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Nonlinear spin diffusion and spin rotation in a trapped Fermi gas
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Transverse spin diffusion in a polarized, interacting Fermi gas leads to the Leggett-Rice effect, where the
spin current precesses around the local magnetization. With a spin-echo sequence both the transverse diffusivity
and the spin-rotation parameter γ are obtained; the sign of γ reveals the repulsive or attractive character of the
effective interaction. In a trapped Fermi gas the spin diffusion equations become nonlinear, and their numerical
solution exhibits an inhomogeneous spin state even at the spin-echo time. While the microscopic diffusivity and
γ increase at weak coupling, their apparent values inferred from the trap-averaged magnetization saturate in
agreement with a recent experiment for a dilute ultracold Fermi gas.
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I. INTRODUCTION

Transverse spin diffusion occurs when the magnetization
is oriented along different directions, for instance, in a
spin helix. It has been observed in spin-echo experiments
in helium [1], polarized hydrogen, and, recently, ultracold
atomic gases [2–4]. The transverse magnetization evolves
according to a diffusion equation, but there are additional
terms from the precession of the spin currents around the
local magnetization. This Leggett-Rice effect [5] is related
to the identical spin-rotation effect [6] and leads to reactive
spin currents and spin waves, which have been observed
in ultracold Fermi gases [7]. Consider a polarized sample
with small transverse magnetization (small tipping angle).
The transverse magnetization is conveniently combined into
a complex number m+ = mx + imy , which evolves with a
complex diffusion coefficient,

∂m+
∂t

= D⊥
0

1 − iμmz

∇2m+ − iαx3m+, (1)

where D⊥
0 is the transverse diffusivity and μmz = γ (at full

polarization), the dimensionless spin-rotation parameter. For
small μ → 0 this is the usual diffusion equation, while for
large |μ| the diffusion equation has an imaginary effective
diffusivity and resembles the Schrödinger equation [8]. In a
spin-echo pulse sequence, the second term in Eq. (1) expresses
a linear gradient α of the external magnetic field along the
x3 direction, which winds the magnetization into a helix.
After a time tπ , a π pulse is applied, which is equivalent to
flipping the sign of α. In the ensuing time evolution, the helix
unwinds until the magnetization is realigned at the echo time
te = 2tπ . In the presence of spin rotation μ �= 0, realignment
at te occurs at a phase angle φ ∝ μ with respect to the initial
orientation at t = 0 [5], and the value of μ can be inferred. For
a strongly interacting Fermi gas the value of μ has recently
been measured and used to determine the spin-antisymmetric
Fermi-liquid parameter Fa

1 , while the sign of μ reveals the
attractive or repulsive character of the effective interaction [4].
Theoretically, D⊥

0 and μ for dilute, homogeneous Fermi gases
have been computed using kinetic theory [9,10].
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In an infinite homogeneous system where the only position
dependence arises from the magnetic field gradient α, the phase
angle φ is directly proportional to the microscopic parameter
μ. Instead, for a finite homogeneous box the phase φ, and
hence the apparent value of μ, saturates when the system
size is reached [11]. Experiments with ultracold atomic gases
typically employ a harmonic trapping potential which is both
finite and inhomogeneous: in this case, the diffusivity D⊥

0 ,
the Leggett-Rice parameter μ, and the magnetization mz are
strongly position dependent, and the diffusion equation, (1),
becomes nonlinear. In previous studies the evolution has
been linearized in order to determine the collective mode
frequencies and decay rates in the trapping potential [12].
Other studies consider the nonlinear evolution of the full
phase-space distribution for a nondegenerate or collisionless
trapped gas [13]. Here, I numerically solve the nonlinear
evolution equation with position-dependent kinetic coeffi-
cients including medium scattering to obtain the transverse
magnetization decay and the growth of the phase φ for the
specific trap geometry used in the experiment.

Kinetic theory [14] is employed to compute the spin
evolution of the trapped gas. This method is well controlled in
the weak-coupling limit, which is also the parameter regime
where finite-size corrections due to the trapping potential are
most pronounced [4]. On the other hand, at strong coupling
toward unitarity and at low temperature near the superfluid
phase transition of an attractive Fermi gas [15], kinetic
theory is expected to receive quantitative corrections from the
effects of pairing and short quasiparticle lifetimes, which are
incorporated, for instance, when computing transport from the
Kubo formula within a Luttinger-Ward approach [16,17].

This paper is structured as follows: in Sec. II the spin
evolution equations for a trapped Fermi gas are derived from
kinetic theory, while Sec. III compares them to the known
homogeneous limit. Section IV presents the results for the
magnetization profiles and apparent diffusivities, and Sec. V
concludes with a discussion.

II. KINETIC THEORY

Transport in an interacting Fermi gas may be described by
kinetic theory for quasiparticles, as long as they are sufficiently
long-lived. For a multicomponent Fermi gas with two or more
spin species one has to compute the time evolution of the
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spin distribution np, which is a matrix with components np =
npσσ ′(x,t) in spin space. The evolution equation derived by
Landau and Silin [18,19] reads

∂np

∂t
+ 1

2
[∇pεp,∇rnp]+ − 1

2
[∇rεp,∇pnp]+ + i

�
[εp,np]−

=
(

∂np

∂t

)
coll

, (2)

where εp = εpσσ ′(x,t) is the matrix of single-particle energies.
The left-hand side constitutes the drift term, while the right-
hand side describes the change in the distribution caused
by collisions. Specifically for the spin-1/2 case, np and εp

are 2 × 2 matrices in spin space, for instance, in the ↑, ↓
basis.

The spin matrices can be decomposed in terms of the
identity I and the Pauli matrices σ . The occupation number
matrix is written as

np = 1
2 (fpI + σ p · σ ), (3)

where fp(x,t) is the particle number distribution function and
σ p(x,t) the spin vector distribution in Bloch space. Similarly,
the energy matrix

εp = εpI + hp · σ (4)

combines the spin-independent single-particle energies
εp(x,t) and a magnetic field hp(x,t). One may then rewrite
Eq. (2) as

∂fp

∂t
+

∑
j

[
∂εp

∂pj

∂fp

∂xj

− ∂εp

∂xj

∂fp

∂pj

+ ∂hp

∂pj

· ∂σ p

∂xj

− ∂hp

∂xj

· ∂σp

∂pj

]

=
(

∂fp

∂t

)
coll

(5)

and

∂σ p

∂t
+

∑
j

[
∂εp

∂pj

∂σ p

∂xj

− ∂εp

∂xj

∂σp

∂pj

+ ∂hp

∂pj

∂fp

∂xj

− ∂hp

∂xj

∂fp

∂pj

]

− 2

�
hp × σ p =

(
∂σ p

∂t

)
coll

. (6)

The spin-rotation term hp × σ p is responsible for the Leggett-
Rice effect. The single-particle energies are

εp(x,t) = p2

2m
+ V (x), V (x) = m

2

∑
j

ω2
j x

2
j (7)

for a Fermi gas in a harmonic trapping potential V (x), which
can be anisotropic with different trapping frequencies ωj in
spatial direction j . The magnetic field

hp(x,t) = −�

2
�(x,t), � = �0 + �mf, (8)

�0(x,t) = α(t)x3 ẑ, �mf = W

�
m(x,t) (9)

is written in terms of the Larmor frequency � = �0 + �mf.
For a spin-echo protocol it has two contributions: (i) �0 =
γ B(x,t) is due to the external magnetic field B(x,t) with

gyromagnetic ratio γ . A spatially constant B is compensated
by going to the corotating frame in Bloch space, but a magnetic
field Bz gradient of slope α along the x3 direction winds up
the local magnetization into a spin spiral. (ii) The second
contribution to the Larmor frequency, �mf, is a mean-field
term proportional to the local magnetization m of a polarized
Fermi gas. It leads to the precession of the spin current
around m.

The evolution of the full distribution functions fp(x,t) and
σ p(x,t) is simplified by considering moments with respect to
momentum:

n(x,t) =
∫

d3p

(2π�)3
fp(x,t), (10)

J n
j (x,t) =

∫
d3p

(2π�)3

∂εp

∂pj

fp(x,t), (11)

m(x,t) =
∫

d3p

(2π�)3
σ p(x,t), (12)

J j (x,t) =
∫

d3p

(2π�)3

∂εp

∂pj

σ p(x,t), (13)

with bare velocity vpj = ∂εp/∂pj = pj/m. An additional
contribution fp∂hp/∂pj to the spin current is absent for
momentum-independent hp. The local polarization is defined
as M(x,t) = m(x,t)/n(x,t) where |M(x,t)| � 1. The spin
current J j is both a vector in Bloch space (bold symbol)
and a vector in position space (j index): it encodes how the
magnetization changes as one goes along the j direction. The
evolution equations for the moments read, using the specific
form of the single-particle energies (7)–(9),

∂tn +
∑

j

∇j J
n
j = 0, (14)

∂tJ
n
j + αn∇j n + ω2

j xjn = −J n
j

τn

, (15)

∂t m +
∑

j

∇j J j + �0 × m = 0, (16)

∂t J j + α‖P‖∇j m + α⊥P⊥∇j m + ω2
j xj m

+
(

�0 + W

�
m

)
× J j =

(
∂ J j

∂t

)
coll

. (17)

The projectors P‖a ≡ (a · m̂)m̂ and P⊥ ≡ 1 − P‖ give the
component of the magnetization gradient parallel and perpen-
dicular to the local magnetization, respectively. When deriving
these equations, the mean field �mf has been retained only
in the spin-rotation term and not in the Poisson brackets
in Eqs. (5) and (6). This can be justified as the leading
order in a controlled large-N expansion [20]. In general, the
evolution of the currents depends on the second moments
of fp and σ p, which in turn depend on higher moments.
However, near local equilibrium the linearized Boltzmann
equation relates the higher moments to the lower ones via the
coefficients αn, τn, α‖,⊥, τD , and W , and one obtains a closed
set of evolution equations. These coefficients are discussed in
Sec. II B.
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A. Initial conditions

In the absence of the external magnetic field gradient α, the
local equilibrium Fermi distribution is

np±(x) = 1

exp(β(εp(x) − μ±)) + 1
(18)

in terms of the chemical potential μ± of the majority (minority)
component. The resulting density profile of the fully polarized
gas is

n(x) = −λ−3 Li3/2(−z+e−βV (x)), (19)

with thermal wavelength λ = (2π�
2β/m)1/2 and polyloga-

rithm Lis(z). The fugacity z+ = exp(βμ+) of the majority
component is determined by the total particle number N in the
trap of average frequency ω̄ = (ω1ω2ω3)1/3,

N = − 1

(β�ω̄)3
Li3(−z+). (20)

At high temperatures in the Boltzmann regime the density
profile is Gaussian, n(x) ∝ exp(−βV (x)), while at low tem-
peratures it approaches the Thomas-Fermi profile,

n(x) = n0

⎛
⎝1 −

∑
j

x2
j

R2
TFj

⎞
⎠

3/2

, (21)

with Thomas-Fermi radius RTFj = (2EF /mω2
j )1/2 and the

Fermi energy EF = (6N )1/3
�ω̄ of a fully polarized gas. The

density profile is shown in Fig. 1 both for weak coupling
on the BCS side (upper panel) and for strong coupling at
unitarity (lower panel). Note that the phase-space density λ3n

(solid black line) is unaffected by s-wave scattering in the fully
polarized gas.

In the spin-echo protocol [4], the gas is initially fully
polarized, |m| = n or |M| = 1, at a tipping angle θ from the z

axis in Bloch space,

m(x,t = 0) = (sin θ,0, cos θ )n(x). (22)

This distribution is stationary for α = 0 and the particle and
spin currents J n

j and J j vanish. When the external gradient α

is switched on along the x3 direction, the distribution remains
independent of x1 and x2, but currents are generated which can
change the distribution along the x3 direction. Hence, the spin
evolution effectively reduces to a one-dimensional problem
for m and J3 along the gradient direction.

B. Kinetic coefficients

The coefficients α‖,⊥(x) in Eq. (17) parametrize the strength
of the spin current generated by a magnetization gradient. Their
values are determined by the Boltzmann equation linearized
around the local equilibrium solution [9,10]. There are differ-
ent contributions from the longitudinal magnetization gradient
due to the trap potential, and the transverse magnetization
gradient from the helix. For a fully polarized gas,

α‖(x) = αn(x) = n(x)

mχ (x)
, (23)

α⊥(x) = P (x)

mn(x)
, (24)
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FIG. 1. (Color online) Kinetic coefficients and density profiles in
the trap on the BCS side (upper panel) and at unitarity (lower panel)
at degenerate temperature (T/TF )i = 0.2: total phase-space density
λ3n(x) (solid black line), diffusion parameter βmα‖ [dotted (brown)
line], diffusive scattering rate τF /τD [solid (red) line], interaction
parameter τF λ−3|W | [dash-dotted (blue) line], and Leggett-Rice
parameter γ = −τDWn/� [dashed (magenta) line].

where χ (x) = −λ−3β Li1/2(−z+e−βV (x)) is the local suscep-
tibility, and P (x) = −λ−3β−1 Li5/2(−z+e−βV (x)) the local
pressure of a free Fermi gas. In Fig. 1, α‖ is plotted as the dotted
line: for a high temperature or low density in the outer regions
of the trap it reaches the Boltzmann limit α‖ = α⊥ = 1/βm,
while for a high density at the trap center it is enhanced
and approaches the low-temperature limit α‖ = v2

F /3 [5]. In
general, α‖ and α⊥ acquire interaction corrections [9], but
for large initial polarization and s-wave scattering these are
negligible.

Second, the coefficients τ‖(x) and τ⊥(x) parametrize the
decay of the spin current due to scattering [9],(

∂ J j

∂t

)
coll

=
∫

d3p

(2π�)3

∂εp

∂pj

(
∂σp

∂t

)
coll

= −P‖ J j

τ‖
− P⊥ J j

τ⊥
. (25)

The component of the current P‖ J j parallel to the local
magnetization m decays with the longitudinal diffusion time
τ‖, while the transverse component P⊥ J j = (1 − P‖) J j de-
cays with the transverse diffusion time τ⊥. Both differ for
a polarized, strongly degenerate Fermi gas [9,10,21]: all the
states between the majority and the minority Fermi surfaces
of a polarized gas are available for transverse scattering and
τ⊥ can be much lower than τ‖. For the experiment at hand [4],
however, the lowest temperatures reached at the trap center
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are around T/TF � 0.3, and previous studies have shown that
in this temperature range τ‖ and τ⊥ are nearly equal [10].
It is therefore justified to work with a single decay time
τD = τ⊥ ≈ τ‖ [10],

�

τ⊥
= sinh(βh)

C⊥

1

(2π�)8

∫
d3p1 . . . d3p4

× δ(3)( p1 + p2 − p3 − p4) δ(εp1 + εp2 − εp3 − εp4 )

× |T ( p1, p2)|2 [e−βhn1+n2+ + eβhn1−n2−]

× (1 − n3+)(1 − n4−)v1j (v1j − v2j ), (26)

with magnetic field h = (μ+ − μ−)/2 and normalization
constant

C⊥ =
∫

d3p

(2π�)3
v2

pj (np+ − np−). (27)

The T matrix T ( p1, p2) describes s-wave scattering between
particle ( p1,+) and particle ( p2,−). In order to derive explicit
expressions, the T matrix for ultracold fermions with s-wave
contact interactions has to be used. The two-body T matrix

T0( p1, p2) = 4π�
2

m

1

a−1 + ik
(28)

is given in terms of the relative wave number k = | p1 −
p2|/2� and the s-wave scattering length a. At weak coupling
|a| → 0, T0( p1, p2) → 4π�

2a/m is the regularized bare con-
tact interaction. The BCS-BEC crossover goes from the weakly
attractive BCS regime (1/kF a � −1) via the unitary Fermi
gas (1/kF a = 0) to the repulsive fermion branch (1/kF a � 1)
above the BEC ground state [15]. At strong coupling the
many-body T matrix is needed, which includes medium
scattering. In the ladder approximation, which is the leading
order of the large-N expansion in the number of fermion
flavors [20,22], the full T matrix reads

T −1( p1, p2) = T −1
0 ( p1, p2)

+
∫

d3p

(2π�)3

n p,+ + n p+ p1+ p2,−
ε p1 + ε p2 − ε p − ε p + p1 + p2 + i0

.

(29)

The T matrix is computed numerically, and Fig. 1 shows
the resulting spin diffusion rate τF /τD in units of the
Fermi frequency 1/τF = EF /� as the solid (red) line: it is
highest in the trap center and decreases proportional to the
density in the outer regions. At unitarity, the scattering rate
is about 10 times larger than at weak coupling, 1/kF a =
−2. In the Boltzmann regime, �/τD = 4

√
2nλ3

3πβ
[1 − βεB −

(βεB)2 exp(βεB) Ei(−βεB )], where Ei(x) is the exponential
integral and εB = �

2/ma2 [10]. At unitarity the scatter-
ing cross section decreases with temperature, and �/τD =
4
√

2nλ3/(3πβ) [23].
Third, the mean field �mf = W m(x,t)/� describes the

precession of the spin current around the local magnetization
and is given by a momentum average of the real part of
the many-body T matrix T ( p1, p2) over the momentum
states between the majority and the minority Fermi surfaces,

weighted by the velocity squared [10],

W = 1

C⊥|m|
∫

d3p1

(2π�)3

d3p2

(2π�)3
v1j (v1j − v2j )(n1+ − n1−)

× (n2+ − n2−) Re T ( p1, p2). (30)

At weak coupling W = T0(0,0) = 4π�
2a/m agrees with the

bare interaction, which is real. At unitarity 1/a → 0, T0

becomes purely imaginary and W appears to vanish along
with Re T0. This is indeed observed at high temperatures, but
at low temperatures the many-body T matrix T acquires a real
part due to medium scattering, and W �= 0 [4]. This is shown
as the dash-dotted (blue) curve in Fig. 1: for weak coupling,
W ≈ 4π�

2a/m is constant independent of the density and
position in the trap, while at unitarity it decreases with density
in the outer regions of the trap. Note that the very similar values
for W at the trap center are coincidental: at weak coupling W

is given essentially by the bare coupling, while at unitarity it
is purely a many-body effect.

Spin rotation is characterized by the dimensionless Leggett-
Rice parameter

γ = μn = −τDWn

�
, (31)

which is plotted as the dashed (magenta) line in Fig. 1. At
weak coupling,

τD ∝ 1

a2n4/3
, W ∝ a, γ ∝ − 1

an1/3
, (32)

hence γ becomes large and only weakly dependent on the
density. At unitarity, on the other hand, γ is a purely many-
body effect, much smaller, and roughly proportional to the
density.

III. ANALYTICAL SOLUTIONS IN LIMITING CASES

The evolution equations, (14)–(17), leave the density profile
largely invariant, but the spin distribution changes dramatically
as the magnetization is wound up into a helix according to the
equations

∂t m +
∑

j

∇j J j + αx3 ẑ × m = 0, (33)

∂t J j + α‖P‖∇j m + α⊥P⊥∇j m + ω2
j xj m

+
(

αx3 ẑ + W

�
m

)
× J j = − J j

τD

. (34)

The full numerical solution of these equations is presented in
Sec. IV. In order to gain a qualitative understanding of the spin
evolution in a trapped gas, it is instructive to consider first the
approximate analytical solutions in the homogeneous case.

If the scattering time τD is much shorter than any other
relevant time scale, for instance, the dephasing time τ =
(D⊥α2)−1/3 due to the helix, the current reaches a steady state
and its time derivative vanishes in the rotating frame, ∂t J j =
−αx3 ẑ × J j . Defining D⊥

0 = α⊥τD and μm = −τD�mf =
γ M, one finds

J j + D⊥
0 ∇j m + τDω2

j xj m − μm × J j = 0. (35)
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This equation is solved by the steady-state current

J j = − D⊥
0

1 + μ2m2
{∇j m + μm × ∇j m + μm(μm · ∇j m)}

− τDω2
j xj m, (36)

where D⊥
0 , μ, and τD may still depend on position; the last

term arises due to the trapping potential. Inserting this current
into the continuity equation for the magnetization, (33), yields

∂t m = −αx3 ẑ × m +
∑

j

ω2
j∇j (τDxj m) + ∇j

D⊥
0

1 + μ2m2

×{∇j m + μm × ∇j m + μm(μm · ∇j m)}.
The Leggett solution [5] is recovered in the homogeneous limit
ωj = 0, where m2 remains constant in space:

∂t m = −αx3 ẑ × m + D⊥
0

1 + μ2m2
{∇2m + μm × ∇2m}.

In this case the longitudinal magnetization mz remains un-
changed, while the transverse magnetization m+ = mx + imy

evolves as

∂tm+ = −iαx3m+ + D⊥
eff(1 + iμmz)∇2m+ (37)

with effective diffusivity D⊥
eff = D⊥

0 /(1 + μ2m2). Since m2 is
constant in space, this is now a linear diffusion equation, albeit
with a complex diffusion coefficient.

In the spin-echo protocol, the gradient α winds up the
transverse magnetization m+ = mx + imy into a helix along
the x3 direction. A transverse spin current J3+ ∼ ∂3m+
appears, which tends to smooth the helix. If J3+ has a
component perpendicular to the local magnetization m ≈ mz ẑ
(at small tipping angle) it precesses around it at frequency
�mf = Wmz/�. At time tπ , a π pulse around the y axis in
Bloch space is applied; this is equivalent to reversing the sign
of α. The subsequent time evolution unwinds the helix until
the echo time te = 2tπ , where the transverse magnetization is
again homogeneous. In the absence of spin rotation, γ = 0,
the modulus of the transverse magnetization A(t) = |m+(t)|
at time te decays as a cubic exponential [5],

A(te) = A0 exp

(
−D⊥

0 α2t3
e

12

)
, (38)

where A0 = A(0). This result is approximately correct even
for γ �= 0 if the tipping angle θ is small, |m+| � |mz|, and for
short times. For finite γ , the magnetization decay is slowed
down and is given by [4]

A(te) = A0

√
1

η
W

(
η exp

[
η − D⊥

0 α2t3
e

6
(
1 + γ 2M2

z

)])
, (39)

φ(te) = γMz ln

(
A(te)

A0

)
, (40)

where η = γ 2(A0/n)2/(1 + γ 2M2
z ) for polarization Mz, and

W(z) is the Lambert-W function. This solution for the homoge-
neous system is used in the analysis of the experimental data to
fit the diffusivity D⊥

0 and the apparent Leggett-Rice parameter
γ from the measured magnetization decay and phase shift φ of
the trapped system. In the following the full spin evolution in

the trap is computed explicitly to determine to what extent the
homogeneous solution is still applicable to the trapped gas.

IV. RESULTS

In the trapped gas, the assumptions which led to the analyt-
ical solutions in Sec. III (steady-state current, homogeneity)
are not satisfied. Instead, a full numerical solution of the
spin evolution equations, (33) and (34), is necessary. The
initial condition in the experimental protocol [4] is a fully
polarized cloud of fermionic atoms with a thermal profile, (19)
and (22), for tipping angle θ . This distribution is stationary
in the absence of an external magnetic field gradient α.
Due to the density profile, (19), also the coefficients α⊥(x),
τ⊥(x), and W (x) depend on the position in the trap. For a
small tipping angle |m+| � |mz| the gas remains almost fully
polarized, hence the density profile and the coefficients are
time independent even in the presence of the gradient α.

In the numerical solution, the experimental parameters [4]
are used: gradient α = 1.67 μm−1 kHz, trap frequency ω3 =
2π × 750 Hz, ω̄ = 2π × 470 Hz, roughly N ∼ 40 000 atoms
of 40K with a Fermi energy of EF = 2π� × 29 kHz, and
Thomas-Fermi radius RTF = 5.1 μm. Even though the Fermi
gas is initially fully polarized, the Fermi wave vector kF =
12 μm −1 and the Fermi time τF = 0.0087 ms are taken for a
hypothetical balanced gas of the same atom number in order
to recover the standard relation n = k3

F /3π2 for the total den-
sity [4]. At the lowest experimental temperature, T ≈ 280 nK,
the initial reduced temperature is (T/TF )i = 0.2 and λ =
0.52 μm. The phase-space density at the trap center reaches
λ3n = 7.3, well within the quantum degenerate regime.

In Fig. 2, the helical state of the local magnetization in
the trap at 1/kF a = −2 is shown for different times tπ (left
column). At this time, the π pulse is applied (equivalently,
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FIG. 2. (Color online) Transverse magnetization profiles on the
BCS side 1/kF a = −2 at temperature (T/TF )i = 0.2 and times tπ
just before the π pulse (left column) and at the echo time te = 2tπ
(right column). Upper panels display the amplitude A = |m+|; lower
panels, the phase angle φ = arg m+. Solid curves in each panel are
for a trapped gas at te = 0.2 ms to te = 1.2 ms in comparison with a
homogeneous gas at te = 1.2 ms (dashed line).
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the sign of α is reversed), and the subsequent time evolution
unwinds the helix until the echo time te = 2tπ (right column),
which is chosen between te = 0.2 ms and te = 1.2 ms. For
comparison, the density profiles for a homogeneous gas with
te = 1.2 ms are shown as dashed lines. At time tπ , the φ profiles
of the trapped and the homogeneous gas have a similar slope
and are shifted toward negative phase angles by spin rotation.
At time te, instead, the phase angle of the homogeneous gas
is again homogeneous, but m+ for the trapped gas remains
in a helical state. Therefore, the trap-averaged transverse
magnetization decays quickly even though the local m+ is
still sizable, and the apparent slope φ(te)/Mz ln(A(te)/A0) is
lower than in the homogeneous case, where it reaches the
microscopic value γ = −WmzτD/� according to Eq. (40). As
we see below, this effect leads to a saturation of the apparent
γ for weak coupling.

Note that the magnetization profiles are not symmetric with
respect to x3: this is due to the spin-rotation term in Eq. (37)
producing an additional phase shift on top of the gradient α.
Consequently, if one reverses the sign of the scattering length
a, the sign of γ is approximately reversed, and the resulting
magnetization profile is the mirror image with x3 �→ −x3. Note
also that at strong coupling 1/kF a = 0, the phase profile at te
is nearly homogeneous at the trap center (not shown), and the
kinetic coefficients for the trapped gas approach those in the
homogeneous case.

Figure 3 shows the decay of the trap-averaged transverse
magnetization with time (left column) and the growth of the
phase angle φ with the slope of the magnetization decay
(right column). From these plots, the apparent Leggett-Rice
parameter γ = φ(te)/Mz ln(A(te)/A0) can be read off as the
slope of the curve through the origin. This value of γ is then
used to fit the magnetization decay on the left side of Fig. 3 to
the analytical decay function, (39), with diffusivity D⊥

0 . Here,
I follow the analysis of the experimental data in Ref. [4] and
fit the decay of the trapped gas to the homogeneous solution.

In Fig. 4, the apparent Leggett-Rice parameter γ extracted
above is plotted versus the interaction strength, from the BCS
regime (left) via unitarity (1/kF a = 0) to the repulsive branch
(right). For a trapped gas, I find that the apparent γ saturates
for weak coupling on both the BCS and the repulsive sides.
This behavior differs qualitatively from the homogeneous case,
where γ continues to increase linearly at weak coupling [cf.
Eq. (32)] (solid black line). The trap calculation thus explains
the saturation of γ observed in experiments [4]. The absolute
value of γ for the trapped gas depends on the tipping angle θ

of the initial polarization: for a large tipping angle θ = π/3
as in the experiment, the Leggett-Rice parameter γ saturates
at larger values than in the case of a small tipping angle θ =
π/30. The value to which γ saturates also depends on the
strength of the gradient α, in contrast to the homogeneous
case (see below). Figure 4 also shows that the Leggett-Rice
parameter changes sign, reflecting the sign of the effective
interaction between quasiparticles, which is attractive on the
BCS side and repulsive on the repulsive branch [4]. The sign
change occurs for slightly positive values of 1/kF a.

The center panel in Fig. 4 shows the bare transverse
diffusivity D⊥

0 . Again, the trap diffusivity is significantly
lower than the homogeneous value (solid black line) at weak
coupling and agrees with experiment. Once γ is known, the
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FIG. 3. (Color online) Amplitude and phase of the transverse
magnetization m+ at temperature (T/TF )i = 0.2 and small tipping
angle θ = π/30 (Mz = 0.995). Left: analytical solution, (39) (solid
line), with D⊥

0 adjusted to fit the trap calculation (circles). Right:
fit of γ from the slope of the phase shift φ in Eq. (40). Top,
1/kF a = −2 (BCS side); center, 1/kF a = 0 (unitarity); bottom,
1/kF a = 2 (repulsive branch).

bare diffusivity D⊥
0 is found from the fit of the analytical

solution, (39), to the magnetization decay in Fig. 3.
The bottom panel in Fig. 4 displays the ratio

λ0 = − �γ

2mD⊥
0

= Wn

2mα⊥
. (41)

It measures the strength of the effective interaction irrespective
of the scattering time τD and follows the sign change of
γ since D⊥

0 > 0. Again, the trap calculation agrees with
the experimental data except in the instability region 0 <

1/kF a � 1.3 [4], while the homogeneous gas has more
pronounced interaction effects.

Spin rotation in a trapped gas is determined qualitatively
by the ratio between different length scales: the trap size
RTF ≈ 5 μm, the helix pitch �helix = 2π/(αte/2) ≈ 4 μm for
te = 2 ms, and the mean free path �mfp = vF τD , which
ranges from 0.5 μm at unitarity to 3.8 μm at 1/kF a = −2.
In simulations with a gradient α larger than the experi-
mental value, several helix pitches fit into the trap, RTF �
�helix, and the trap-averaged diffusivity and γ are equal
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FIG. 4. (Color online) Interaction effect on spin transport:
Leggett-Rice parameter γ , bare diffusivity D⊥

0 , and interaction
parameter λ0 as a function of 1/kF a at degenerate temperature
(T/TF )i = 0.2. Results for small (θ = π/30; circles) and large
(θ = π/3; triangles) tipping angles are shown and compared to the
experimental data [4] (squares).

to their homogeneous values as long as also �mfp < �helix

but saturate for larger �mfp. This is in marked contrast to
longitudinal spin diffusion, where a scaling factor of about
5 was found to relate the trap-averaged and homogeneous
diffusivity D‖ [17,23,24]. For weaker gradients where �helix >

RTF, less than one helix pitch fits into the trap and the
homogeneous solution is reached not even at unitarity where
RTF � �mfp.

Finally, Fig. 5 shows the temperature dependence of
the Leggett-Rice parameter at unitarity. γ decreases with
temperature, which is understood as follows: the two-body
scattering amplitude is purely imaginary at unitarity and would
imply a vanishing γ ∼ Re T . Hence, the observed finite value
of γ in the quantum degenerate regime (T/TF )i < 1 is a
many-body effect due to medium scattering. The presence of
the medium enhances both the dissipative and the reactive
effects of scattering at low temperatures, and more so in the
homogeneous gas than in the trap, where only the core is
strongly interacting.

Similarly, the diffusivity reaches values of D⊥
0 � 2�/m in

the quantum degenerate regime (center panel), in agreement
with experiment, while the ratio λ0 becomes large only at the
lowest temperatures (lower panel).
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FIG. 5. (Color online) Temperature effect on spin transport at
unitarity: Leggett-Rice parameter γ , bare diffusivity D⊥

0 , and inter-
action parameter λ0 as a function of the initial temperature (T/TF )i .
At unitarity the results for small (θ = π/30; circles) and large
(θ = π/3; triangles) tipping angles differ very little; (blue) squares
are experimental data [4].

V. CONCLUSION

To summarize, a spin-echo sequence in a trapped Fermi
gas is modeled by a nonlinear and complex diffusion equation
for the transverse magnetization. The spin evolution exhibits
the Leggett-Rice effect of strength γ = μn, which appears to
saturate for weak coupling, and a bare diffusivity much lower
than expected for a homogeneous gas of the same temperature
and interaction strength. These results are obtained without
any fit parameters and agree very well with the weak-coupling
data measured recently for a trapped gas of ultracold fermionic
40K atoms [4]. The present calculation provides an intuitive
interpretation of the observed saturation of γ : while the spin
helix in the homogeneous gas is completely unwound at the
echo time te, the trapped gas remains partially in a helical
state, with the average transverse magnetization A(te) strongly
reduced and a smaller phase shift φ(te). At weak coupling
1/|kF a| � 2 the kinetic theory employed in this study is well
controlled and includes the relevant interaction effects.

At strong coupling 1/kF a = 0 (unitarity), the Leggett-Rice
effect is absent at the two-body level and arises only due to
many-body medium scattering. The trap calculation at strong
coupling agrees with the experimental results qualitatively;
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the remaining differences may be due to reheating in a
demagnetized Fermi gas [3,4] or due to interaction corrections
to the equation of state which were not included in this study;
they remain a topic for future work.

Ultracold Fermi gases are thus ideal systems to study the
interaction and temperature dependence of the Leggett-Rice
effect and the spin transport coefficients. The spin dynamics
of the trapped gas (Fig. 2) is much more complex than in
the homogeneous case and requires a numerical solution. The
spin evolution simplifies near unitarity if RTF > �helix > �mfp,
in which case the homogeneous solution is recovered without
any trap-related scaling factors. The decay of the trap-averaged
magnetization can be analyzed by the methods developed

for the homogeneous case: the magnetization decay fits the
homogeneous solution surprisingly well (Fig. 3). This study
shows that the extracted transport coefficients for the trapped
gas can differ markedly, especially at weak coupling, from
those of the corresponding homogeneous system (Fig. 4).
Conveniently for the interpretation, the sign of γ , which reveals
the repulsive or attractive character of the effective interaction,
does not change with the trap average.
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