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Shear viscosity and spin diffusion in a two-dimensional Fermi gas

Tilman Enss
Physik Department, Technische Universität München, James-Franck-Straße, 85747 Garching, Germany
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We investigate the temperature dependence of the shear viscosity and spin diffusion in a two-dimensional
Fermi gas with contact interactions, as realized in ultracold atomic gases. We describe the transport coefficients
in terms of a Boltzmann equation and present a full numerical solution for the degenerate gas. In contrast to
previous works we take the medium effects due to finite density fully into account. This effect reduces the
viscosity-to-entropy ratio η/s by a factor of 3, and similarly for spin diffusion. The trap-averaged viscosity
agrees well with recent measurements by Vogt et al. [Phys. Rev. Lett. 108, 070404 (2012)].
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I. INTRODUCTION

Ultracold atoms have emerged as a versatile system to study
quantum effects in strongly interacting fermionic and bosonic
many-body systems with excellent control over the Hamilto-
nian parameters [1]. Transport properties provide particularly
valuable probes which can reveal the nature and strength of the
effective interaction between particles. The shear viscosity η,
for example, measures the internal friction in a quantum fluid,
which is lowest for strongly interacting systems. For certain
relativistic gauge theories the ratio of the shear viscosity to
the entropy density s has been computed using the anti–de
Sitter and conformal field theory correspondence and takes
the value (η/s)min = h̄/(4πkB) [2]. It has been conjectured
that this value provides a lower bound also for a wider class of
relativistic field theories [3], and quantum fluids which saturate
this bound are denoted as “perfect fluids” [4]. Subsequently
quantum fluids ranging from (nonrelativistic) ultracold atoms
to (relativistic) quark-gluon plasmas have been investigated in
the search for a perfect fluid which saturates this bound [4]. In
the solid state context, the viscosity of two-dimensional (2D)
graphene layers has been shown to decrease logarithmically
with increasing temperature [5], coming reasonably close to
the lower limit. Another example is the viscosity of the unitary
Fermi gas in three dimensions which has been measured
recently [6–8] and comes rather close to the hypothetical
bound for temperatures below the Fermi temperature. This
is in agreement with calculations based on kinetic theory for
low [9–11] and high temperatures [12–15]. These calculations
have been confirmed and refined in approaches based on the
Kubo formula with self-energy [16] and full vertex corrections
[17] and recently also in the form of a quantum Monte Carlo
simulation [18]. A similar lower bound is also seen in the
spin-diffusion coefficient D which has a minimum close to the
quantum limit ∼ h̄/m [19,20], again in good agreement with
calculations based on kinetic theory [19,21].

Recently, interacting ultracold gases have been realized in
two dimensions where quantum and interaction effects are
even stronger than in three dimensions [22–26]. Measurements
for a trapped two-component 2D Fermi gas with strong inter-
actions have found the viscosity to decrease with decreasing
temperature and increasing interaction strength [27].

In this work we compute the shear viscosity η and the spin-
diffusion coefficient D of an interacting two-component 2D
Fermi gas within kinetic theory. Previous studies have investi-
gated transport without medium effects on the scattering cross
section [28–30] and found a minimum value η/s ≈ 20(η/s)min

[28,29]. We now include medium scattering, which is known
to strongly influence the dynamical properties [13–15,23,31],
and find that it substantially lowers the viscosity by a factor
of about 3 already above Tc. For the spin-diffusion coefficient
we find a similar reduction.

The organization of the paper is as follows: In Sec. II
we introduce the model Hamiltonian and the T matrix in
the medium, and then derive the quantum kinetic equations
in Sec. III. A discussion of the zero mode in spin diffusion
is found in Sec. III C. Readers familiar with the Boltzmann
approach may skip ahead directly to the results, which
are presented in Sec. IV. We close with a comparison to
experiment in Sec. V and conclude in Sec. VI.

II. THE MODEL

We consider two species σ = ↑ , ↓ of fermionic atoms in
two dimensions, which are described by the grand canonical
Hamiltonian

H =
∑
kσ

(εkσ − μσ )c†kσ ckσ + g0

V

∑
kk′q

c
†
k↑c

†
k′↓ck′−q↓ck+q↑,

with the free single-particle dispersion εkσ = k2/2mσ (h̄ ≡ 1),
spin-dependent chemical potential μσ , and area V . The model
is formulated for the general case of a heteronuclear mixture
with different values for m↑, m↓, μ↑, and μ↓; however, all
numerical calculations are carried out for the balanced case
μ↑ = μ↓ = μ for equal masses m = m↑ = m↓ in view of the
experiment [27]. At ultracold temperatures the attractive s-
wave contact interaction g0 acts only between different species
due to the Pauli principle. The two-body scattering between
single ↑ and ↓ fermions is given by the exact two-body T

matrix [32,33]

T0(E) = 2π/mr

ln(εB/E) + iπ
(1)
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in terms of the reduced mass m−1
r = m−1

↑ + m−1
↓ . The pole at

E = −εB < 0 corresponds to the two-body bound state, and
the binding energy εB = 1/(2mra

2
2D) defines the 2D scattering

length a2D. This bound state is always present in an attractive
2D Fermi gas [33,34]. The vacuum scattering amplitude for
two particles with momenta k and −k in the center-of-mass
frame is then given by [1] f (k = |k|) = 2mrT0(k2/2mr ) =
4π/[ln(1/k2a2

2D) + iπ ]. The scattering amplitude depends
logarithmically on energy in both the low- and the high-
energy limits: this is due to anomalous (logarithmic) quantum
corrections to the classically scale-invariant contact interaction
[35,36].

At finite density the two-particle scattering in the presence
of the medium is described by the many-body T matrix
T (q,ω). It can be calculated from the solution of the Bethe-
Salpeter equation for the ladder approximation of repeated
particle-particle scattering [37–39], and in the general case of
spin imbalance it is given by [23]

T −1(q,ω) = T −1
0 (ω + i0 + μ↑ + μ↓ − ωq)

+
∫

d2k

(2π )2

f 0
↑ (k) + f 0

↓ (k + q)

ω + i0 + μ↑ + μ↓ − εk↑ − εk+q↓
(2)

with the Fermi-Dirac distribution

f 0
σ (k) = 1

eβ(εkσ −μσ ) + 1
, (3)

β = 1/(kBT ), and ωq = q2/(8mr ). While this integral is
known analytically at T = 0 [23], at finite temperature we
can perform only the angular average analytically but have to
compute the radial integral numerically. Compared to the case
with the bare T matrix this increases the numerical effort in
solving the Boltzmann equation considerably.

III. TRANSPORT PROPERTIES FROM
THE KINETIC APPROACH

We use the kinetic approach to derive the transport coeffi-
cients in our system. This approach is valid provided quantum
interference effects are negligible and deviations from well-
defined quasiparticles are small, which we assume in the
following. This assumption is questionable for temperatures
well below the Fermi temperature TF and the results should be
compared to calculations within a formalism which does not
require the quasiparticle picture to be valid [17,18].

The Boltzmann equation reads

[∂t + v∂x + Fext∂k]fσ (k) = −Icoll[fσ ,f−σ ], (4)

which is an integro-differential equation for the quasiparticle
distribution function f↑,↓(k). The left-hand side accounts for
perturbations driving the system away from the equilibrium
situation, while the right-hand side accounts for collisions
between quasiparticles.

A. General formalism: Variational approach

The approach we take is standard but we present it such
that generalizations are possible in a straightforward manner.
An excellent account of this approach has been given in

Refs. [40–42] among others. The left-hand side of Eq. (4)
consists of three independent differential operators and is
henceforth referred to as the driving term, owing to the fact that
they drive the system away from equilibrium. The individual
terms describe temporal variations (∂t ), spatial variations (∂x),
as well as external forces (∂k), while the right-hand side
describes collisions due to interactions (or in other systems also
disorder) and consequently is called the collision integral. One
can solve for the nonequilibrium distribution function in the
linear response regime, assuming that the deviation from the
equilibrium distribution function can be obtained in an expan-
sion in the perturbation. This schematically assumes the form

fσ (k) = f 0
σ (k) + 1

T
f 0

σ (k)
[
1 − f 0

σ (k)
]
f 1

σ (k) (5)

for fermions, where f 0
σ (k) is the Fermi-Dirac distribution

[see Eq. (3)], and f 1
σ is linear in the perturbation and

otherwise a generic function (this is true for any type of
perturbation considered here). The factor 1

T
f 0

σ (k)[1 − f 0
σ (k)]

is introduced for later convenience. In this limit it is consistent
to approximate the collision integral by

Icoll[fσ ,f−σ ] = C
[
f 1

σ ,f 1
−σ

] + O
(
f 2

σ ,f 2
−σ

) ≈ C
[
f 1

σ ,f 1
−σ

]
(6)

with

C
[
f 1

σ ,f 1
−σ

]
= 1

T

∫
k1,q

δ(εkσ + εk1−σ − εk+qσ − εk1−q−σ )

× |T (k + k1,εkσ + εk1−σ − μσ − μ−σ )|2
× {

f 0
σ (k)f 0

−σ (k1)
[
1 − f 0

σ (k + q)
][

1 − f 0
−σ (k1 − q)

]}
× [

f 1
σ (k) + f 1

−σ (k1) − f 1
σ (k + q) − f 1

−σ (k1 − q)
]

(7)

where
∫

k = ∫
d2k

(2π)2 .
We are interested in the stationary solution, i.e., ∂tfσ = 0 on

the left-hand side of Eq. (4). To linear order in the perturbation
one can replace fσ → f 0

σ on the left-hand side and write

Dαf 0
σ = −C

[
f 1

σ ,f 1
−σ

]
, (8)

where Dα in the most generic case is a tensor differential
operator acting on f 0

σ and α labels the perturbation we
consider. In general we have

Dσ
α ≡ Dαf 0

σ = − 1

T
f 0

σ

(
1 − f 0

σ

)
I ij
σ F ij

σ (9)

where we use the Einstein summation convention. At this
point we have introduced F

ij
σ as a generalized force field

and I
ij
σ as a generalized projection. For reasons of a concise

presentation we assume from now on that we can absorb the
spin dependence of F

ij
σ into the factor I

ij
σ and work with F ij

only, which acts in the same way on both spin species. For
concreteness, in the case of an electrical conductivity we have
F

ij
σ = Eiδij and I

ij
σ = evi

k,σ δij . This general form also dictates
the form of the ansatz for f 1

σ , which we choose as

f 1
σ (k) = F ij

σ χij
σ (k) = F ij

σ I ij
σ gσ (k). (10)
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The generalized current then reads

j ij =
∑

σ

∫
k
I ij
σ fσ (k)

=
∑

σ

1

T

∫
k
f 0

σ

(
1 − f 0

σ

)
I ij
σ F kl

σ χkl
σ

= −
∑

σ

∫
k
χij

σ Dσ
α

= −〈χij |Dα〉 = −S[χij ] F ij , (11)

where |χij 〉 = (χij

↑ ,χ
ij

↓ ) is a spinor and the components are
themselves vectors in function space. In the last line we have
introduced a scalar product. Using this definition of a scalar
product we can also define

C[χij ] = 1
2 〈χij |C|χij 〉F ij . (12)

We can now introduce a functional

Q[χij ] = S[χij ] + C[χij ] (13)

whose extremum in function space,

∂χσ
Q[χij ]|

χ
ij,max
σ

= 0, (14)

can be shown to lead to the Boltzmann equation for the re-
spective species. Conversely, the Boltzmann equation implies
that the current reads

j ij = −S
[
χij,max

σ

]
F ij = 2C

[
χij,max

σ

]
F ij

= −2Q
[
χij,max

σ

]
F ij . (15)

The proper strategy to solve the Boltzmann equation is thus to
maximize the functional Q[χij

σ ] for χ
ij
σ = I

ij
σ gσ (k) by varying

gσ (k). This is done by identifying the physically most relevant
modes gnσ (k) and writing gσ (k) as an expansion with respect
to these modes:

gσ (k) =
∑

n

λngnσ (k). (16)

Maximizing Q[gσ (k)] with respect to the expansion coeffi-
cients λn leads to a matrix equation for λn which can be solved
by matrix inversion. Usually the most relevant modes are the
slow modes, which are related to almost conserved quantities
whose relaxation is described by the collision kernel.

B. The shear viscosity within Boltzmann theory

We consider a two-component Fermi gas in its most general
form, allowing for different chemical potentials for the two
species, i.e., μ↑ and μ↓, and a species-dependent mass mσ .
We are concerned with a system without external forces, i.e.,
Fext = 0, in its stationary state ∂tfσ = 0. We assume a uniform
flow in the x direction and a velocity gradient in the y direction,
i.e., u = (u(y),0), which leads us to analyze the Boltzmann
equation according to

v∂xfσ (k) = −Icoll[fσ ,f−σ ]. (17)

The collision term for the contact interaction in its linearized
version was introduced in Eq. (7). The driving term reads

Dσ
η = − kxky

mσT

∂u

∂y
f 0

σ (k)
[
1 − f 0

σ (k)
]
. (18)

Following the logic of Sec. III A, we define more generally

F ij
σ = ∂iuj + ∂jui − 2

d
δij ∂lul,

(19)
I ij
σ = vi

k,σ kj ,

with ui being the components of the flow velocity of the fluid.
The generalized current is the viscous part of the stress tensor
describing hydrodynamics in two spatial dimensions,

j ij = −ηF ij − ζ δij ∂lul, (20)

where η is the shear viscosity and ζ the bulk viscosity.
Combining (20) and (11), one obtains

η = S[χij ] (21)

for the exact solution |χij 〉. The variational principle provides
us with a lower bound. If we make an ansatz |χ ansatz〉 using a
finite function set gnσ (k), this implies [41]

η � S[χ ansatz]|χ ansatz=χ ansatz
max

, (22)

where |χ ansatz
max 〉 corresponds to the optimal choice for a finite

number of the parameters λn introduced in Eq. (16) which
maximizes Eq. (14). In the case of the viscosity there is no
conserved quantity which is excited. We found that, just as
in the three-dimensional case [16], the choice for the modes
Eq. (10)

gσ (k) = 1 (23)

yields results which are very close to the exact result. We
have checked this statement for different sets of modes, for
instance gnσ (k) = kn for n = 0, . . . ,N up to N = 10 as well
as Chebyshev polynomials up to the same order, and have
found no pronounced differences.

C. Spin diffusion within Boltzmann theory

Spin diffusion in a metal describes the response of a system
of fermions to a gradient in a magnetic field. In our setup this
translates to the two fermion species responding to gradients
in chemical potentials, which are opposite for the two species.
Again we discuss the most generic situation, which is that
there are two species of fermions with different chemical
potentials μ↑ �= μ↓ and different atomic masses m↑ �= m↓. We
assume there is a chemical potential for the individual atoms
μσ + r · ∇μσ . The distribution function is accordingly driven
out of equilibrium by

Dσ
s = − k · ∇μσ

mσT
f 0

σ

(
1 − f 0

σ

)
. (24)

In the following we assume that the absolute value of the
gradient is the same for both species but counteracts, ∇μσ =
σ∇μ, such that

Dσ
s = −σ

k · ∇μ

mσT
f 0

σ

(
1 − f 0

σ

)
. (25)

Again, we identify the generalized force and projector

F ij = ∂iμδij ,
(26)

I ij
σ = σvi

k,σ δij .
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The spin conductivity is again bounded from below by

σs � S[χ ansatz]
∣∣
χ ansatz=χ ansatz

max
, (27)

and we can deduce the spin-diffusion coefficient D via

D = σs

χs

(28)

with the spin susceptibility of the free Fermi gas

χs = m↑f 0
↑ (k = 0) + m↓f 0

↓ (k = 0)

2π
. (29)

In the case of the viscosity the driving term does not couple to a
conserved quantity such as the total energy or the momentum.
Consequently, the variational approach can be employed with
relatively little care, and very few modes suffice to solve the
problem essentially exactly. In the case of the spin diffusion
this ceases to be true and the driving term in general does not
decouple from the momentum mode. The momentum mode
corresponds to the choice

gσ = σmσ , (30)

and if we calculate the overlap of the momentum mode with
the driving term within this variational ansatz it reads

〈χ |Ds〉 = T

π
[m↑ ln(1 + eβμ↑ ) − m↓ ln(1 + eβμ↓ )].

This is zero if μ↑ = μ↓ = μ and m↑ = m↓ = m, meaning
the momentum mode is not excited. If these conditions do
not hold the momentum mode is excited and it cannot be
relaxed. This formally leads to an infinite spin conductivity
σs . In metals the standard situation is spin balance with a
finite spin conductivity, as has been discussed recently in the
context of graphene [43]. In the experiments under discussion
two clouds of different spin species are prepared to collide in
the center of the trap. If the two clouds are equal in numbers of
particles and masses the unified cloud will reside in the center
of the trap. One could excite the zero mode if one prepared
different densities and/or different masses for the different spin
species. The zero mode of the spin diffusion then has a very
simple and intuitive physical meaning and it corresponds to a
center-of-mass motion.

In our concrete setup in a balanced system, we work with
the choice

gσ = m, (31)

which is not a zero mode of the collision integral and has finite
overlap with the driving term. We have again checked more
generic mode choices and found this to provide an excellent
variational ansatz.

IV. RESULTS

We have obtained the viscosity and spin diffusion from
the variational approach using the variational ansatz functions
introduced in Eqs. (23) and (31). The transport coefficients
are normalized by the respective thermodynamic quantities
density, pressure, and entropy density, and for consistency they
all have to be computed at the same level of approximation. A
definite prescription is provided by the large-N expansion [15],

which interpolates between free fermions (N = ∞) and the
physical case of interacting fermions (N = 1): to leading order
in 1/N , the collision integral with the full medium scattering
T matrix is consistent with using the density and pressure of
the free Fermi gas. Specifically, the density of a free balanced
2D Fermi gas is

nλ2
T = 2 ln(1 + z) = 2/θ (32)

with thermal length λT = √
2π/mkBT and fugacity z =

exp(βμ) = exp(1/θ ) − 1 in terms of the reduced temperature
θ = T/TF . The pressure is expressed by the polylogarithm
Lis(z) as

P = −nkBT θ Li2(1 − e1/θ ), (33)

and the internal energy density ε = E/V = P equals the
pressure by scale invariance. The entropy density

s = ε + P − μn

T
= nkB{−2θ Li2(1 − e1/θ ) − ln(e1/θ − 1)}

becomes in the high-temperature classical limit θ → ∞
s = nkB{2 + ln θ + O(θ−2)}.

Henceforth we will set kB = 1.

A. Viscosity

We compute the viscosity of the strongly interacting
2D Fermi gas with full medium effects. The case with
Pauli blocking and the bare vacuum scattering cross section,
including the limits of high and low temperature, has been
discussed in Refs. [28–30]. Our main finding is that the
medium increases scattering for strong interaction and thereby
substantially lowers the transport coefficients; see Fig. 1. For
vacuum scattering (squares) the system always appears to
be in the normal-Fermi-liquid phase and the upturn of the
viscosity for low temperatures is due to Pauli blocking. With
medium scattering the viscosity decreases down to a finite
temperature Tc where the medium T matrix acquires a pole,
T −1(q = 0,ω = 0) = 0 (Thouless criterion). Below Tc this
pole would formally lead to a diverging collision integral
C and η → 0 in this approximation. A calculation of the
viscosity in the superfluid B phase of 3He for T < Tc found

 0.1

 1

 10

Tc 0.1  1  10

η/
− hn

T/TF

classical gas
w/ Pauli blocking

Pauli blocking + medium scattering

FIG. 1. (Color online) Shear viscosity α = η/n with and without
medium effects, at strong interaction εB/εF = 2. While Pauli block-
ing (squares) increases the viscosity with respect to the classical
gas (solid line), medium scattering (circles) substantially lowers the
minimum as Tc is approached from above.
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 0.1

 1

 10

 0.1  1  10

η/
s

T/TF

EB/EF=0.1
EB/EF=0.2
EB/EF=0.5
EB/EF=1.0
EB/EF=2.0

FIG. 2. (Color online) Viscosity-to-entropy ratio η/s with
medium scattering above Tc for different interaction strengths
εB/εF = 0.1,0.2,0.5,1,2 (from top to bottom). The dashed line
indicates the bound 1/(4π ).

that Pauli blocking and enhanced scattering cancel precisely
and η approaches a finite value for T → 0 [10].

In Fig. 2 the ratio of the viscosity to entropy density η/s

is compared for different values of the interaction strength.
As the binding energy εB is lowered, Tc as defined by the
Thouless criterion is shifted to lower temperatures, indicated
by the end points of the solid lines (the end points are at
T = 1.04 Tc). As an estimate, the minimum for εB/εF = 0.5
is located at around T/TF = 0.6 at a value of η/s = 0.15, only
about twice the proposed string-theory bound η/s = 1/(4π ).

B. Spin diffusion

Equivalently, we have carried out the analysis for the spin-
diffusion coefficient D. In the high-temperature limit [29]

D = Qθ

4π
, Q = π2 + ln2

(
3T

2εB

)
, (34)

the diffusion coefficient depends linearly on θ with logarithmic
corrections; see Fig. 3. Pauli blocking (squares) increases
diffusion, while the inclusion of medium effects leads to a
strong reduction of the diffusion coefficient D (circles).

 0.1

 1

 10

Tc 0.1  1  10

m
D

/− h

T/TF

classical gas
w/ Pauli blocking

Pauli blocking + medium scattering

FIG. 3. (Color online) Spin-diffusion coefficient D in the high-
temperature limit of a classical gas (solid line), including Pauli
blocking (squares) and with the full medium scattering cross section
(circles).

V. COMPARISON TO EXPERIMENT

In order to compare our results for the balanced homoge-
neous 2D Fermi gas with experiments in a trap we perform
an average over the density profile of the trap, assuming the
local density approximation to hold. At high temperatures the
density profile in the trap is [28]

n(r) = N

πσ 2
e−r2/σ 2

(35)

with σ 2 = 2T/(mω2
⊥), radial trapping frequency ω⊥, and total

density
∫

d2r n(r) = N . The local Fermi temperature is given
in terms of the density as

TF (r) = π

m
n(r) (36)

such that the local reduced temperature is

θ (r) = T

TF (r)
= mT

πn(r)
(37)

and the local pressure of the free Fermi gas is [cf. (33)]

P (r) = −n(r)T θ (r) Li2(1 − e1/θ(r)). (38)

The frequency-dependent shear viscosity of the homogeneous
system is in kinetic theory [15,28,44]

η(ω) = Pτ

1 + ω2τ 2
(39)

in accordance with the viscosity sum rule [45]. From the
dimensionless ratio η(0)/n = α(θ ), one obtains the viscous
scattering time

τ = η(0)

P
= n

P
α(θ ). (40)

The local viscosity can be defined in terms of the local reduced
temperature θ (r),

η(ω,r) = n(r)α(θ (r))
1 + ω2[n(r)α(θ (r))/P (r)]2

. (41)

The spatial integral of the viscosity diverges at ω = 0 because
the dc viscosity is density independent in the outer regions of
the trap [28,29]. In order to obtain a finite integral, the viscosity
is evaluated at the quadrupole frequency ωQ = √

2ω⊥ [27],

〈α〉 = 1

N

∫
d2r η(ωQ,r). (42)

The global Fermi temperature TF = √
Nω⊥ allows us to define

a global reduced temperature � = T/TF , so that the trap-
averaged viscosity can be written as

〈α(�)〉 = 1

N

∫
d2r n(r)

α(θ (r))

1 + (ωQ

ω⊥
)2 α2(θ(r))

N�2p2(θ(r))

(43)

with dimensionless pressure p(θ (r)) = P (r)/[n(r)T ]. We can
change variables and integrate θ (r) = 2�2, . . . ,∞,

〈α(�)〉 = 2�2
∫ ∞

2�2

dθ

θ2

α(θ )

1 + (ωQ

ω⊥
)2 α2(θ)

N�2p2(θ)

. (44)

Finally, the quadrupole damping rate is [27]

�Q

ω⊥
= 2〈α(�)〉

mω⊥〈r2〉 = 〈α(�)〉√
N�

(45)
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 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  2  4  6  8  10

Γ Q
 / 

ω
⊥

ln(kFa2D)

classical gas
w/ medium scattering

expt. Vogt et al. (2012)

FIG. 4. (Color online) Quadrupole damping rate �Q/ω⊥ vs the
interaction strength of the trapped gas at T/TF = 0.3 and EF /h =
6.4 kHz, with radial trapping frequency ω⊥ = 2π × 125 Hz and N =
2620 particles.

with 〈r2〉 = σ 2 for the density profile in Eq. (35). In the high-
temperature limit the integrals can be solved analytically and
yield [28]

α(θ ) = Rθ

2π
, R = π2 + ln2

(
5T

2εB

)
, (46)

〈α(�)〉 = R�2

2π
ln

[
1 + π2N

2R2�2

]
, (47)

�Q

ω⊥
= R�

2π
√

N
ln

[
1 + π2N

2R2�2

]
, (48)

where we have used p(θ ) = 1 and (ωQ/ω⊥)2 = 2. In Fig. 4
we show the quadrupole damping rate vs interaction strength
and compare with the experimental values [27]. The effect of
the medium scattering is most pronounced at low temperature
and strong interaction. This leads to strongly enhanced

damping, and the peak height �Q/ω⊥ ∼ 0.6 agrees well with
experiment, while previous theoretical studies found lower
peak values �Q/ω⊥ � 0.4 [29,30]. Still, the peak position in
our calculation occurs at a larger interaction parameter than in
the experiment.

VI. CONCLUSION

We have investigated the temperature dependence of the
shear viscosity and spin diffusion in a two-component Fermi
gas in two dimensions with contact interactions. We used
the Boltzmann equation where in contrast to former works
we took the medium effect due to finite fermion density
into account. We show that the proper inclusion of this
effect leads to strong suppression of both transport quantities.
Performing the trap average, we find that the inclusion of
medium effects quantitatively brings us rather close to the
experimental findings [27]. It is an important question for the
future to confirm the result obtained within the Boltzmann
framework with a more refined calculation which does not
rely on the validity of the quasiparticle picture and possibly
extends below Tc.
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J. E. Thomas, Science 331, 58 (2011).
[8] C. Cao, E. Elliott, H. Wu, and J. E. Thomas, New J. Phys. 13,

075007 (2011).
[9] L. D. Landau and I. M. Khalatnikov, Zh. Eksp. Teor. Fiz. 19,

637, 709 (1949); English translation in Collected Papers of
L. D. Landau (Pergamon Press, Oxford, England, 1965), p. 494.

[10] C. J. Pethick, H. Smith, and P. Bhattacharyya, Phys. Rev. Lett.
34, 643 (1975).
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