)/π = n/m (101). Then by the Kubo formula,

the longitudinal spin conductivity is given by (69)

σ‖(βµ, λT /a) =
1

~

∫ ∞
0

dt t gσ(βµ, λT /a, t) =
fσ
~λT

, fσ =

∫ ∞
0

dy yΦσ(βµ, λT /a, y) 33.
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in terms of rescaled time y = t/~β.

Explicit computations of these scaling functions in the quantum critical region are com-

plicated by the absence of a small expansion parameter. Results for D‖ have been reported

from a pseudogap ansatz (91), from a self-consistent conserving Luttinger-Ward approach

(67), by quantum Monte Carlo (102), and by expanding in artificial small parameters at

strong coupling, such as a 1/Nf expansion in the number of fermion flavors Nf (97). Com-

parison with experiment is reported in Figure 4a.

When approaching a SF or FM phase transition from the normal state, critical fluctua-

tions lead at the same time to enhanced single-particle scattering and reduced single-particle

density of states. Their effect is to increase the spin relaxation rate 1/τ‖, and reduce the

diffusivity D‖ approaching the transition (93, 102–104).

3.4. Transport bounds

As shown above, the spin diffusivity D
‖
0 becomes large both in a nondegenerate gas at high

temperature (Eq. 18.) and at low temperature (Eq. 28., see also discussion in (69, 90, 94)).

In between, there must be a minimum value where spin diffusion is slowest. Experimental

results support this: for the 3D unitary Fermi gas, a minimum value D
‖
0 ' 1.3~/m is

observed in the quantum degenerate regime (25) at T/TF ' 0.5; similarly, in the transverse

channel D⊥0 ' 2.3~/m is observed (28) at T/TF ' 0.2 (see Figure 4). This is an example

of a transport bound where quantum mechanical scattering imposes a lower bound on a

transport coefficient, setting a quantum limit of diffusion in the absence of any scale in the

problem apart from ~ and the particle mass m.

Such a bound is reminiscent of the conjectured lower bound for the ratio of shear

viscosity and entropy density, η/s ≥ ~/(4πkB), which corresponds to minimal friction or

“perfect fluidity”, the closest any real fluid can come to being an ideal fluid (105). In

fact, several strongly interacting quantum fluids come close to this bound, and the unitary

Fermi gas has the lowest viscosity η/s & 0.5~/kB of any nonrelativistic fluid found so far,

corresponding to a shear diffusion rate Dη = η/mn & 0.5~/m (69, 106).

Within kinetic theory, the diffusivity is D0 = v`mfp/d, where v ' vF = ~kF /m in the

quantum degenerate regime. The Mott-Ioffe-Regel (MIR) limit stipulates that the mean free

path `mfp & 1/kF is bounded from below by the particle spacing in the absence of any other

length scale, which therefore could be saturated at strong coupling in the unitary regime

where a−1 → 0. This argument would suggest a quantum bound D0 & ~/m (25), as found

above. Kinetic theory, however, assumes the existence of well defined quasiparticles, which

is not guaranteed near the superfluid transition where the minimum is reached. Instead,

transport minima appear in the quantum critical regime above a zero-density quantum

critical point §3.3. They follow from the universality of the scaling functions and amplitude

ratios and make no reference to the mean free path, which is not well defined in this regime

(69).

The minimum D‖ & 1.3~/m is reached near Tc in the quantum critical regime at

βµ ' 0.3 (67, 69), see Figure 4a. In this region, the spin conductivity and susceptibility

are only known numerically from Luttinger-Ward (67), pseudogap (91) and quantum Monte

Carlo computations (102, 107). While the spin susceptibility in the unitary Fermi gas varies

only slowly with temperature χ‖ ' 0.4χ0 above Tc for Tc < T . 0.5TF in terms of the

susceptibility χ0 = 3n/2εF of the ideal Fermi gas at zero temperature (67, 107), it drops

steeply below Tc. Equivalently, the spin conductivity exhibits a minimum σ‖ & 0.8~n/mεF
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above Tc (67), which corresponds to a maximum in the local spin drag rate 1/τ‖ = n/mσ‖
where D‖ = (v2

F /3)(χ0τ‖/χ‖). Instead, other QMC and pseudogap calculations find that

χ‖ is suppressed already above Tc for T . 0.25TF by a pseudogap effect (91, 102); the

spin drag rate τ−1
‖ then grows toward lower temperatures also below Tc and leads to a spin

diffusivity D‖ ' 0.8~/m near T ' 0.1TF (102). Measurements of longitudinal diffusion in

the SF phase might resolve this question.

For the homogeneous unitary Fermi gas in the quantum critical regime, the particle

spacing is the only independent length scale in the system (the thermal length is comparable

and at most a factor of three larger in the temperature range Tc < T . TF above a high-

temperature superfluid with Tc ' 0.16TF (96)). Hence, the diffusivity minimum D & ~/m
together with a maximum susceptibility χ . n/εF corresponds to a maximum drag rate

τ−1
‖ . εF /~ and a minimum transport time τ‖ & ~/εF and conductivity σ‖ & ~n/mεF

(all these bounds are equivalently expressed in terms of thermal length λT and β). In this

strongly interacting regime there is no separation of scales which would allow expansions

in a small parameter, and no proper quasiparticles exist. Indeed, the absence of well

defined quasiparticles appears to be a prerequisite for having transport bounds because if

all excitations were long-lived, the transport time τ would also be large. For longitudinal

diffusion a transport minimum occurs near Tc because both the high-T nondegenerate and

the low-T superfluid limits have well defined quasiparticles. This is remarkably different for

transverse diffusion, which exhibits finite scattering down to zero temperature, and might

therefore diffuse very slowly in the entire range T � TF .

Quantum-limited (or “planckian”) relaxation rates are also inferred from conductivity

of strongly correlated electronic systems and heavy-fermion compounds in regimes of T -

linear resistivity (108). For electrical transport in metals, one can distinguish coherent and

incoherent transport (109): for coherent transport the electrical current is almost conserved

and its slow decay is governed by non-universal, material-specific properties such as lattice

structure and disorder; in this case no universal bounds are expected. Incoherent transport

arises when no quasiparticles exist due to strong electron interaction and the current decays

fast: then its decay rate is governed by universal properties of strongly interacting quantum

systems, and one obtains universal bounds. Spin transport in a strongly interacting Fermi

gas clearly falls into the second category because there are no good quasiparticles, and

spin current is not conserved since it decays generically by interaction. Spin transport

in ultracold fermions can therefore explore universal incoherent spin conductors and their

diffusion bounds.

Finally, we note that an upper bound on local diffusivity D . v2τeq is obtained when

demanding that diffusive motion after local equilibration, t & τeq, remains inside the Lieb-

Robinson light cone |x| < vt of entanglement spreading (110).

4. DISCUSSION AND CONCLUSION

We conclude with a discussion of the broader significance of spin transport bounds and

open questions raised from the theory and observations of spin transport.

Transport bounds have been studied primarily without optical lattices in ultracold

atoms. Bridging between these studies and materials would be further stud-

ies of spin transport (111–113) and charge transport (114, 115) of strongly

interacting fermions in optical lattices. A lattice breaks the scale invariance of the

unitary Fermi gas. In some limits, transport bounds may not apply: for instance, applying
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extrinsic disorder potential can induce a localized phase in which diffusivity would have no

lower bound. Similarly, low-temperature phases of lattices are insulating, and known to

violate metallic conductivity bounds. From studies in materials, it has long been known

that the MIR limit can be violated if scattering by other degrees of freedom introduces

new length scales (effective range, lattice constant, localization length, etc.) and separate

conditions for unitary scattering. For example, in bad metals (116) the transport scattering

time and the diffusivity saturate at high temperature when the mean free path reaches the

lattice constant, but the resistivity grows linear in T beyond the MIR limit by decreasing

carrier density (117). By comparison, spin conductivity of fermions in an optical lattice

σ ∼ t/U~ parametrically violates the MIR limit σ0 ' 1/~ for large Hubbard interaction

U/t, but at the same time the spin diffusivity D & ~/ms is bounded from below with the

effective mass ms = mU/t of spin excitations (113).

Beyond conductors, an open question is the applicability of transport bounds to

spin-insulating phases, such as superfluids or ferromagnets. Spin-insulating behavior has

been recently observed in the SF regime(86–89), but local spin transport bounds have yet to

be explored. Measurements of longitudinal spin diffusivity, conductivity, and susceptibility

in the SF phase would test the wide range of predictions from theory (67, 91, 102, 107) as

discussed in §3.4. Also in the deeply degenerate regime, the low-temperature anisotropy

effect discussed in §3.2.2 has not been observed in ultracold atoms, and would be useful

to compare against its observation (85) in liquid helium, and test our understanding of the

distinction between D⊥ and D‖.

In a broader context, universal quantum bounds on transport are found in holographic

quantum matter (118), which is characterized by the absence of quasiparticles. Since quasi-

particles are long-lived excitations, their absence is associated with fast relaxation times.

Generically, the equilibration time can become as short as τϕ ≥ C~/kBT for T → 0,

and systems without quasiparticles can saturate this bound. We have discussed how spin

transport in strongly interacting Fermi gases saturate this bound. Similarly, in certain

systems without quasiparticles the Lyapunov time τL to lose memory of the initial state

saturates the bound τL ≥ 1
2π

~/kBT , hence such systems reach quantum chaos in the shortest

possible time (118). While conserved quantities relax hydrodynamically, all other generic

perturbations decay quickly and locally on a timescale of τϕ & ~/kBT . There are bounds

on shear viscosity, electrical conductivity, and other transport coefficients which can be

mapped to holographic duals; here we have reviewed quantitative results for bounds on

spin diffusion in strongly interacting Fermi gases. Connecting these lines of inquiry raises

the question of whether there exist holographic duals with SU(2) spin symmetry,

and how they compare to experimental observations to date.

We have discussed how bounds on a shortest possible microscopic scattering time τ

manifest themselves as lower bounds on local diffusivity and conductivity σ ∝ τ . At the

same time, fast local equilibration leads to a hydrodynamic evolution with a long relaxation

time of global collective motion, as in the spin-dipole damping ΓSD ' ω2
zτ of a trapped gas

with trapping frequency ωz in §2.2. Similarly, the global bulk relaxation rate of transverse

magnetization, proportional to RM = (Dα2)1/3 ∼ τ1/3, is small for fast local equilibration.

In this case, the lower bound on microscopic scattering time leads to an upper bound on

the global relaxation time. In the case of heat conductance through a channel, this can

be seen as a bound on the rate of information flow (33). A broader question raised is,

Are there universal bounds on global relaxation rates in spin systems? An ideal

system in which to explore such questions is the two-terminal geometry, reviewed in (34)
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and in another article of this volume.

Our discussion of transport coefficients in §3 often relied on the elegant scale invariance

of the unitary Fermi gas. Extending to other systems, a key question is What is the

role of scale invariance in transport bounds? The viscosity bound was first found

in supersymmetric Yang-Mills theories which are scale (conformal) invariant (105), so the

strongly interacting Fermi gas at the scale invariant unitary QCP is a natural candidate

for transport bounds. Later, it was found that the diffusion minima lie not exactly at

unitarity but slightly on the BEC side where medium scattering is even stronger (56). The

transport minimum is thus facilitated by the vicinity of the scale invariant QCP, but the

lowest numerical value is found at a small perturbation λT /a > 0 away from it.

This raises the question whether transport bounds can be expected in the strongly

interacting two-dimensional Fermi gas. The 2D quantum gas with zero-range attractive

contact interaction is scale invariant at the classical level, but in quantum mechanics the

scattering potential always admits a bound state with binding energy εB = ~2/ma2
2D > 0.

This new energy scale, and the 2D scattering length a2D, break scale invariance and are

a manifestation of a quantum scale anomaly. The 2D Fermi gas has only two trivial fixed

points, one for the very weakly attractive, almost ideal Fermi gas as a2D →∞ and the other

for the very strongly attractive Fermi gas, which becomes a weakly repulsive gas of bosonic

molecules as a2D → 0. In particular, there is no interacting quantum critical point in the

middle of the BCS-BEC crossover resembling the unitary Fermi gas in 3D. It is a very

interesting question whether transport bounds still exist without a scale-invariant QCP,

and in fact the first experiment on transverse diffusion found a minimum D⊥ & 0.0063~/m
(24) roughly a hundred times below the expected bound. Still, the 2D Fermi gas has

a strongly interacting regime when the three length scales n−1/2 ∼ λT ∼ a2D are all

comparable (119, 120), and a later experiment found D⊥0 & 1.7~/m (29), instead consistent

with a generic quantum bound for the scattering rate τ−1
⊥ . kBT/~ ∼ εF /~ ∼ εB/~

in a strongly interacting quantum fluid. With only two conflicting measurements, the

open experimental question remains: Are 2D systems compatible with the D &&&
~~~/m bound? Transverse diffusivity in 2D should be measured by other groups; and 2D

longitudinal diffusivity has yet to be measured.

In summary, spin transport in unitary ultracold fermions provides a specific and con-

trolled example of universality in strongly interacting non-equilibrium systems. The salient

phenomenon of bounded transport coefficients connects to a broader discussion of saturated

local equilibration times. Understanding the range of applicability of this paradigm and a

quantitative understanding of the bounds are among the most important open questions.

SUMMARY POINTS

1. Longitudinal and transverse spin dynamics are distinguished by the Leggett-Rice

effect, that causes precession of the transverse spin current around the local mag-

netization, and by anisotropy at low temperate due to Fermi statistics.

2. Several experimental studies of spin dynamics support the existence of a lower

bound on spin diffusivity, and upper bound on local spin drag, in normal-state

fermions with resonant s-wave interactions.

3. The observed rates of global relaxation of magnetization are consistent with a lower

bound on local relaxation time, a phenomenon observed in diverse systems includ-

ing incoherent conductors, bad metals, heavy-fermion compounds, and high-energy
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plasmas.
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