8. ÜBUNG ZUR QUANTENMECHANIK II

Abgabe der schriftlichen Aufgaben: 14.12.2007 Besprechung der Präsenzaufgaben: 17.12.2007

P 20 Zeitumkehroperator für Teilchen mit Spin 1/2 (8 Punkte)

Wir betrachten Spin-1/2-Teilchen. Der Hamiltonoperator sei (mit $\vec{\mathbf{S}} = \vec{\sigma}/2$) gegeben durch $\mathbf{H} = -\frac{\hbar^2}{2m}\Delta + V(\vec{x}) + W(\vec{x}) \vec{\mathbf{L}} \cdot \vec{\mathbf{S}}$. Der Zeitumkehroperator \mathcal{T} ist für Spinoren ψ definiert durch

$$T\psi(\vec{x},t) = -i\sigma_2\psi^*(\vec{x},-t). \tag{1}$$

Zeigen Sie:

- (a) $\sigma_k^* = -\sigma_2 \sigma_k \sigma_2$ in der Standarddarstellung der Pauli-Matrizen.
- (b) Der Zeitumkehroperator $\mathcal{T}: \psi \to \psi'$ ist antiunitär.
- (c) Bestimmen Sie \mathcal{T}^2 .
- (d) Es gilt

$$\mathcal{T}\vec{\mathbf{P}} = -\vec{\mathbf{P}}\mathcal{T} \tag{2}$$

$$\mathcal{T}\vec{\mathbf{X}} = \vec{\mathbf{X}}\mathcal{T} \tag{3}$$

$$\mathcal{T}\vec{\mathbf{L}} = -\vec{\mathbf{L}}\mathcal{T} \tag{4}$$

$$\mathcal{T}\vec{\mathbf{S}} = -\vec{\mathbf{S}}\mathcal{T} \tag{5}$$

$$[H, \mathcal{T}] = 0. (6)$$

Hinweis: Wenden Sie diese Produkte von Operatoren auf einen Spinor ψ an.

- (e) Falls $\psi(\vec{x},t)$ eine Lösung der Schrödingergleichung ist, so ist auch $\psi'(\vec{x},t) = \mathcal{T}\psi(\vec{x},t)$ eine Lösung.
- (f) Falls ψ_E Lösung der stationären Schrödingergleichung zum Eigenwert E ist, so ist $\psi_E' = \mathcal{T}\psi_E$ ebenfalls Lösung mit dem selben Eigenwert. (*Hinweis*: Benutzen Sie z. B. daß $[H, \mathcal{T}] = 0$.) Es gilt $\langle \psi_E | \psi_E' \rangle = 0$, d. h. die beiden Zustände sind orthogonal. Dies bezeichnet man als Kramersche Entartung.

S 21 Lorentz-Transformationen

(12 Punkte)

Wir betrachten den \mathbb{R}^4 mit den Koordinaten $x^0=ct, x^1=x, x^2=y, x^3=z$, zusammengefaßt im kontravarianten 4-Vektor x^μ ($\mu=0,1,2,3$), und einem Skalarprodukt $a\cdot b=a_\mu b^\mu=g_{\mu\nu}a^\mu b^\nu$, worin $(g_{\mu\nu})=\mathrm{diag}(1,-1,-1,-1)$. Diesen Raum bezeichnet man als Minkowski-Raum.

Als homogene Lorentz-Gruppe bezeichnet man die linearen Transformationen $a^{\mu} \to a'^{\mu} = \Lambda^{\mu}{}_{\nu} a^{\nu}$, die das Skalarprodukt invariant lassen, d. h.

$$(\Lambda a) \cdot (\Lambda b) = (\Lambda_{\mu}{}^{\lambda} a_{\lambda})(\Lambda^{\mu}{}_{\nu} b^{\nu}) = a \cdot b. \tag{7}$$

(a) Wir untersuchen zunächst Lorentz-Transformationen, bei denen der zeitartige Basisvektor $\mathbf{e}_0 = (1,0,0,0)$ auf sich selbst abgebildet wird, $\Lambda \mathbf{e}_0 = \mathbf{e}_0$. Argumentieren Sie, daß sich jede solche Transformation schreiben läßt als

$$\Lambda^{\mu}_{\ \nu} = (\mathcal{R}\mathcal{P}^k)^{\mu}_{\ \nu} \,, \tag{8}$$

wobei $k \in \{1, 2\},\$

$$\mathcal{R} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & & & \\ 0 & & R & \\ 0 & & & \end{pmatrix} \tag{9}$$

mit $R \in SO(3)$, und \mathcal{P} die Matrix der Raumspiegelung ist.

(b) Geben Sie \mathcal{P} und \mathcal{P}^2 in Matrixdarstellung an und zeigen Sie, daß für die Matrix \mathcal{T} der Zeitspiegelung gilt $\mathcal{T} = -\mathcal{P}$.

Im folgenden wollen wir Lorentz-Boosts betrachten, die gegeben sind durch

$$\Lambda^{\mu}{}_{\nu} = \begin{pmatrix} \gamma & -\gamma v/c & 0 & 0 \\ -\gamma v/c & \gamma & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \gamma = \left(1 - \frac{v^2}{c^2}\right)^{-\frac{1}{2}}.$$
(10)

- (c) Geben Sie t' und x' explizit an. Zeigen Sie, daß det $\Lambda=1$ und bestimmen Sie $(\Lambda^{-1})^{\mu}_{\ \nu}$.
- (d) Zeigen Sie, daß man obige Transformation erhält als

$$\Lambda^{\mu}_{\nu} = \left[\exp(\omega K_x)\right]^{\mu}_{\nu} \tag{11}$$

worin

$$\omega = \operatorname{Artanh}\left(\frac{v}{c}\right) \tag{12}$$

als Rapidität bezeichnet wird und

die Erzeugende der Boosts in x-Richtung ist. Wie lassen sich $\cosh \omega$ und $\sinh \omega$ mit γ und v/c in Verbindung bringen? Wie sehen die Generatoren für Boosts in y- und z-Richtung aus?

- (e) Zeigen Sie, daß für zwei aufeinanderfolgende Boosts in x-Richtung die Rapidität additiv ist. Leiten Sie daraus die relativistische Additionsformel für Geschwindigkeiten her.
- (f) Zeigen Sie, daß die Transformation für einen Lorentz-Boost im nichtrelativistischen Grenzfall in eine Galilei-Transformation übergeht.

Man kann zeigen, daß sich jede homogene Lorentz-Transformation schreiben läßt als

$$\Lambda = \operatorname{sign}(\Lambda^0_0) \, \Lambda_B(\vec{\omega}) \, \mathcal{R}(\vec{\varphi}) \, \mathcal{P}^k \,, \tag{14}$$

worin wieder $k \in \{1, 2\}$, $\mathcal{R}(\vec{\varphi})$ eine Drehung mit Drehvektor $\vec{\varphi}$ ist (siehe (9)), und $\Lambda_B(\vec{\omega})$ ein Boost in Richtung $\vec{\omega}$ mit Rapidität $|\vec{\omega}|$ ist.

(g) Drücken Sie diese Formel in Worten aus. Wieviele Erzeugende hat demzufolge die homogene Lorentz-Gruppe?

Weitere Informationen unter: $\label{lem:http://www.thphys.uni-heidelberg.de/} http://www.thphys.uni-heidelberg.de/\\ \sim ewerz/qm2-0708.html$