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In this paper, we investigate the XY model in the presence of an additional potential term that
independently tunes the vortex fugacity. By increasing the strength of this term and thereby the
vortex chemical potential µ, we observe significant changes in the phase diagram with the emer-
gence of a normal vortex-antivortex lattice as well as a superconducting vortex-antivortex crystal
(supersolid) phase. We examine the transition lines between these two phases and the conventional
non-crystalline one as a function of both the temperature and the chemical potential. Our findings
suggest the possibility of a peculiar tricritical point where second-order, first-order, and infinite-order
transition lines meet. We discuss the differences between the present phase diagram and previous
results for two-dimensional Coulomb gas models. Our study provides important insights into the
behaviour of the modified XY model and opens up new possibilities for investigating the underlying
physics of unconventional phase transitions.
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INTRODUCTION

Systems displaying multiple forms of long-range order in their ground state have always fascinated physi-
cists for their potential to exhibit a complex phase diagram. Different from simpler systems, they can
host multiple phase transitions and reveal new intermediate phases between the ground state and the high-
temperature phase. Apart from multi-component systems, such as multiband superconductors or bosonic
mixtures, also single-component systems can present a similar scenario. The two-dimensional (2D) Coulomb
gas (CG) model is a paradigmatic example.

The 2D CG is an effective model for superconducting (SC) and superfluid vortices which, in two di-
mensions, are equivalent to logarithmically interacting charges. In the limit of small vortex fugacity, the
model undergoes a Berezinskii-Kosterlitz-Thouless (BKT) [1–3] transition separating a low-temperature
phase, where vortices and antivortices are tightly bound in pairs, from a high-temperature phase where free
vortices proliferate and lead to a discontinuous vanishing of the condensate phase rigidity.

As the vortex fugacity g increases above a critical value gc, however, the low-temperature phase of the
system undergoes a first-order phase transition from a vortex-vacuum superfluid to a vortex-antivortex su-
perfluid crystal, which additionally breaks the discrete Z2 symmetry associated with the two energetically
equivalent checkerboard configurations of the lattice. As a result, in this regime the ground state exhibits
two coexisting orders: a quasi-long-range order of the superfluid phase, characterized by a finite superfluid
stiffness Js, and a long-range positional order, characterized by a finite Ising order parameter for the stag-
gered vorticity Mstag. Establishing how such a vortex supersolid melts into the disordered high-temperature
phase has been a topic of great interest. The phase diagram of the 2D Coulomb gas at large vortex fugacity
has been extensively investigated both for discrete lattice models [4–6] and in the continuum limit [7].
In the presence of a discrete underlying grid, it was shown [4–6] that at large vortex fugacity, the system
undergoes two distinct phase transitions with an intermediate non-superfluid phase where the discrete Z2

symmetry is spontaneously broken.

Addressing this problem within a 2D XY model has proven to be much more challenging. A ground
state formed by a Z2 vortex supersolid can be realized, in this model, by applying a uniform transverse
magnetic field to the system with half a magnetic flux quantum crossing each plaquette of the spin lattice.
The resulting model is the well-known fully frustrated XY (FFXY) model. Over the years this has been the
subject of extended theoretical discussions, with a series of conflicting analytical and numerical results about
the number of phase transitions and their nature [8]. Finally, in 1996 Olsson [9] numerically demonstrated
the presence of two phase transitions that are very close together, with the BKT critical temperature,
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TBKT , slightly smaller than the Ising critical temperature, TI , associated with the vanishing of Mstag.
The theoretical argument for the observed splitting was afterwards provided by Korshunov [10]. The
continuous nature of the Ising transition ensures that, when approaching TI from below, the proliferation
of Ising domain walls with a net polarization continuously decreases both Mstag and Js. Hence, there are
in general two possible scenarios that describe the melting of a ground state with coexisting superfluidity
and staggered vortex structures: 1) the system exhibits a preemptive first-order phase transition with Js
and Mstag vanishing discontinuously at the same critical temperature; 2) the system undergoes two phase
transitions with TBKT < TI . Indeed, as soon as domain-wall excitations reduce Js below the BKT critical
value Js(TBKT ) = 2TBKT /π, vortex-antivortex pairs unbind and Js drops discontinuously to zero. The
FFXY model exhibits the second scenario, as confirmed also by more recent numerical studies [11, 12]. Yet,
although the ground state of the FFXY model shares the same orders and symmetries as that of the 2D CG
model at large vortex fugacity g, neither the FFXY nor the classical XY model allows for a systematic study
of the phase diagram as a function of g. The XY model is, indeed, a single-coupling model where the value
of the vortex fugacity cannot be tuned independently but is rather fixed by the value of the spin-exchange
coupling J .

In the present work, we face this challenge by studying the phase diagram of the modified XY model
that we introduced in a previous work [13], where the vortex fugacity can be tuned independently and in a
direct way without changing the relevant interactions at play [14]. By employing large-scale Monte Carlo
simulations we assess the phase diagram of the model and show that the system undergoes a single first-order
phase transition with TBKT = TI for a finite range of values of the vortex fugacity gc < g < g∗, while for
g > g∗ the two phase transitions split apart with TBKT < TI . The quantitative numerical characterisation
of a BKT transition at large but finite vortex fugacity, which goes beyond the traditional BKT picture with
a line of fixed points at zero fugacity, is relevant in numerous physical systems, including two-dimensional
Kondo lattices [15, 16], and recently in the description of the metal-insulator transition in disordered 2D
materials [17]. In thin superconducting films, a finite density of vortex-antivortex pairs can be induced at
low temperatures by spatially correlated-disorder [18, 19], while stable configurations of vortex supersolids
can be realized via magnetic pinning arrays [20, 21] or superconductor/ferromagnet hybrid structures [22].
The formation and melting of a vortex-antivortex lattice in superfluid 4He films can be observed by the
presence of a transverse mode that can exist only in the crystalline phase, and the vortex fugacity can be
tuned by additional 3He atoms [23]. More recent realisations include ultracold fermionic gases [24] and
polariton fluids [25]. High vortex fugacities may also emerge in long-range interacting systems. Indeed,
generic power-law couplings 1/rα may disrupt the BKT in d = 2 by increasing the vortex fugacity [26, 27].
It is worth noting that 1/r2 interactions induce BKT scaling also in several d = 1 models [28, 29].

THE MODEL

The model studied in this work is a modified version of the original XY model with an extra potential
term added to tune the vortex fugacity independently from the ferromagnetic coupling J . The Hamiltonian
of the modified XY model, introduced in our previous work [13], reads:

Hµ
XY = −J

∑
i,ν=x̂,ŷ

cos(θi − θi+ν)− µ
∑
i

(
IPi
)2
, (1)

with IPi the spin current circulating around a unit plaquette Pi of area a2 = 1,

IPi = sin(θi − θi+x̂) + sin(θi+x̂ − θi+x̂+ŷ) + sin(θi+x̂+ŷ − θi+ŷ) + sin(θi+ŷ − θi). (2)

For µ = 0, Eq.(1) is the classical XY model, where the value of the vortex fugacity is fixed by the bare
spin stiffness J . On the other hand, by considering nonzero values of µ one can independently tune g to
either favour for µ > 0, or disfavour for µ < 0, the vortex nucleation in the system. Thus, by increasing
µ > 0, the value of the vortex-core energy µv ∝ −µ decreases and, in turn, the value of the vortex fugacity
g = 2πe−βµv increases.

The energy-entropy balance for the proliferation of free vortices suggests that the BKT critical tempera-
ture decreases as the value of µ increases. At the same time, it is also apparent that there exists a critical
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value µ = µc at which the ground state of the system undergoes a first-order phase transition from a su-
perfluid with vanishing vortex density ρv(T → 0)→ 0 (“vortex vacuum”) to a vortex-antivortex superfluid
crystal with ρv(T → 0)→ 1 [5].

While in our previous work [13] we focused on the regime µ < µc here we will investigate the phase
diagram of the model (1) for µ > µc, whose ground state is a Z2 vortex supersolid. As a function of µ, we will
determine the value of the two critical temperatures: TBKT , at which a superfluid quasi-condensate forms,
and TI , at which a charge-ordered state forms, that is described by a real Z2 order parameter associated with
the two possible staggered magnetizations of the vortex-antivortex lattice. This systematic investigation
will enable us to assess the phase diagram of the system and to establish, for each value of µ, whether the
system displays two separate phase transitions, or a single preemptive first-order phase transition where
both the superfluid stiffness Js and the staggered magnetization Mstag jump discontinuously to zero at the
same critical temperature TBKT = TI .

MONTE CARLO SIMULATIONS

We assess the phase diagram of the model (1) in the regime µ > µc via large-scale Monte Carlo (MC)
simulations. This allows us to properly account for the non-trivial interactions between the different topo-
logical phase excitations at play, which include vortices, Ising-like domain walls between the two possible
values of Mstag, and kink-antikink excitations along the domain walls [30].

We studied the model (1) on a discrete square grid of spacing a = 1 and size N = L × L, for different
values of the linear size L. Details of our MC simulations can be found in the Supplementary Materials.

To assess the values of the BKT critical temperature, we computed the superfluid stiffness Jνs , which
measures the response of the system to a phase twist ∆ν along a given direction ν. This can be thought
of in terms of twisted boundary conditions, θi+Lν̂ = θi + ∆ν , reabsorbed via a gauge transformation in a
new set of variables θ

′

i = θi − ri,ν∆ν/L, with periodic boundary conditions. For a superconducting film, it
corresponds to the response to a transverse gauge field A and it signals the onset of perfect diamagnetism,
i.e., the well-known Meissner effect. Js is defined as:

Jνs ≡ −
1

L2

∂2F (∆ν)

∂A2
ν

∣∣∣
Aν=0

(3)

and has two contributions

Jνs = Jνd − Jνp , (4)

the diamagnetic (Jνd ) and the paramagnetic (Jνp ) response functions

Jνd =
1

L2

[〈∂2H
∂A2

ν

∣∣∣
0

〉]
, (5)

Jνp =
β

L2

[〈( ∂H
∂Aν

∣∣∣
0

)2〉
−
〈 ∂H
∂Aν

∣∣∣
0

〉2]
, (6)

where 〈. . . 〉 stands for the thermal average over the MC steps. The explicit expressions of Jνd and Jνp are
reported in the Appendix of [13]. In this work, we have computed the superfluid response along ν ≡ x̂ and
in what follows we will simply refer to Js ≡ J x̂s .

When increasing the temperature below TBKT , the superfluid stiffness continuously decreases mainly
due to the presence of non-topological phase excitations, such as spin waves and domain walls with a net
polarization [10]. As soon as TBKT is reached, the proliferation of free vortices becomes entropically favoured
and Js discontinuously jumps to zero. According to the Nelson-Kosterlitz criterion [31], at the critical point
Js and TBKT are linked via the universal relation: Js(TBKT ) = 2TBKT /π, which ultimately allows for the
determination of the critical temperature.

In this work, we assess the value of TBKT by the BKT finite-size scaling of the superfluid stiffness [32]:

Js(∞, TBKT ) =
Js(L, TBKT )

1 + (2 log(L/L0))−1
, (7)
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where L0 is chosen to give the best crossing point at finite temperature (see also Supplementary Materials
S2). The BKT finite-size scaling of Js for µ = 0.3 > µc is reported in Fig. 1(a), where we found L0 = 10.5.

On the other hand, in order to assess the Z2 Ising critical temperature TI associated with the melting of
the vortex-antivortex crystal, we define a vortex ordering parameter as the staggered magnetization:

Mstag ≡
∑
i

(−1)xi+yiqi, (8)

where i labels the unitary plaquette of the spin lattice located at (xi, yi). The vortex charge qi takes the
values qi = 0,+1,−1, respectively, if a vortex, an antivortex, or zero vortices are located at the centre of the
i-th plaquette. A vortex-antivortex crystal is characterised by 〈Mstag〉 = ±1, according to the two possible
equivalent configurations of the vortex-antivortex checkerboard. To determine the value of TI , we analyse
the finite-size scaling of the Binder cumulant Ustag associated with the staggered magnetization:

Ustag =
〈M4

stag〉
3〈M2

stag〉2
. (9)

In the high-temperature limit the Binder cumulant approaches Ustag(T � TI) → 1 and in the low-
temperature limit Ustag(T � TI)→ 0.3, while at the critical point it is expected to assume a universal value
independent on the system size [33]. The finite-size scaling of the Binder cumulant is reported in Fig.1(b)
for µ = 0.3.

At this value of the vortex chemical potential µ = 0.3, we found two distinct and yet very close critical
temperatures with TBKT = 2.0040± 0.0003 slightly smaller than TI = 2.01595± 0.00004.

As a further numerical confirmation of the splitting between the two phase transitions, we follow the
scheme proposed by Olsson [9]. Olsson’s scheme consists in extracting a set of temperatures TL for different
system sizes L, which are defined as the temperatures where the superfluid stiffness crosses the 2T/π
BKT critical line, i.e., Js(TL, L) = 2TL/π. By increasing the size L, TL decreases and approaches the
thermodynamic limit TL→∞ → TBKT from above. If the two phase transitions are separated with TBKT <
TI , the value of the staggered magnetization 〈Mstag(TL, L)〉 at TL should increase with increasing system
size L and eventually reach a nonzero value in the thermodynamic limit. This is precisely what we observe
in this case, as reported in Fig. 1(c). At the temperatures TL, indicated by a dashed vertical line, the value
of 〈Mstag(TL, L)〉 increases, confirming that TBKT < TI . To establish the phase diagram of the model (1),
we repeated the same analysis for different values of µ.

When approaching the critical value µc below which the ground state is a vortex-vacuum superfluid, we
find that the separation between the two phase transitions reduces until they eventually merge into a single
first-order phase transition at µ = µ∗ > µc. In particular, while down to µ = 0.2 (see Figs. S2-S5 of the
Supplementary Materials) we still find evidence of a splitting between the two transitions, at µ = 0.175 our
numerical simulations suggest that the system undergoes a single first-order phase transition.

The numerical evidence for a single first-order transition is threefold. The first indications in this sense
are the failure of the BKT scaling Eq. (12) for the superfluid stiffness (see Fig. S6(a)) and the pronounced
peaks in the Binder cumulant in the proximity of the critical point (see Fig. S6(b)) [34].

Second, an unambiguous demonstration of first-order phase transition at µ = 0.175 is provided by the
presence of two peaks in the energy-density distribution P (E/N) at the critical point. As reported in
Fig. 2, at µ = 0.175 the minimum value P (Emin/N) of the distribution between the two peaks vanishes
by increasing the system size L (see Fig. 2(a)), very differently from the case µ = 0.2 where P (Emin/N)
increases with L (see Fig. 2(b)).

Third, for a more quantitative analysis of the order of the transition, we looked at the finite-size scaling
of the maximum value Cmaxv of the specific heat at the critical temperature. The specific heat Cv being
defined as:

Cv =
1

T 2L2

(
〈E2〉 − 〈E〉2

)
, (10)

where E is the total energy of the system. For a second-order phase transition, Cmaxv scales as Cmaxv ∝
L2/ν−d, where d = 2 is the spatial dimension of the system and ν = 1 is the critical exponent. Conversely,
when the transition is of first order, for the Ising model in two dimensions the specific-heat peak scales
as the volume of the system [34], i.e., Cmaxv ∝ Ld. For µ = 0.175, 0.2, 0.3, we have extracted the value
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FIG. 1. Monte Carlo results for the case µ = 0.3. (a) Determination of TBKT from finite-size scaling of the
superfluid stiffness Js renormalized according to the BKT scaling Eq. (12) for L = 64, 96, 128, 192, 256 (from top
to bottom). The best crossing point is obtained with L0 = 10.5. As expected, it lies on the 2T/π critical line
(continuous black line). The dotted line indicates the extracted BKT critical temperature. (b) Determination of the
Ising critical temperature TI from finite-size scaling of the Binder cumulant Ustag defined in Eq.(9). The crossing
point locates TI , indicated here with a dashed-dotted line. (c) Olsson’s plot [9] for different values of the system size
L. At the BKT critical point, while the superfluid stiffness jumps from Js(T−

BKT ) = 2T−
BKT /π to Js(T+

BKT ) = 0, the
staggered magnetization is observed to increase with L and reaches a finite value in the thermodynamic limit. This is
an additional confirmation that TBKT < TI in this case. The error bars are computed via a standard bootstrapping
resampling method. Where not visible, the error bars are smaller than the point symbols.

(a) (b)

FIG. 2. Evidence for a first-order transition: the energy-density distribution P (E/N) is shown for different system
sizes L (N = L2) at the temperature corresponding to the specific-heat peak. While for (a) µ = 0.175 there are two
peaks indicating a first-order transition, for (b) µ = 0.2 in the thermodynamic limit a single peak emerges consistent
with a continuous transition second-order transition.

of Cmaxv at different system sizes L and derived the exponent Cmaxv ∝ Ly via a linear fit of the data in a
log-log plot (see Fig. 3). For µ = 0.3, this analysis yields y = 0.2± 0.01 (see Fig. 3(a)), in good agreement
with the value y = 0 expected in two spatial dimensions for a Ising-like second-order phase transition. For
smaller µ, instead, we observe a more divergent behaviour with y = 1.21 ± 0.02 at µ = 0.2 (see Fig. 3(b))
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and, ultimately, y = 1.93 ± 0.02 for µ = 0.175, which is consistent with a first-order phase transition (see
Fig. 3(c)).

(c)(b)(a)

FIG. 3. Finite-size scaling analysis of the specific-heat peak Cmax
v at (a) µ = 0.3; (b) µ = 0.2; (c) µ = 0.175. The

points in the three panels correspond to the linear sizes L = 96, 128, 192, 256.

Taken together, these findings consistently indicate the presence of a critical value 0.175 ≤ µ∗ < 0.2
at which the two phase transitions merge into a single first-order transition. At the same time, they also
suggest the presence of a tricritical point 0.175 ≤ µtric < 0.2 at which the Z2 second-order Ising transition
becomes first order. Our data seem to indicate that for the modified XY model µtric ≡ µ∗. At present,
however, we cannot rule out the possibility that, although they are very close, µtric > µ∗.

The complete phase diagram of the model (1) is shown in Fig. 4(a). For µ < µc the BKT critical
temperatures are those derived in our previous work [13]. In the regime µc < µ ≤ 0.175, the critical
temperatures of the first-order phase transition have been computed by a finite-size scaling analysis of the
temperatures corresponding to the specific-heat peak Cmaxv (Tc, L) (see Fig. S7).

According to Fig. 4(a), for µ < µc the system exhibits a single BKT phase transition from a quasi-long-
range ordered superconducting state to a disordered one. By increasing the value of µ at low temperatures,
the vortex fugacity increases until, at 0.14 < µc < 0.145, the system undergoes a first-order phase tran-
sition [5] from a vortex-vacuum superconductor to a vortex supersolid which additionally breaks the Z2

discrete symmetry associated with the two possible vortex-antivortex crystal configurations.

By increasing the chemical potential above the critical value µc, we find that up to a value of µ∗ > µc
there exists a single first-order transition line separating the vortex-antivortex SC crystal from the high-
temperature disordered state. For µ > µ∗, instead, the two phase transitions split apart with TBKT < TI . In
this regime, a new intermediate phase appears where the system is a non-superconducting vortex-antivortex
crystal spontaneously breaking the Z2 symmetry associated with the charge ordering.

Differently from the 2D Coulomb gas counterpart [4], however, the region of the phase diagram hosting
this new phase is quite small and the two transitions remain close for all values of µ studied. Nonetheless,
the splitting between the two transitions ∆Tc = TI −TBKT increases almost linearly with µ (see Fig. 4(b)).
Via a linear fit of ∆Tc vs µ, we also extracted an estimate of µ∗ at which the two transitions merge. The
obtained value µ∗ = 0.192 is consistent with the analysis reported above.

CONCLUSIONS

In this study, we conducted a comprehensive numerical investigation of the modified XY model by intro-
ducing a plaquette term to control the fugacity of vortices. Our findings reveal that as the vortex fugacity
increases, the low-temperature superfluid BKT state turns into a vortex supersolid with finite supercon-
ducting density and charge ordering. At low temperatures, this state emerges from the superconducting
vacuum via a first-order phase transition. However, as the temperature increases, a complex phase diagram
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(b)

Disordered  
non-superconducting 

phase

Vortex-vacuum 
Superconductor

Vortex-Antivortex  
SC crystal

(a)

Vortex-Antivortex 
non-SC crystal

1st order 

FIG. 4. (a) µ − T phase diagram of the model (1). The light-blue and green areas indicate the two possible low-
temperature states of the system. For µ ≤ 0.14 this is a vortex-vacuum superconducting state (green area), while
for µ ≥ 0.145 it turns into a vortex-antivortex superconducting crystal (light-blue area). The BKT critical points
(green triangles) in the region µ < µc of the phase diagram are those derived in our previous work [13] and separate
the vortex-vacuum SC state from the disordered high-temperature state. In the region µc < µ < µ∗ the system
undergoes a single first-order transition (red dots) from a vortex-antivortex SC crystal to a disordered non-SC state.
Finally, for µ > µ∗ the two phase transitions separate and an intermediate non-SC state with a finite Z2 crystalline
order appears. To highlight the splitting of the two critical temperatures in this region of the phase diagram, in
panel (b) we report the value of TI −TBKT as a function of the chemical potential µ. A linear fit of the data (dashed
grey line) gives an estimate µ∗ = 0.192 of the value at which the two phase transitions merge. The error bars are
computed via a standard bootstrapping resampling method. Where not visible, the error bars are smaller than the
point symbols.

emerges. At temperatures T . 1 and chemical potential µ ≤ 0.14, a BKT transition line branches out of
the first-order line, and vortex unbinding destroys the superconducting order. The transition line separat-
ing this new disordered state from the superconducting crystal remains first order up to µ∗ ≈ µtric, while
for larger µ an increasing temperature leads to the vanishing of superfluid order via the BKT mechanism,
followed by the melting of the normal vortex-antivortex crystal into the disordered state via an Ising-like
second-order line, as shown in Fig. 4.

Our results are consistent with the analysis conducted in Ref. [5] for the two-dimensional Coulomb gas,
but two important differences stand out:

1. First, the area between the two transition lines separating the superconducting crystal from the normal
crystal and the disordered state is extremely small and only grows linearly by increasing the chemical
potential.

2. Second, the branching point of the second BKT line coincides within our numerical precision with the
tricritical point µtric, where the first-order line meets the second-order Ising transition.

These differences may be attributed to the intrinsic differences between the two Hamiltonians, particularly to
the fact that the topological excitations, i.e., the vortices, are coupled to the low-energy spin waves in the XY
model, while this interaction is neglected in the Coulomb gas representation of the problem. Additionally,
while our study focuses primarily on the superfluid stiffness Js, Ref. [5] characterizes the superconductor by
the inverse dielectric constant. These two quantities are closely related in the traditional XY model with
µ = 0, but the same relation does not hold in this study, where the plaquette term in the Hamiltonian (1)
gives an explicit contribution to the superfluid stiffness.
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In conclusion, resolving the nature of the unconventional tricritical point, where the first- and second-
order lines meet with the infinite-order BKT line, requires the derivation of an improved BKT flow equation
that can capture the mechanism of defect unbinding at finite fugacity. Such a theoretical framework should
be able to capture both BKT scaling and the second-order transition line within the same formalism, and
its development represents the most significant future direction of this work.
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SUPPLEMENTARY INFORMATION

S1. DETAILS OF THE MONTE CARLO SIMULATIONS

In our simulations, a single MC step consists of the Metropolis sweeps of the whole lattice of spins. To let
the system thermalize faster at low temperatures, we implemented a parallel tempering algorithm, allowing
a swap of the spin configurations between neighbouring temperatures. Here, we propose one set of swaps
after 32 MC steps. For each value of µ and L simulated, we performed a total of 3× 105 Monte Carlo steps,
discarding the transient time occurring typically within the first 100000 steps.

S2. ASSESSING THE BEREZINSKII-KOSTERLITZ-THOULESS TRANSITION

The BKT critical point can be located by finite-size scaling of the superfluid stiffness [32]:

πJs(L, TBKT )

2TBKT
= 1 +

1

2 ln(L/L0)
; (11)

that can be rewritten as:

Js(∞, TBKT ) =
Js(L, TBKT )

1 + (2 log(L/L0))−1
. (12)

In the present analysis, we extrapolated L0 using the BKT scaling itself so as to avoid undesired incon-
sistencies. Indeed, by rewriting Eq.(11) as:

ln(L)− 1

2(xL(TBKT )− 1)
= ln(L0), (13)

where xL(T ) = πJs(L,T )
2T , the crossing point of the function:

f(L, T ) = ln(L)− 1

2(xL(T )− 1)
, (14)

plotted as a function of the temperature for different values of L, can be used to directly extrapolate the
value of L0. We use this procedure to obtain the value of L0, as shown for the case µ = 0.3 in Fig.5.

S3. FINITE-SIZE ANALYSIS FOR µ > µ∗
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FIG. 5. (a) Superfluid stiffness Js rescaled according with the BKT scaling function of Eq.(12). As expected, the
crossing point lies on the BKT critical line 2T/π. (b) Extrapolation of the parameter L0 via the finite-size scale
crossing of the function f(L, T ).

FIG. 6. Monte Carlo results for the case µ = 0.275. (a)Finite-size scaling of the superfluid stiffness Js renormalized
according to the BKT scaling Eq.(12). (b) Finite-size scaling of the Binder cumulant Ustag. (c) Finite-size Olsson’s
plot [9]. It shows that at the BKT critical point, the staggered magnetization is finite in the thermodynamic limit.
Thus confirming that TBKT < TI .
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FIG. 7. Monte Carlo results for the case µ = 0.25. (a)Finite-size scaling of the superfluid stiffness Js renormalized
according to the BKT scaling Eq.(12). (b) Finite-size scaling of the Binder cumulant Ustag. (c) Finite-size Olsson’s
plot [9]. It shows that at the BKT critical point, the staggered magnetization is finite in the thermodynamic limit.
Thus confirming that TBKT < TI .

FIG. 8. Monte Carlo results for the case µ = 0.225. (a)Finite-size scaling of the superfluid stiffness Js renormalized
according to the BKT scaling Eq.(12). (b) Finite-size scaling of the Binder cumulant Ustag. (c) Finite-size Olsson’s
plot [9]. It shows that at the BKT critical point, the staggered magnetization is finite in the thermodynamic limit.
Thus confirming that TBKT < TI .
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FIG. 9. Monte Carlo results for the case µ = 0.2. (a)Finite-size scaling of the superfluid stiffness Js renormalized
according to the BKT scaling Eq.(12). (b) Finite-size scaling of the Binder cumulant Ustag. (c) Finite-size Olsson’s
plot [9]. It shows that at the BKT critical point, the staggered magnetization is finite in the thermodynamic limit.
Thus confirming that TBKT < TI .
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S4. PRELIMINARY INDICATIONS OF A FIRST-ORDER PHASE TRANSITION AT µ = 0.175.

FIG. 10. The Monte Carlo results for the case µ = 0.175 show evidence of a single first-order phase transition. The
preliminary indications have been: (a) the failure of the BKT scaling for the superfluid stiffness Js; (b) a pronounced
peak in the temperature dependence Binder cumulant.

S5. EXTRAPOLATION OF THE CRITICAL TEMPERATURES IN THE REGIME µc < µ < µ∗

(a) (b) (c)

FIG. 11. Extrapolation of the critical temperature Tc via a finite-size scaling analysis of the specific-heat peak. The
points shown correspond to the linear system sizes L = 96, 128, 192, 256 respectively for (a) µ = 0.145; (b)µ = 0.15
(c) µ = 0.175.
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