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Abstract

The mobile impurity in a Bose-Einstein condensate (BEC) is a paradigmatic many-body
problem. For weak interaction between the impurity and the BEC, the impurity deforms
the BEC only slightly and it is well described within the Fröhlich model and the Bogoli-
ubov approximation. For strong local attraction this standard approach, however, fails
to balance the local attraction with the weak repulsion between the BEC particles and
predicts an instability where an infinite number of bosons is attracted toward the im-
purity. Here we present a solution of the Bose polaron problem beyond the Bogoliubov
approximation which includes the local repulsion between bosons and thereby stabi-
lizes the Bose polaron even near and beyond the scattering resonance. We show that
the Bose polaron energy remains bounded from below across the resonance and the size
of the polaron dressing cloud stays finite. Our results demonstrate how the dressing
cloud replaces the attractive impurity potential with an effective many-body potential
that excludes binding. We find that at resonance, including the effects of boson repul-
sion, the polaron energy depends universally on the effective range. Moreover, while
the impurity contact is strongly peaked at positive scattering length, it remains always
finite. Our solution highlights how Bose polarons are self-stabilized by repulsion, pro-
viding a mechanism to understand quench dynamics and nonequilibrium time evolution
at strong coupling.
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1 Introduction

Impurities in a Bose-Einstein condensate (BEC) exhibit a multitude of fundamental physical
phenomena: the formation of quasiparticles [1], Efimov bound states [2, 3], synthetic Lamb
shifts [4, 5], Casimir interactions induced by a fluctuating medium [6, 7], and quantum criti-
cality [8]. Current experiments with ultracold atomic gases are investigating several of these
effects reaching far into the strong-coupling regime [4,8–13]. For understanding experimental
observations it is thus vital to develop a theoretical model that applies to impurity systems at
strong coupling and that can address both ground state and non-equilibrium phenomena.

energy

Bose-Einstein condensate

impurity potential

effective potentialbound state

x

Figure 1: Illustration of the self-stabilized Bose polaron. The strong-coupling Bose
polaron mimics a microtrap (red dashed line) with bound state (red bar) within the
Bose-Einstein condensate. If several bosons (blue dots) occupy the bound state, bo-
son repulsion results in a shallower effective potential seen by the remaining bosons
(blue solid line) that no longer admits a bound state. The dressing cloud itself thus
stabilizes the Bose polaron.

At weak interactions between the impurity and the BEC, the impurity deforms the BEC only
slightly and physics is well described within the Fröhlich model in terms of long-wavelength
phonon excitations [1, 14–24]. For strong local attraction, instead, the Fröhlich model is in-
complete and needs to be amended by quadratic terms that absorb and re-emit phonons [25].
Importantly, these term are also required to correctly capture the formation of bound states be-
tween the impurity and bath atoms which is a crucial ingredient for the physics of polorans at
strong coupling [26]. Variational wave functions based on a single phonon excitation [27,28]
are able to describe the single occupation of such a bound state. However, the bosons that
make up the BEC tend to bunch, and at strong coupling it is energetically favorable to occupy
the bound state multiple times leading to a gain of several times the binding energy. This pro-
cess, recently observed with Rydberg atoms immersed in a BEC [29], is described by a coherent
state variational ansatz [25,26,30,31] that allows for an arbitrary number of excitations and
strong local deformations of the condensate [32–38].

Generally, the application of the variational principle for the determination of the ground
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state is only viable if the Hamiltonian is bounded from below. Under this condition a stable
solution can be found, and theoretical approaches should rely only on such approximations
that preserve stability of the underlying problem1. For the strongly interacting Bose polaron,
the resulting theoretical challenge can be understood in the simple toy model illustrated in
Fig. 1. Here a static attractive impurity is represented by a local potential well of finite range
around the impurity. This well acts as a microtrap within the BEC. At strong coupling beyond a
scattering resonance [39], the potential well (red dashed line) is deep enough to admit a bound
state with energy εi = −εB < 0 (red bar). In absence of boson repulsion, in the many-body
ground state all bosons would occupy the bound state and the ground-state energy E0 = −NεB
is indeed unbounded from below in the thermodynamic limit: the whole BEC is collapsed onto
the impurity.

Naturally, a local boson repulsion counteracts this process by balancing the impurity at-
traction [40] and thus providing a lower bound to the ground-state energy. This mechanism
can be understood in terms of a single-site Bose-Hubbard model [41,42] with local repulsion
U
2 ni(ni−1) on the impurity site ri , that competes with a local attractive potential energy −εBni
for occupation number ni . For U > 0 the ground state has a finite occupation ni ' 2εB/U ,
which is nonperturbative in the strength of the interaction: the size of this polaron dressing
cloud grows for weaker repulsion. It is crucial to adequately capture this repulsive effect in
the theoretical description of Bose polarons.

Previous variational approaches have included the boson repulsion only at the level of
the Bogoliubov approximation. Here the interaction between the Bogoliubov quasiparticles
is neglected, and thus bosons in the bound state fail to generate the compensating pressure
required to ensure the stability of the ground state. As a consequence this approach falsely
predicts instead a dynamical instability in presence of boson repulsion toward infinite occu-
pation of the bound state in the strong coupling regime [30, 31, 36]. This shows the crucial
importance of including the boson repulsion beyond the Bogoliubov approximation.

In this work, we present a stable variational approach to the Bose polaron problem at
strong coupling. Our approach applies to arbitrary dimension and impurity-boson scatter-
ing lengths and it provides a basis for the study of dynamical properties of Bose polarons.
In this way our work complements and extends previous approaches using quantum Monte
Carlo to determine ground-state properties [43], studies of the role of boson repulsion in one-
dimensional systems [44–48], or a recently developed nonlocal Gross-Pitaevskii (GP) theory
for nonequilibrium dynamics [40]. Moreover, previous works raised the question to which
extent polaron properties are universal in the short-range limit [49, 50]. In the following we
study this question across the Feshbach resonance, and in particular in the regime where a
bound state is supported by the impurity-bath potential, extending previous work that consid-
ered how the properties of the Bose polaron depend on the range of the interactions, both for
the finite-range boson repulsion in the nonlocal GP theory [40] and for finite-range impurity
potentials [42,51,52].

Specifically, we study the effect of local boson repulsion and finite-range attractive impurity
potentials employing an inhomogeneous variational state that allows for large dressing clouds
and strong local deformations of the BEC. In Sec. 2 we introduce the stable Bose polaron model
and discuss its solution within Gross-Pitaevskii theory. In Section 3 we minimize the resulting
GP energy functional and obtain the condensate wave function around the impurity. We find
that even if the bare impurity potential admits a bound state, the emerging effective potential
does not, thus providing a simple mechanism for the self-stabilization of Bose polarons. Sec-
tion 4 presents our results for the polaron energy, the size of the polaron dressing cloud and
the Tan contact across the resonance. The universality of the polaron energy is discussed in

1In this work we restrict ourselves to models of cold dilute gases that disregard deeply bound states, transitions
to solid or liquid phases, as well as large cluster formation.
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Sec. 5, and we show that the energy at unitarity depends universally on the effective range, as
long as Efimov states can be neglected. Finally, in Sec. 6 we compare variational approaches to
the Bose polaron and discuss which Hamiltonians and energy functionals can provide rigorous
bounds on the ground-state energy.

2 Model

We consider a single impurity particle immersed in an interacting Bose gas. The combined
system is described by the Hamiltonian

H =
p̂2

2mI
+
∑

i

VIB(x̂B,i − x̂ ) +
∑

i

p̂2
B,i

2mB
+
∑

i< j

VBB(x̂B,i − x̂B, j) . (1)

Here, p̂ and x̂ denote the momentum and position of the impurity of mass mI, and p̂B,i and
x̂B,i characterize the bosons i = 1, . . . , N of mass mB. The boson interaction VBB(x ) is assumed
to be repulsive and the impurity-boson interaction VIB(x ) is attractive.

The coupled system of impurity and bosons is conveniently analyzed in the reference
frame comoving with the impurity. This is achieved by a canonical transformation intro-
duced by Lee, Low, and Pines [53] and elaborated on by Girardeau [15]. The transformation
S = exp(i x̂ ·

∑

i p̂B,i) leads to the LLP Hamiltonian

HLLP = S−1HS =
(p0 −

∑

i p̂B,i)2

2mI
+
∑

i

VIB(x̂B,i) +
∑

i

p̂2
B,i

2mB
+
∑

i< j

VBB(x̂B,i − x̂B, j) , (2)

in which the impurity operators have been eliminated, and p0 denotes the conserved total
momentum of the system. In the comoving frame, the impurity potential VIB(x ) acts as a
static external potential centred at the origin, while the kinetic term proportional to ∼ 1/mI
accounts for the recoil of the impurity. For bosons in the vicinity of the impurity this term leads
to induced interactions between bosonic particles in addition to their inter-boson repulsion
VBB(x ).

Homogeneous Bogoliubov Approximation.—In order to appreciate the importance of
the adequate inclusion of boson repulsion we briefly review approximations to the model (1)
that are frequently applied to the study of the Bose polaron problem. In the formalism of
second quantization Eq. (1) reads

Ĥ =
∑

p

p2

2mI
d̂†

p d̂p +
∑

p

p2

2mB
â†

pâp +
1
V

∑

kk′q

VIB(q)d̂
†
k′+qd̂k′ â

†
k−qâk +

1
2V

∑

kk′q

VBB(q)â
†
k′+qâ†

k−qâkâk′ . (3)

Here V is the system volume, d̂†
p and â†

p are the creation operators of impurity and bosons,
respectively, and VBB(q) and VIB(q) are the Fourier transforms of the respective interactions in
Eq. (1). Next, the ladder operators of bosons are shifted using a simple canonical coherent
state transformation leading to â†

p→ â†
p +δp,0

p

N0.
This is then followed by the crucial Bogoliubov approximation: All terms beyond quadratic

order bosonic operators are neglected, leading to the truncated Hamiltonian

Ĥ ′ =
∑

p

p2

2mI
d̂†

p d̂p +
∑

p

p2

2mB
â†

pâp +
N0

V
VIB(0) +

p

N0

V

∑

k′q

VIB(q)d̂
†
k′+qd̂k′(â

†
−q + âq)

+
1
V

∑

kk′q

VIB(q)d̂
†
k′+qd̂k′ â

†
k−qâk +

gBBN2
0

2V
+

gBBN0

2V

∑

q6=0

�

2â†
qâq + â†

qâ†
−q + âqâ−q

�

, (4)
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where, for simplicity, we have chosen the example of a boson contact interaction of strength
gBB. As a result of the Bogoliubov approximation the bosonic part of the model can be diago-
nalized using the standard Bogoliubov rotation

b̂p = upâp + v∗−pâ†
−p , b̂†

p = u∗pâ†
p + v−pâ−p . (5)

While the Bogoliubov approximation thus allows to obtain a simple dispersion relation for
bosonic quasiparticles, it, however, captures the effect of repulsion only within the Bogoli-
ubov coefficients up and vp. They give rise, e.g., to the modified quasiparticle dispersion
ωp =

Æ

εp(εp + 2n0 gBB) where, notably, the non-deformed, homogenous boson density n0
appears. It turns out that this approximate account of boson repulsion is insufficient to self-
stabilize the Bose polaron. Indeed, the neglect of terms beyond quadratic order is responsible
for the apparent instability of the truncated Hamiltonian (4)2. Instead, it is crucial to keep all
terms beyond quadratic order which allows the repulsive interactions to act as a stabilizing
counter term to the impurity attraction. Including these terms allows then to expand the the-
ory not simply around the homogenous BEC but around a BEC that is already deformed due
to the presence of the impurity (for a discussion of the one-dimensional case see Ref. [47]).
As discussed in the following, this in turn allows one to effectively map the strong coupling
Bose polaron problem onto a weakly interacting one.

2.1 Gross-Pitaevskii functional

Following this strategy we focus on a variational approach to the ground state of the full
Hamiltonian (2). We use a product state [54]

Ψ(x1, . . . , xN ) = φ(x1) · · ·φ(xN ) , (6)

where the condensate wave function φ(x ) is normalized to the condensate particle number
∫

dd x |φ(x )|2 = N0
3. Both φ(x ) and the ground-state energy are found by minimizing the

resulting variational Gross-Pitaevskii (GP) energy functional

EGP[φ] =

�

p0 −
∫

dd x φ̄(−i∇)φ
�2

2mI
+

∫

dd x
� |∇φ|2

2mred
+ VIB(x ) |φ(x )|

2 +
g
2
|φ(x )|4 −µ |φ(x )|2

�

.

(7)
Here µ is the chemical potential and we assume weak boson repulsion represented in three
dimensions by a contact interaction of strength g = 4πaBB/mB with boson scattering length
aBB > 0. Note that normal ordering of the impurity kinetic term in Eq. (2) contributes to the
boson kinetic term with reduced mass m−1

red = m−1
B +m−1

I [21,30,40].
The energy functional Eq. (7) exhibits two important limiting cases: (i) for an infinitely

heavy impurity mI→∞, the normal-ordered kinetic recoil term in the first line of (7) vanishes
and the standard GP energy functional for bosons in a static external potential is recovered;
(ii) for a Bose polaron at rest (p0 = 0), and a radially symmetric impurity potential VIB(|x |),
the wave function φ(x ) is spherically symmetric and the recoil term again vanishes —it only
re-appears beyond the product ansatz when boson correlations are included [40,55,56].

We find the condensate wave function φ(x ) by minimizing the GP functional
(7) in the thermodynamic limit subject to the boundary conditions |φ(x → 0)| < ∞,
|φ(|x | →∞)|=pn0 in terms of the condensate density n0 far away from the impurity. For a
radially symmetric impurity potential VIB(|x |) at rest (p0 = 0), the ground-state wave function
is spherically symmetric and real. In the solution of the GP functional the energy is univer-
sally expressed in units of the BEC bulk chemical potential µ = gn0 and the distance from

2The instability becomes physical for a non-interacting BEC [30,38].
3For weak boson interactions N ≈ N0.
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the impurity r = |x | is measured in units of the modified healing length ξ = 1/
p

2mredµ

= 1/
p

8π(mred/mB)aBBn0, which involves the reduced mass and is therefore larger than the
usual bulk healing length ξ0 = 1/

p

2mBµ of the BEC without impurity.
We define the polaron energy functional E[φ] = EGP[φ]− EGP[φ0] relative to the energy

of the unperturbed BEC with wave function φ0 =
p

n0. For the three-dimensional case it is
conveniently expressed in terms of the scaled radial function u(r) = rφ(r)/pn0 as

E[u]
µ
= 4πn0

∫ ∞

0

dr
�

ξ2
�

�du
dr

�2 − 1
�

+
VIB(r)
µ

u(r)2 +
(u(r)2 − r2)2

2r2

�

. (8)

Here the boundary conditions for φ(x ) translate to u(0) = 0 and u(r →∞) = r. Numerically,
E[u] is minimized by global optimization on r ∈ [0, L] with L = 10ξ and an r-grid spacing
∆r = 0.05ξ much smaller than the potential range.

We thus obtain the scaling solution of the GP equation (GPE) in units of µ and ξ for a
given dimensionless potential shape Ṽ (x = r/ξ) = VIB(r)/µ. This scaling solution is universal
for arbitrary values of the condensate density n0, boson scattering length aBB and mass ratio
mred/mB as long as GP theory applies [40,42], with these parameters entering only indirectly
via µ and ξ. For comparison with experiment, and in order to visualize the effect of boson
repulsion, the universal solution can be rescaled to obtain the specific solution for desired
values of the boson scattering length aBB and the mass ratio mred/mB in density units of energy
En = ħh2n2/3

0 /2mred and length n−1/3
0 .

2.2 Impurity potential

For the impurity potential VIB(r) we consider two different functional forms. This allows us to
study the universality of the Bose polaron by analyzing how quasiparticle properties depend
on the potential shape and range. Specifically, we consider an attractive Gaussian potential,

Vgauss(r) = −V0 exp[−(r/R)2] , (9)

and an exponentially decaying potential,

Vexpon(r) = −V0 exp[−r/R] , (10)

both of depth V0 > 0 and range R.
The low-energy scattering properties of the impurity and boson are characterized by the

impurity-boson scattering length aIB and the effective range reff, which determine the leading
terms of the effective range expansion of the momentum-dependent scattering phase shift in
three dimensions. They are found by numerically solving the Schrödinger equation for the
scattering of a boson with the impurity in the center-of-mass system via the potential VIB(r).
Equivalently, one may solve the first-order nonlinear variable phase equation [57], which yields

a′(r) = 2mredVIB(r)[r − a(r)]2 ,

r ′eff(r) = −4mredVIB(r)r
2
� r

a(r)
− 1

�� r
3a(r)

− 1+
reff(r)

r

�

. (11)

Here a(r) and reff(r) obey the boundary conditions a(0) = 0, reff(0) = 0, and account for the
phase shift accumulated by the scattering wave function (for the generalization of the variable
phase equation to singular potentials see [58]). Correspondingly, the differential equations
(11) are integrated from r = 0 . . .∞ which yields the scattering length aIB = a(r →∞) and
effective range reff = reff(r →∞).
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bare potential VIB(r) = V0 exp[ (r/R)2]

Figure 2: (a) Impurity-boson density-density correlation function g(2)IB (r) as deter-
mined from the condensate wave function φ(r) as function of the distance r from
the impurity (blue solid). For an attractive impurity potential the wave function is
enhanced near the impurity as compared to that of an unperturbed BECφ0(r) =

p
n0

(orange dashed). (b) The bare impurity potential (orange dashed) of Gaussian shape
(V0/µ= 5.1651, R/ξ= 0.81892) has an effective range reff = ξ and positive scatter-
ing length aIB = 4ξ, and correspondingly admits a bound state. An extra bosonic test
particle is, however, subject to the effective potential (blue solid) that is weakened
by the repulsion from the polaron cloud; while still attractive the effective poten-
tial is characterized by an effective, negative scattering length aIB,eff = −0.1ξ (and
renormalized r̃eff = −207ξ) which thus no longer supports a bound state. Hence,
additional bosonic quantum fluctuations lead only to a weak, additional dressing of
the impurity particle.

3 Effective potential

First, we present results for the condensate profile around the impurity that we find by mini-
mizing the Gross-Pitaevskii energy functional (7)–(8). For attractive impurity-boson interac-
tion, the wave function φ(r) —which, in the comoving frame, directly yields the impurity-
boson density-density correlation function g(2)IB (r) = |φ(r)|

2/n0— is enhanced near the im-
purity, as shown in Fig. 2(a). In this figure we have chosen a potential VIB(r) (dashed line
in Fig. 2(b)) that is sufficiently deep to support a two-body bound state at energy −εB < 0.
Correspondingly, the potential is characterized by a positive impurity-boson scattering length,
in Fig. 2(b) chosen as aIB ≈ 4ξ > 0.

We thus realize a scenario as described in the introduction, which is mimicked by a micro-
trap or a single-site Bose-Hubbard model. While at the two-body level it suggests a dynamical
instability where the occupation of the bound state would grow without bounds, many-body
effects come to the rescue. Indeed, due to the repulsion between bosons, each additional boson
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trying to participate in the formation of the Bose polaron is subject to the effective potential

Veff(r) = VIB(r) + g |φ(r)|2 −µ , (12)

that results from by the competition of the bare attractive potential VIB(r) (dashed line in
Fig. 2(b)) and the repulsion created by the already existing polaron cloud.

In essence, this effect can be understood as arising in an effective density-functional theory
(DFT) for the BEC particles in the presence of the impurity: the bosons already attracted to
the impurity screen the attractive potential and make it shallower, as shown by the blue line in
Fig. 2(b). Moreover, we find that they create a small repulsive barrier at intermediate distance.
As a consequence, the effective potential no longer admits a bound state and it is correspond-
ingly characterized by a negative effective impurity-boson scattering length aIB,eff ≈ −0.1ξ.
Hence, the single-particle excitation spectrum for each additional boson is bounded from be-
low: the dynamical instability is replaced by Bose polarons self-stabilized by their dressing cloud.

4 Bose polaron energy and contact

The value of the Gross-Pitaevskii functional (7) evaluated at the ground-state wave function
determines the polaron energy E = E[φ] relative to the homogeneous BEC. The energy is
shown in Fig. 3(a) as a function of the dimensionless impurity-boson interaction ξ/aIB. It
is always negative for an attractive impurity potential. In Fig. 3(b) we present the energy
for a mobile impurity of arbitrary mass in units of En which depends on the BEC density n0.
Specifically, we show results for two BEC gas parameters, which for equal mass of boson and
impurity, i.e., mred/mB = 1/2, correspond to values n0a3

BB = (4π)
−3 = 5.0× 10−4 (n0ξ

3 = 1)
at stronger boson repulsion and n0a3

BB = (8π)
−3 = 0.63× 10−4 (n0ξ

3 = 2.8) at weaker boson
repulsion. We find that, in absolute terms, the polaron binding energy is larger for weaker bo-
son repulsion where the BEC can be more strongly deformed and thus acquire more attractive
potential energy.

At weak impurity-bath attraction 1/aIBn1/3
0 � −1 the polaron energy approaches the

mean-field value

Emf =
2πaIBn0

mred
= 4πaIBn1/3

0 En , (13)

irrespective of aBB. Within mean-field theory the polaron energy diverges to −∞ at unitarity
1/aIB = 0. Variational approaches based on the trunctated Hamiltonian Eq. (4) predict that the
inclusion of Bogoliubov corrections is not sufficient to heal this instability, but rather results in
a shift of the instability to the repulsive side of the Feshbach resonance [30]. In contrast, we
find that going beyond the Bogoliubov approximation by working with the full Hamiltonian
(1) allows the boson repulsion to stabilize the polaron at a finite ground-state energy that
smoothly crosses over from the attractive to the repulsive side of the Feshbach resonance.

The deformation of the BEC is also reflected in the number of bosons participating in the
formation of the polaron dressing cloud

Ncloud = 4πn0

∫ ∞

0

dr[u(r)2 − r2] . (14)

As shown in Fig. 3(c), for a smaller gas parameter (orange dashed line) the impurity attracts
a larger polaron cloud because the bosons are less repulsive. Naturally, this larger dressing
cloud corresponds to the larger polaron binding energy found in Fig. 3(b).

Our results in Fig. 3 are shown for a constant range R across the Feshbach resonance
as applicable to experiments where the microscopic range of interactions can typically not
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Figure 3: Bose polaron energy across an impurity-boson Feshbach resonance. (a)
Scaling solution for the polaron energy E/µn0ξ

3 as function of the impurity-Bose
interaction ξ/aIB for a Gaussian potential of fixed range R= ξ. (b) Polaron energy E
in density units En = ħh2n2/3

0 /2mred in dependence on the impurity-Bose interaction

1/aIBn1/3
0 for different BEC gas parameters. The polaron binding energy is larger

for weak boson repulsion 8π(mred/mB)aBBn1/3
0 = 0.5 (orange dashed) compared

to stronger repulsion 8π(mred/mB)aBBn1/3
0 = 1.0 (blue solid); at weak coupling it

approaches the mean-field result (13) (green dotted). (c) Particle number Ncloud
within the polaron dressing cloud. Inset: the effective range reff for fixed potential
range Rn1/3

0 = 1 is smallest on the repulsive side.

be tuned synchronously with the scattering length. Thus the effective range reff varies in
dependence on aIB: The inset of Fig. 3(c) shows the effective range that is obtained from the
scattering phase shift using Eq. (11). At constant potential range Rn1/3

0 = 1, the effective range
reff reaches a minimum on the repulsive side of the resonance (aIB > 0) and grows towards
both weak-coupling limits aIB→ 0±.

The variation of the polaron energy with aIB defines the impurity contact parameter [38,
40, 42, 51, 59] which characterizes the impurity-boson correlations g(2)IB (r) at short distances
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Figure 4: Tan contact C of the Bose polaron for different boson repulsion (BEC gas
parameter) across the impurity-boson Feshbach resonance. The contact Cn−1/3

0 ob-
tained from Eq. (15) reaches its maximum on the repulsive side of the resonance and
increases for weaker boson repulsion. At weak coupling it approaches the mean-field
result (16) (green dotted).

outside the impurity potential:

C =
8πmred

ħh2

∂ E
∂ (−1/aIB)

= 4πn1/3
0

∂ (E/En)

∂ (−1/aIBn1/3
0 )

. (15)

The contact is shown in Fig. 4: we find that it reaches a maximal value on the repulsive side
of the resonance. Similar to the energy, we find that the contact is larger for smaller boson
repulsion aBB (blue solid line) where the BEC is more strongly deformed and thus g(2)IB (r) is
enhanced (see Fig. 2). At weak attractive interaction the contact approaches the ground-state
value of an impurity in an ideal BEC (aBB = 0) [38]

Cmf = 16π2n0a2
IB , (16)

which agrees with the mean-field result prediction.

5 Universality

Finally, we test the notion of universality of the Bose polaron by studying different shapes and
ranges R of the impurity potential. Generally, we work in the regime where the potential range
is much larger than the boson scattering length, R� aBB, where local Gross-Pitaevskii theory
has been shown to be applicable [35]. To test universality in this regime, we specifically
compare the predictions following from the Gaussian potential Vgauss(r) in Eq. (9), and the
exponential potential Vexpon(r) in Eq. (10) for various ranges R.

We find that when tuning the depth of the potentials to obtain equal scattering length
aIB = −∞ at equal range R, the polaron energies are very different. Instead, if R is tuned
to yield the same effective range reff for both potentials, as shown in Fig. 5(a), remarkable
agreement between the polaron energies is found. Indeed, as shown in Fig. 5(b), for both
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Figure 5: Universality of the Bose polaron. (a) In order to yield the same effective
range reff, the Gaussian and exponential potentials need to be tuned to different
potential ranges R; here shown for fixed unitary scattering length 1/aIB = 0. (b)
Polaron energy E as function of the effective range reff at unitarity 1/aIB = 0 for two
different potential shapes. The boson repulsion is set to 8π(mred/mB)aBBn1/3

0 = 1.
The polaron energy coincides for both potential shapes and increases linearly with
reff. This universality also extends to Lennard-Jones potentials as shown by the green
squares. (c) The polaron energy at negative scattering length 1/aIBn1/3

0 = −1 is

universal for reffn
1/3
0 ¦ 1 for the parameters chosen. (d) Polaron energy at positive

scattering length 1/aIBn1/3
0 = 1. For the Gaussian potential there is no unique polaron

energy for intermediate values of reff (see text).

potentials, the polaron energy approximately follows a linear scaling law for reff ¦ 0.2ξ,

E(1/aIB = 0)
En

= −5.2(2)ξn1/3
0 − 9.0(1) reffn

1/3
0 . (17)

Remarkably, this universality is found not only for the purely attractive Gaussian and expo-
nential potentials but extends also to interactions featuring a repulsive contribution such as
a Lennard-Jones potential VLJ(r) ∼ λR10/r12 − R4/r6, as illustrated in Fig. 5(b). This shows
that in the Bose polaron problem the momentum-dependent scattering phase shift is probed
in the regime where the effective range expansion is valid. Our result complements a recent
GPE study which found a power-law scaling of the unitary polaron energy at ranges shorter
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than the healing length, E/En ∼ (reff/ξ)1/3 for aBB ® reff � ξ in the case of a square-well
potential [42]. The GPE approach can be extended to even shorter ranges reff� aBB by using
a nonlocal generalization of Gross-Pitaevskii theory [40].

Also on the attractive side of the resonance, see Fig. 5(c) for 1/aIBn1/3
0 = −1, we find

a universal effective range dependence of the polaron energy, albeit not a linear one. On
the repulsive side, instead, to cover the domain of effective ranges shown in Fig. 5(d), for our
parameters the Gaussian potential, unlike the exponential, must be tuned over such depths that
it supports more than one bound state. Consequently, there is no longer a unique mapping from
reff to E. This is illustrated in Fig. 5(d) for the repulsive side, at 1/aIBn1/3

0 = 1: universality
can at best hold in the vicinity of the first bound state, and only for a limited interval of reff
values. Furthermore, since the Efimov effect modifies the polaron energy spectrum [2,3,49],
universality can also depend on the three-body parameter [50,60–62].

6 Discussion

The variational principle provides a powerful tool to compute both ground-state and dynamical
properties of quantum many-body systems. However, in order to make full use of its predictive
power it is essential to understand the limitations of approximations applied to the Hamilto-
nian to be analyzed. In this regard the strong-coupling Bose polaron is a case in point. The
full Bose polaron Hamiltonian (1) —and equivalently Eq. (3)— is bounded from below for
repulsive boson interaction, and hence variational wave functions give rigorous bounds on the
ground-state energy. For finite Bose repulsion, the polaron energy remains finite for any Bose-
impurity scattering length, including resonant interactions, and the ground state represents a
strong-coupling Bose polaron that is self-stabilized by its own dressing cloud.

In contrast, when applying the Bogoliubov approximation to the full model (1) by trun-
cating terms of higher-than quadratic order in the boson operators, the resulting, truncated
Hamiltonian Ĥ ′ in Eq. (4) becomes unbound from below. Crucially, this results in an instability
of the Bose polaron problem that is solely an artefact of this approximation.

Quite remarkably, the instability of the truncated Hamiltonian Ĥ ′ becomes, however, only
evident when considering wavefunctions that account for more than two phonon excitations
from the homogenous BEC. For instance, for a Chevy-type wavefunction [25,27,28] that itself
is truncated at the single excitation level, the terms beyond quadratic order in the repulsive
interactions have vanishing expectation value. Thus, incidentally, the Chevy ansatz yields
the same prediction when applied to both the full and the truncated model. Thus due to its
tremendous simplicity the Chevy ansatz becomes immune to the instability of approximate
Hamiltonian Ĥ ′.

However, while being a well-defined approach, the simple Chevy ansatz misses the fact that
at the weak Boson repulsion (as typically present in cold gases) the polaron cloud—even within
the full model Eq. (1)—can contain an exceedingly large number of bosons (Fig. 3(b)). Such a
large local deformation of the BEC is naturally captured by the inhomogeneous wave function
(6). Crucially, while accounting for an arbitrary number of boson excitations, when applied to
the full Hamiltonian (1) it still leads to a bounded energy functional (7). Its solution shows that
the smaller the boson repulsion and the wider the impurity potential, the larger the polaron
cloud becomes. The product state approach is complementary to the Chevy ansatz including its
extensions to multi-boson excitations [3,49,63], and it becomes particularly accurate for soft
impurity potentials where it is justified to ignore bosonic correlations. Remarkably, the case
of extremely soft potentials is realized with Rydberg excitation immersed in BECs. In this case
it was predicted that up to hundreds of atoms can be bound to the single impurity leading to
the creation of Rydberg polarons [64]. Since for Rydberg impurities the range of interactions

12

https://scipost.org
https://scipost.org/SciPostPhys.13.3.054


SciPost Phys. 13, 054 (2022)

R dramatically exceeds the interparticle distance, our local GP theory applies and provides a
so far missing explanation as to why the experimental observation of Rydberg polarons [29]
is described exceptionally well by a coherent state approach [26].

Recently also first steps to the understanding of the complementary, intermediate regime
of short-range impurity potentials —with yet large dressing clouds— has been achieved by
using an extension to nonlocal Gross-Pitaevskii theory [40]. In conjunction with our present
result, these combined new approaches resolve a fundamental shortcoming of the Bogoliubov
approximation: while the formulation of the interacting Bose gas in terms of Bogoliubov quasi-
particles is exact, the additional approximation to neglect the residual interaction between
phonons is not. In particular, the quadratic Bogoliubov mean-field Hamiltonian is unbounded
from below for the strong-coupling Bose polaron, most obviously in the regime where a two-
body bound state appears on the repulsive side of the resonance [30,31].

As discussed above, the Chevy-type ansatz applied to the truncated Bogoliubov Hamilto-
nian [28] still yields a finite polaron energy since it is of such low order in boson excitations
that it is not sensitive to the truncated part of the Hamiltonian. However, when the coherent
state ansatz or higher-order excitation extensions of the Chevy ansatz are applied to the trun-
cated Hamiltonian (4) they can lead to divergencies in the ground-state energy. In the case of
the coherent state ansatz [30,36] the divergence is due to the large occupation of excitations
in the vicinity of the impurity not counteracted by boson repulsion. Instead the local exten-
sion to the truncated Bogoliubov approach studied in the present work (see also [42,50,51])
as well as its nonlocal counterpart [40] provides a stable starting point for strong-coupling
Bose polaron dynamics, and we showed how it can find an effective description in terms of a
renormalization of the impurity-boson potential (Fig. 2).

Beyond our treatment of the two-particle impurity-boson correlations, three-body and
higher-order correlations give rise to the Efimov effect and three-body recombination. The
Efimov effect can occur either between one impurity and two bosons [3, 49, 63] or between
two impurities and one boson [2, 6]. These few-body effects can be captured by Gaussian
variational wave functions [55, 56]. Alternatively, extensions of the Chevy ansatz to two or
more independent bosonic excitations [3] can be employed. The latter approach was applied
in the analysis of the truncated model (4) and universal scaling depending on the three-body
parameter was found [49, 63]. It remains an interesting open question how universal three-
body physics carries over to the many-body case in a dense bosonic medium when the full
Hamiltonian Eq. (1) is considered [65].

Finally, in ultracold atomic gases the boson repulsion originates from an attractive van-
der-Waals potential between atoms. This results in the existence of deeply bound molecular
states into which atoms can decay in three-body recombination. These deeply bound states
are neither accounted for in variational approaches nor in quantum Monte Carlo [43]. Up to
now most experiments probe the metastable Bose polaron state of matter on transient time
scales where the deeply bound states —arising both from the fundamentally attractive Bose-
Bose and Bose-impurity potentials— can be ignored, and thus the stable variational approach
discussed in our work is well applicable. However, as one starts to explore longer time scales
or the build-up of more complex correlated states of impurities, understanding the impact of
the fundamental dissipative nature arising from deeply bound states becomes essential and
requires the development of new theoretical approaches to quantum impurity problems.
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