Pre-equilibrium photon production and the direct-photon puzzle

Seminar 'Physics of the Quark Gluon Plasma’, Heidelberg, SS2016
11.5.2016

Naoto Tanji
Institut für Theoretische Physik
University of Heidelberg

Klaus Reygers
Physikalisches Institut
University of Heidelberg
The Role of Direct Photons in Heavy-Ion Physics

- Medium transparent to photons ($\lambda_{mfp} \approx 500$ fm)
- Produced over the entire duration of the collision
 - Test of space-time evolution, in particular of the hydro paradigm
- Experimental access to initial QGP temperature (?)

QGP photon rate r_γ (lowest order):

$$E_\gamma \frac{dr_\gamma}{d^3p} \propto \alpha \alpha_s \, T^2 \exp\left(-\frac{E_\gamma}{T}\right) \log \left(\frac{E_\gamma T}{k_c^2}\right)$$

Total emission rate:

$$r_\gamma \propto T^4$$
Known and presumed photon sources

- **B field induced?**
- **Prompt (pQCD)**
- **Pre-equilibrium photons**
- **Direct Photons**
 - **Jet-medium interaction**
 - **Thermal**
 - **Hadronic bremsstrahlung**

- **Decay photons** ($\pi^0 \rightarrow \gamma \gamma$, $\eta \rightarrow \gamma \gamma$, $\omega \rightarrow \pi^0 \gamma$, ...)

Direct photons at $1 < p_T < 3$ GeV/c are hard to measure
(S/B ~ a few to 25%, depending on centrality and p_T)
The direct photon (flow) puzzle

- Around since Quark Matter 2011
- PHENIX: Data a challenge to theory
- Charles Gale: „Theory a challenge to the data“

It’s a challenge for models to simultaneously describe the yield and azimuthal anisotropy of direct photons

What’s actually so puzzling?

Elliptic flow gradually builds up with time:

- Expect large fraction of thermal photons from early times
- Expect bulk of hadrons to be produced at late times

R. Chatterjee, D. Srivastava

![Graph showing thermal photon production](image)

- Thermal Photons
 - Au+Au@200 AGeV
 - b=7 fm

- QM – Quark Matter
- HM – Hadronic Matter
- sum – QM + HM

- v_2 vs. τ_f (fm)
The direct-photon puzzle today: RHIC (yield & v_2)

Paquet et al., arXiv:1509.06738

- State-of-the-art hydro calculations
 - Shear and bulk viscosity
 - More realistic initial conditions
 - Event-by-event hydro
The direct-photon puzzle today: LHC (yield & v_2)

- Agreement within 1σ or so
 - Syst. uncertainties correlated in p_T
- Puzzle mostly with regard to RHIC data

Paquet et al., arXiv:1509.06738
Why is the puzzle interesting?

- **Space-time evolution not understood?**
 - “Standard model” of heavy-ion collisions based relativistic hydrodynamics
 - Works well for hadronic observables (v_n, HBT, …)
 - Why not for QGP photons?

- **Photon production in the QGP or the hadron gas not under control?**

- **Are we missing an important photon source?**

- **Paradigm shift regarding the role of photons as QGP messengers?**

We are missing something rather fundamental
The puzzle has triggered a lot of activity on the theory side. An incomplete list …

- Potentially underestimated late-stage photon sources
 - Meson-meson bremsstrahlung, meson-baryon bremsstrahlung
 [Linnyk, Bratkovskaya, et al., PHSD Transport model]
 - Enhanced photon production near T_c
 [van Hees, He, Rapp, arXiv:1404.2846]

- Mechanism leading to reduced photon production at the early stage (mostly addresses the v_2 problem)
 - Semi-QGP: Fewer photons from the QGP
 - Start hydro at later stage, up to 1.5 fm/c (“it takes some time before quarks appear”) [Fu-Ming Liu, Sheng-Xu Liu, arXiv:1212.6587]
 - Quasi-particle description of non-equilibrated quark-gluon system
 [Monnai, 1504.00406]

- Photon production related to initial magnetic field created by spectators
 - Conformal anomaly [Basar, Kharzeev, Skokov, PRL 109, 202303 (2012)]
 - Gauge/gravity duality [Muller, Wu, Yang, arXiv:1308.6568v3]
Pre-equilibrium photons

- Pre-equilibrium phase not well understood
 - Significant direct photon yield?
 - Pre-equilibrium flow?
 - BAMPS parton cascade (M. Greif, C. Greiner): not a large contribution(?)

- Large parton momenta, but small space-time volume

![Event-averaged space-time volume as a function of the temperature](Paquet et al., arXiv:1509.06738)
What about the experimental side?

\[R_\gamma = \frac{\gamma_{\text{incl}}}{\gamma_{\text{dec}}} = 1 + \frac{\gamma_{\text{dir}}}{\gamma_{\text{dec}}} \]

- Two independent methods at RHIC in agreement
 - Virtual photon method
 - Measure dileptons at \(m_{ee} \gtrsim m_\pi \)
 - Extrapolate to \(m = 0 \) (real photons)
 - External conversions
- Lower \(R_\gamma \) would solve yield and \(v_2 \) puzzle

\[
\begin{align*}
v_2^{\gamma,\text{dec}} &= (1 + \varepsilon) v_2^{\gamma,\text{incl}} \\
v_2^{\gamma,\text{dir}} &= v_2^{\gamma,\text{incl}} \left(1 - \frac{\varepsilon}{R_\gamma - 1}\right)
\end{align*}
\]

→ Next step: better modeling of \(\gamma_{\text{dec}} \) background

“A theory is something nobody believes, except the person who made it. An experiment is something everybody believes, except the person who made it.” A. Einstein
Next step:
Decay photon cocktail including effects of radial flow

- Experimental uncertainties on η and ω p_T spectra currently too large to be useful in the decay-photon cocktail
- Improvement over m_T scaling: η/π^0 and ω/π^0 from hydro modeling

m_T scaling:
shape of particle spectra universal as a function of m_T

$$m_T = \sqrt{p_T^2 + m^2}$$
Do low p_T direct photons mostly come from the early or the later stage of the collision?

→ Experimental approach: direct-photon HBT
Direct-photon Hanbury Brown-Twiss correlations

Correlation function:
\[C_2 = \frac{P(k_1, k_2)}{P(k_1)P(k_2)} \]

\[q = k_1 - k_2, \quad K = (k_1 + k_2)/2 \]

\[P(k) = \int d^4x S(x, k) \equiv \int d^4x \frac{dN_\gamma(x, k)}{d^4x d^3k} \]

\[C(q) = 1 + \lambda \exp(-R^2 Q_{inv}^2), \quad \lambda = \frac{1}{2} \text{ for a completely chaotic photon source} \]

In the presence of decay photons
\[\lambda = \frac{1}{2} \left(\frac{N_{\gamma}^{\text{direct}}}{N_{\gamma}^{\text{total}}} \right)^2 = \frac{1}{2} \left(1 + 1/R_\gamma \right)^2 \]

Two major motivations for direct-photon HBT
- Information on source size and emission duration
- Tool to measure direct photon at low \(p_T \)

Experimentally very challenging! Actively explored by ALICE …
Photon HBT and emission time

\[C = 1 + \frac{1}{2} \exp\left[-(q_{\text{out}}^2 R_{\text{out}}^2 + q_{\text{side}}^2 R_{\text{side}}^2 + q_{\text{long}}^2 R_{\text{long}}^2)/2\right] \]

\[q_{\text{long}} = |k_{1,z} - k_{2,z}| \]
\[q_{\text{out}} = q_T \cdot K_T / K_T \]
\[q_{\text{side}} = |q_T - q_{\text{out}} K_T / K_T| \]

- Example of a photon HBT calculation
 - Hydro + parton cascade
 - Lot’s of photons from pre-equilibrium phase in this model (\(\tau \approx 0.3 \text{ fm/c} \))
- Longitudinal correlation radius
 \(R_{\text{long}} \approx 1.6 \text{ fm} \) much smaller than \(R_{\text{out}} \) and \(R_{\text{side}} \)
 - Reflects early emission time of the bulk of the photons in this model
To be studied: Experimental sensitivity to early/late production of direct photons

- Calculation of correlation function using a hydro code

\[C(q, K) = 1 + \frac{1}{2} \frac{|\int d^4x S(x, K)e^{iq\cdot x}|^2}{\int d^4x S(x, K + \frac{q}{2}) \int d^4y S(y, K - \frac{q}{2})} \]

- Add extra photons at early / late times and study change of correlation function, especially \(R_{\text{long}} \)

- Consider experimental limitations in terms of statistics, resolution, etc.
The only published experimental result on direct-photon HBT in A-A collisions: WA98 at the CERN SPS

Low p_T direct-photon yields not easily explained by models
Summary

- Direct photon puzzle
 - Yield
 - v_2

- Solution to the direct-photon puzzle could be both and the experimental or on theory side

- Pre-equilibrium photons: Largely unexplored territory

- Photon HBT might help solve the puzzle:
 Early or late production of direct photos?
Extra slides
What’s actually puzzling?

Elliptic flow gradually builds up with time:

Expect large fraction of thermal photons from early times

Expect bulk of hadrons to be produced at late times

\[v_2(\tau)/v_2(\tau_f) \]

\[\tau \text{ (fm)} \]

\[0 \]

\[2 \]

\[4 \]

\[6 \]

\[8 \]

\[10 \]

\[12 \]

R. Chatterjee, arXiv:0901.3270