Pre-equilibrium photon production and the direct-photon puzzle
Theory part

Naoto Tanji
ITP, Heidelberg University

Contents

- Introduction
 - strong fields in the initial stage of heavy-ion collisions
- A short review of previous studies on the pre-equilibrium photon production
- Results from classical statistical lattice simulations
Initial stage of heavy-ion collisions: Glasma

Before a collision

color glass condensate
\[E_T^a \perp B_T^a \]

Right after a collision

Glasma
\[E_L^a \parallel B_L^a \]

non-Abelian Gauss’s laws
\[
\nabla \cdot E^a = -gf^{abc} A^b \cdot E^c \\
\nabla \cdot B^a = -gf^{abc} A^b \cdot B^c
\]
Initial stage of heavy-ion collisions: Glasma

Before a collision

\[E_T^a \perp B_T^a \]

Right after a collision

\[E_L^a \parallel B_L^a \]

strong color fields \(A \sim Q_s / g \)

strongly interacting system

- Nonperturbative treatments are necessary.
- In \(g \ll 1 \), the classical YM eq. gives the LO description.
- Classical statistical approach goes beyond the LO.

LO classical evolution

Initial stage of heavy-ion collisions: Magnetic fields

Strong magnetic field perpendicular to the reaction plane

\[eB \sim 0.2 \text{ GeV}^2 \sim 10 m_\pi^2 \quad \text{for } b = 10 \text{ fm} \]

Photon production in magnetic fields

- Positive contributions to v2.
- Stronger for larger b.
Photon production in Glasma; Is it important?

- Small space-time volume
- QGP hadron pre-equilibrium
- Glasma
- Gluon
- Quark
- Thermal
- CSA
- Kinetic
Photon production in Glasma; Is it important?

small space-time volume may compensate?
high density

Glasma

1/\alpha_s
1/\alpha_s^{1/2}

\alpha_s

\gamma

hadron

QGP

pre-equilibrium

f

thermal

gluon

quark

CSA

kinetic
Photon production in Glasma; Is it important?

Initially, the system is almost purely gluonic. In perturbative calculations, chemical equilibrium between quarks and gluons is slow.
In strong gauge fields $A \sim 1/g$, quark production is an order one effect. The quark occupation number $\lesssim 1$ can be quickly developed at $\tau \sim 1/Q_s$.

small space-time volume may compensate?

high density

Photon production in Glasma; Is it important?

In strong gauge fields $A \sim 1/g$, quark production is an order one effect. The quark occupation number $\lesssim 1$ can be quickly developed at $\tau \sim 1/Q_s$.

small space-time volume may compensate?

high density

Photon production in Glasma; Is it important?

In strong gauge fields $A \sim 1/g$, quark production is an order one effect. The quark occupation number $\lesssim 1$ can be quickly developed at $\tau \sim 1/Q_s$.

small space-time volume may compensate?

high density

Photon production in Glasma; Is it important?

In strong gauge fields $A \sim 1/g$, quark production is an order one effect. The quark occupation number $\lesssim 1$ can be quickly developed at $\tau \sim 1/Q_s$.

small space-time volume may compensate?

high density

Photon production in Glasma; Is it important?

In strong gauge fields $A \sim 1/g$, quark production is an order one effect. The quark occupation number $\lesssim 1$ can be quickly developed at $\tau \sim 1/Q_s$.

small space-time volume may compensate?

high density

Photon production in Glasma; Is it important?

In strong gauge fields $A \sim 1/g$, quark production is an order one effect. The quark occupation number $\lesssim 1$ can be quickly developed at $\tau \sim 1/Q_s$.

small space-time volume may compensate?

high density

Photon production in Glasma; Is it important?

In strong gauge fields $A \sim 1/g$, quark production is an order one effect. The quark occupation number $\lesssim 1$ can be quickly developed at $\tau \sim 1/Q_s$.

small space-time volume may compensate?

high density

Photon production in Glasma; Is it important?

In strong gauge fields $A \sim 1/g$, quark production is an order one effect. The quark occupation number $\lesssim 1$ can be quickly developed at $\tau \sim 1/Q_s$.

small space-time volume may compensate?

high density

Photon production in Glasma; Is it important?

In strong gauge fields $A \sim 1/g$, quark production is an order one effect. The quark occupation number $\lesssim 1$ can be quickly developed at $\tau \sim 1/Q_s$.

small space-time volume may compensate?

high density

Photon production in Glasma; Is it important?

In strong gauge fields $A \sim 1/g$, quark production is an order one effect. The quark occupation number $\lesssim 1$ can be quickly developed at $\tau \sim 1/Q_s$.

small space-time volume may compensate?

high density

Photon production in Glasma; Is it important?
QGP hadron small space-time volume may compensate?

high density

Flow is small at early time
Initial flow before hydro evolution? (e.g. IP-Glasma)

In strong gauge fields $A \sim 1/g$, quark production is an order one effect. The quark occupation number $\lesssim 1$ can be quickly developed at $\tau \sim 1/Q_s$.

Photon production in Glasma; Is it important?
Photon production in Glasma; Is it important?

In strong gauge fields, quark production is an order one effect. The quark occupation number $\lesssim 1$ can be quickly developed at $\tau \sim 1/Q_s$. Is it important?

Correlations specific to the early-time production? Can we ‘see’ Glasma?

Flow is small at early time
Initial flow before hydro evolution? (e.g. IP-Glasma)

Small space-time volume may compensate?
High density
The data points of different kinds of collisions and different energies are on the same line. The saturation scale Q_s is the only relevant scale. Imply photon production at early times when other scales (system size, particle masses) are not yet important.
Photon production in Glasma

• Based on a simple model for the gluon and quark distribution functions

\[f_g(E) = \frac{\kappa \Lambda_{\text{IR}}}{N_c \alpha_s \Lambda} \frac{1}{e^{E/\Lambda} - 1} \quad \quad f_q(E) = \frac{1}{e^{E/\Lambda} + 1} \]

Initially, \(\Lambda_{\text{IR}} = \Lambda \sim Q_s \)
Thermal distribution when \(\Lambda_{\text{IR}} = N_c \alpha_s \Lambda / \kappa \)

• Generalization of the LO rate (Compton and annihilation) in a thermal QGP

\[E \frac{dN_{\text{Glasma}}}{d^4x d^3p} = \frac{5}{9} \frac{\alpha}{2\pi^2} \frac{\kappa}{N_c \alpha_s} \Lambda_{\text{IR}} \Lambda e^{-E/\Lambda} \ln \left(\frac{2.912}{\frac{E}{\Lambda_{\text{IR}}} \frac{N_c}{4\pi \kappa}} \right) \]

\(\text{can be parametrically large due to the factor } 1/\alpha_s \)

• No direct computation of the flow.

A typical emission time is delayed in the Glasma-thermal combined evolution compared with only thermal evolution.

Indicates larger flow
Effects of a non-thermal tail

L. McLerran, B. Schenke, NPA 946, 158 (2016).

- Replace the thermal distributions by power law distributions (Tsallis).
 \[f_{g/q}(E) = \left[\left(1 + \frac{E}{\alpha T} \right)^a \mp 1 \right]^{-1} \quad \text{with} \quad \alpha = 6 \]

- Photon spectrum is drastically changed.

The shapes of the distributions of quarks and gluons are important. Relation to non-thermal fixed points?
Towards first-principle-based computations

- Ab initio computations of the quarks and gluons distributions

 The shapes of the distributions and their time evolution are important.
 An approach which does not require quasi-particle distributions is more favorable.

- Correctly take account of overoccupied gauge fields

 In the overoccupied regime $A \sim 1/g$, the kinetic approach or the naïve perturbative calculations are not valid.

Classical statistical approach can do
Other approach

Boltzmann approach to multi parton scatterings Greif, Zhou, Greiner, Xu

Describe parton (quarks and gluons) scatterings by the Boltzmann equation

\[p^\mu \partial_\mu f(x, p) = C_{22}[f] + C_{23}[f] \]

Photon production also by the Boltzmann

Compton pair annihilation Bremsstrahlung

Such a kinetic approach can be complementary to the classical statistical approach.
Classical statistical lattice simulations

Tanji, PRD 92, 125012 (2015); Berges, Garcia, Muller, Tanji, in progress.

- Solve classical YM eq. and Dirac eq. on real-time lattice
 - Classical-statistical approximation valid for strong gauge fields $A \gg 1$
 - No approximation for the quark fields
- Photons are treated perturbatively in α_{EM}.

Photon spectrum can be computed from the current-current correlation:

$$\langle J_{\mu}(x) J_{\nu}(y) \rangle$$

quark propagator dressed by classical gauge fields
Classical statistical lattice simulations

Tanji, PRD 92, 125012 (2015); Berges, Garcia, Muller, Tanji, in progress.

- Solve classical YM eq. and Dirac eq. on real-time lattice
 - Classical-statistical approximation valid for strong gauge fields \(A \gg 1 \)
 - No approximation for the quark fields
- Photons are treated perturbatively in \(\alpha_{\text{EM}} \).

Photon spectrum can be computed from the current-current correlation:

\[
\langle J_\mu(x) J_\nu(y) \rangle
\]

Quark propagator dressed by classical gauge fields

One of characteristic features of a non-equilibrium state is nonzero current expectation.

\[
\langle J_\mu(x) \rangle = e \langle \overline{\psi}(x) \gamma_\mu \psi(x) \rangle \neq 0
\]

Gives the same order contribution in \(\alpha_{\text{EM}} \) as the connected one-loop.
Classical statistical lattice simulations

Tanji, PRD 92, 125012 (2015); Berges, Garcia, Muller, Tanji, in progress.

- Solve classical YM eq. and Dirac eq. on real-time lattice
 ✓ Classical-statistical approximation valid for strong gauge fields \(A \gg 1 \)
 ✓ No approximation for the quark fields
- Photons are treated perturbatively in \(\alpha_{\text{EM}} \).

Photon spectrum can be computed from the current-current correlation:

\[
\langle J_\mu(x) J_\nu(y) \rangle
\]

Quark propagator dressed by classical gauge fields

One of characteristic features of a non-equilibrium state is nonzero current expectation.

\[
\langle J_\mu(x) \rangle = e \langle \bar{\psi}(x) \gamma_\mu \psi(x) \rangle \neq 0
\]

Gives the same order contribution in \(\alpha_{\text{EM}} \) as the connected one-loop.
Glasma-like color fields

- Uniform in the z-direction
- Fluxtube-like configuration in the transverse plane

× Non-expanding fixed box
× Initially there are only electric fields

\[E_z^a(t = 0, \mathbf{x}_\perp) = \frac{Q_s^2}{g} \sum_{j=1}^{N_{\text{tube}}} \exp \left(-Q_s^2 (\mathbf{x}_\perp - \xi_j)^2 \right) n_j^a \]

Transverse profile of the initial energy density

Time dependence of the gauge field energy density
Induction of the EM current

Plots of $|J^i_{EM}(x)|/(eQ_s^3)$

$m/Q_s = 0.1$

$Q_s t = 5$

x-component

y-component

z-component
Photon spectrum

Compute the spectrum of photons produced by classical processes

\[
\frac{dE}{dt} - \nabla \times \mathbf{B} = -\mathbf{J}_{EM}
\]

Solve the Maxwell equation

Photon energy spectrum

\[
\frac{dE_{ph}}{d^2p_Tdz} = \frac{1}{2(2\pi)^2} \left[\left| \mathbf{E}(p_T) \right|^2 + \left| \mathbf{B}(p_T) \right|^2 \right]
\]

Photon number spectrum

\[
\frac{dN_{ph}}{d^2p_Tdz} = \frac{1}{\omega} \frac{dE_{ph}}{d^2p_Tdz} \quad \omega = p_T = \sqrt{p_x^2 + p_y^2}
\]
At $p_T/Q_s < 1$, the spectrum fluctuates largely run by run.

At $1 < p_T/Q_s < 4$, the spectrum can be fitted by $A \exp\left(-p_T/T_{eff}\right)$ with $T_{eff} \sim Q_s/3$, although the system is far away from thermal equilibrium.
Summary and outlook

- Study of the pre-equilibrium photon production is still in its infancy.
- Classical statistical approach enables first-principle-based studies.
- In the glasma-like color fields, the photon spectrum shows an exponential behavior in pT though the system is far from equilibrium.

- More realistic setup
- Two photon correlations
- Genuine quantum process