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Effective dissipation

Dissipation is generation of entropy

@ von Neumann definition
S =—-Trplnp

o Entropy measures information we have about a state
e maximal information for pure state with S =0
o minimal information for thermal state S = max.}E AN

o Unitary evolution conserves entropy!

o What information is really accessible and relevant?



Entanglement entropy

Consider splitting of system into two parts A + B

Reduced density matrix
pa=Trep

o Entanglement entropy between A and B

Sa=—Trapalnpa

Spatial splitting: entanglement entropy of ground state
C-theorem & A-theorem



Dissipation and effective field theory

@ What are the RG equations for the dissipative terms?
o Is there universality in the effective dissipative sector?

o What dissipative terms are relevant for dynamics close to (quantum) phase
transitions?



Close-to-equilibrium situations

@ out-of-equilibrium situations

@ close-to-equilibrium: description by field expectation values and
thermodynamic fields

@ more complete description by following more fields explicitly

o example: Viscous fluid dynamics plus additional fields
@ usually discussed in terms of

o phenomenological constitutive relations
e as a limit of kinetic theory
e in AdS/CFT

@ want non-perturbative formulation in terms of QFT concepts
@ Analytic continuation as an alternative to Schwinger-Keldysh

o direct generalization of equilibrium formalism



Local equilibrium states

o Dissipation: energy and momentum get transferred to a heat bath

o Even if one starts with pure state 7' = 0 initially, dissipation will generate
nonzero temperature

o Close-to-equilibrium situations: dissipation is local

o Convenient to use general coordinates with metric

Guv ()

o Need approximate local equilibrium description with temperature T'(z)
and fluid velocity u*(x), will appear in combination

u*(x)

T(x)

g (x) =

@ Global thermal equilibrium corresponds to 5" Killing vector

VuBu(z) + VuBu(z) =0



Local equilibrium

o Use similarity between local density matrix and translation operator

eﬂ“(m)?f’u eiAac“ Pu

—

to represent partition function as functional integral with periodicity in
imaginary direction such that

o(a" — i (z)) = +o(a")
e Partition function Z[.J], Schwinger functional W[J] in Euclidean domain
Z[J] = eWEl] _ /DQS@*SEW’H]; J¢

o First defined on Euclidean manifold X x M at constant time
o Approximate local equilibrium at all times: Hypersurface ¥ can be shifted

(a) Global thermal equilibrium (b) Local thermal equilibrium
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Effective action

o Defined in euclidean domain by Legendre transform
(@] = / o (@) (x) — WalJ]

with expectation values

D, (z) = J3@) 57a(@) WglJ]
o Euclidean field equation
1)
WFE[‘I’} =9(z) Ja()

resembles classical equation of motion for J = 0.

@ Need analytic continuation to obtain a viable equation of motion



Two-point functions

o Consider homogeneous background fields and global equilibrium

5 = (1.0.00)

o Propagator and inverse propagator
52

dJa(—p)dJu(q)
52

6®a(—p)0Ps(q)

Wg[J] = Gas(iwn, P) 6(p — q)

Lg[®] = Pab(iwn, p) 6(p — q)

@ From definition of effective action

Z Gab Pbc = 5ac



Spectral representation

o Kallen-Lehmann spectral representation

o 2 2

zZ—Ww

—o0

with pqp € R

correlation functions can be analytically continued in w = —u*p,,

@ branch cut or poles on real frequency axis w € R but nowhere else

o different propagators follow by evaluation of G in different regions
Im(w)
Matsubara M .
Agy (p) =Gap (an, P)
retarded Feynman AaRb(p) =G (po + i€, p)
Re(w) .
————————————————————————————————— N AL(p) =Gab (p° — i, p)
advanced
AL (p) =Gap ( O+ ie sign (po) .P)




Inverse propagator

spectral representation for G5 implies that inverse propagator P,y (w, p)

e can have zero-crossings for w = p® € R
o has in general branch-cut for w = p® € R

so far reference frame with u* = (1,0,0,0)

more general: analytic continuation with respect to

w=—u"py,

use decomposition
Pab(p) = Pr.ab(p) — is1(—=u"pu) P2.ab(p)

with sign function
si(w) = sign(lm w)

both functions Pi q5(p) and P» 45(p) are regular (no discontinuities)



Sign operator in position space

[Floerchinger, JHEP 1609 (2016) 099]

@ In position space, sign function becomes operator
1 (—u*py) = sign (Im(—u"p,.)
)

— sign (Im (iu” 52;)) = sign (Re (u" 52;)) = sr (v 327)

o Geometric representation in terms of Lie derivative

sr(Lw) or sr(Lp)

o Sign operator appears also in analytically continued quantum effective
action I'[®]



Analytically continued 1 PI effective action

[Floerchinger, JHEP 1609 (2016) 099]

Analytically continued quantum effective action defined by analytic
continuation of correlation functions

Quadratic part
1
L@ = 5/ Pa(x) [Pl,ab(w —y) + Paab(z —y)sr (u”%)] P (y)
z,y

Higher orders correlation functions less understood: no spectral
representation

Use inverse Hubbard-Stratonovich trick: terms quadratic in auxiliary field
can be integrated out

Allows to understand analytic structures of higher order terms



FEquations of motion

@ Can one obtain causal and real renormalized equations of motion from the
1 PI effective action?

@ naively: time-ordered action / Feynman ie prescription:

0

mrtime ordered [Q] = \/§Ja(x)

@ This does not lead to causal and real equations of motion !
[e.g. Calzetta & Hu: Non-equilibrium Quantum Field Theory (2008)]



Retarded functional derivative

[Floerchinger, JHEP 1609 (2016) 099]

@ Real and causal dissipative field equations follow from analytically
continued effective action

oI [®] _
(5<I)a($) ret - \/EJ(CC)
@ to calculate retarded variational derivative determine
or[®]

by varying the fields §®(z) including dissipative terms

@ set signs according to

sr(u"9y) 6®(z) — —09(x), 0@ (z) sr(u"0u) = +0P(x)

@ proceed as usual

@ opposite choice of sign: field equations for backward time evolution

Leads to causal equations of motion



Scalar field with O(N) symmetry

o Consider effective action (with p = ¢;¢;)
1 v
L, guv, B] = /ddmx/é{QZ(MT)g” ;O +U(p,T)

+300LT) [, se(00,)] 701

e Variation at fixed metric g, and 8" gives

1
or = /ddwﬁ{z(p, T)g"" 0uép;0up; + §Z'(p7T)s0m6<pm 9" 0p;0uep;
+ U (p, T)pmbpm
1
+ 50 T) [0, sr(uMOu)) B 0v

Clp,T) [pj, sr(utOu)] B 064

L1
2

1
+ 50'(p,T)<pm6gom [ej,sR(u"Opu)] 6”8ue0j}

@ set now dp; sr(ut9,) — dp; and sr(u'dy) dp; — —dp;



Scalar field with O(N) symmetry

o Field equation becomes

1.,
~VulZ(p, T)0" 0] + 52 (0, T)i0upm0" pm
+U'(p, T)ip; + C(p, T)B" Oupj = 0

o Generalized Klein-Gordon equation with additional damping term



Where do energy & momentum go?

@ Modified variational principle leads to equations of motion with dissipation.
@ But what happens to the dissipated energy and momentum?

And other conserved quantum numbers?

o What about entropy production?



Energy-momentum tensor expectation value

Analogous to field equation, obtain by retarded variation

5]'—‘[@)9}“/75#} _ 1 %
5guu(:r) ot - 75\/5 <T (x»

Leads to Einstein's field equation when I'[®, g,..,, 8%] contains
Einstein-Hilbert term

o Useful to decompose
F[©7 gH«V7 BM} = FR[(Dv gHV7 /BH] + FD [4)7 gl“’? ﬁ”]

where reduced action T'r contains no dissipative / discontinuous terms
and I'p only dissipative terms

@ Energy-momentum tensor has two parts

(T") = (Tr)"" + (Tp)"”



General covariance

@ Infinitesimal general coordinate transformations as a “gauge
transformation” of the metric

e (z)

9() , au(z) »
oxv

ozt ox* (@)

G
09y (x) = gux(x) + gu ()
o Temperature / fluid velocity field transforms as vector

o' (z) 9B (x) .,
oxv ox” ¢ ()

0BG (x) = =B (x)

o Also fields ®, transform in some representation, e. g. as scalars

B}
605 (z) = &(m)@%(x)

@ Reduced action is invariant

Tr[® + 60, g + 095, B* + BE] = Tr[®, g, 5]



Situation without dissipation

Consider first situation without dissipation I'[®, g,.., 8"] = T'r[®, guv ]

Field equation implies (for J = 0)

1)
WFR[‘I’,gw] =0

@ Gauge variation of the metric

n = [ a5 @)V (@)

General covariance 6I'r = 0 and field equations imply covariant
energy-momentum conservation

Vi (T*\(2)) =0



Situation with dissipation
[Floerchinger, JHEP 1609 (2016) 099]
o Consider now situation with dissipation. General covariance of I'g:

oTp = /d%{i B 508 4+ /g VL (TR, ‘;I/;fwg}

Reduced action not stationary with respect to field variations

oT'r oI'p = —/g(z) Mo ()

5Ba(z)  0Da(x)

ret

Reduced energy-momentum tensor not conserved
Vu(Tr)"\ () = =Vu(Tp)", (x)

o Dependence on 8 (z) cannot be dropped
o'r
Sy = VI Kul@)

General covariance implies four additional differential equations that
determine g*

Ma0x®a + VLL(TD)H,\ =Vyu [BFK\] + Kuvkﬁu



Entropy production
[Floerchinger, JHEP 1609 (2016) 099]
e Contraction of previous equation with 8> gives

Mafr0s®0 + BV ,u(Tp)", = ¥V, [6“,6*10}

o Consider special case

V9 Ku(z) = 525&) = 553@) /dd:c\/f]U(T)

with grand canonical potential density U(T) = —p(T') and temperature
I
= Guw B*BY
o Using s = 9p/JT gives entropy current
B'BAK, = s* = su”

o Local form of second law of thermodynamics

Vst = Mofror®a + BV, (Tp)*, >0



Could dissipation affect the cosmological expansion ¢



Backreaction: General idea

o for 0 + 1 dimensional, non-linear dynamics

o=fl@)=fotho+3f2e’+...

@ one has for expectation values ¢ = (p)

p=fo+tho+if@ +ifalle—0)")+...

@ evolution equation for expectation value ¢ depends on two-point
correlation function or spectrum Pz = {(¢ — @)?)

@ evolution equation for spectrum depends on bispectrum and so on
@ more complicated for higher dimensional theories

@ more complicated for gauge theories such as gravity



Backreaction in gravity

e Einstein’s equations are non-linear.

o Important question [G. F. R. Ellis (1984)]: If Einstein's field equations describe
small scales, including inhomogeneities, do they also hold on large scales?

@ Is there a sizable backreaction from inhomogeneities to the cosmological
expansion?

o Difficult question, has been studied by many people
[Ellis & Stoeger (1987); Mukhanov, Abramo & Brandenberger (1997); Unruh (1998);
Buchert (2000); Geshnzjani & Brandenberger (2002); Schwarz (2002); Wetterich (2003);
R&sanen (2004); Kolb, Matarrese & Riotto (2006); Brown, Behrend, Malik (2009);
Gasperini, Marozzi & Veneziano (2009); Clarkson & Umeh (2011); Green & Wald (2011); ...]

@ Recent reviews: [Buchert & Réasdnen, Ann. Rev. Nucl. Part. Sci. 62, 57 (2012); Green
& Wald, Class. Quant. Grav. 31, 234003 (2014)]

o No general consensus but most people believe now that gravitational
backreaction is rather small.

@ In the following we look at a new backreaction on the matter side of
Einstein’s equations.




Fluid equation for energy density

First order viscous fluid dynamics

udpe + (e + p)V,ut — (0% — 206" 7, = 0

For 2 < ¢? and Newtonian potentials ®, ¥ < 1
e+ T Vet (e+p) (33+€~6)

=< [3% +V- 17]2 +12 [&‘Ujaﬂ)j + 0iv;0;vi — %(ﬁ : 17)2]




Fluid dynamic backreaction in Cosmology

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

Expectation value of energy density € = (¢)
1é+3H(E+p—3CH)=D
with dissipative backreaction term
D = X (n[0iv;0iv; + 90,050 — 30i0:050;])
+ 5V 0% + 2TV (p— 6¢CH))

@ D vanishes for unperturbed homogeneous and isotropic universe

@ D has contribution from shear & bulk viscous dissipation and
thermodynamic work done by contraction against pressure gradients

o dissipative terms in D are positive semi-definite

o for spatially constant viscosities and scalar perturbations only

4o
D= C-:gn/d?)q Poo(q)



Dissipation of perturbations

[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

Dissipative backreaction does not need negative effective pressure

1€+ 3H (€4 per) = D

a

o D is an integral over perturbations, could become large at late times.
o Can it potentially accelerate the universe?
o Need additional equation for scale parameter a

o Use trace of Einstein's equations R = 8mGNT"Y,
%H +2H? = 47rGN (€ — 3Pesr)

does not depend on unknown quantities like (€ + per)u’u")

@ To close the equations one needs equation of state Per = Pes(€)
and dissipation parameter D



Deceleration parameter
[Floerchinger, Tetradis & Wiedemann, PRL 114, 091301 (2015)]

@ assume now vanishing effective pressure pesr = 0

@ obtain for deceleration parameter ¢ = —1 — agz
d 1 4Gy D
— s +2(a—1) (- 3) =
e for D = 0 attractive fixed point at ¢. = 3 (deceleration)

e for D > 0 fixed point shifted towards g. < 0 (acceleration)

3H3

4nGNnD
[T R Y NE-N

+

dq
dlna

0

-1 . . .
=10 =05 0.0 0.5 1.0

deceleration parameter g



Conclusions

o Effective dissipation can arise in quantum field theories due to effective
loss of information.

o Equations of motion for close-to-equilibrium theories can be obtained from
analytic continuation.

@ General covariance and energy-momentum conservation lead to equations
for fluid velocity and entropy production.

@ Local form of second law of thermodynamics is implemented on the level
of the effective action I'[®].

@ Interesting applications in cosmology and condensed matter physics.



BAckup



Double time path formalism

o formalism for general, far-from-equilibrium situations: Schwinger-Keldysh
double time path

e can be formulated with two fields ® = (¢4 + ¢_), x = ¢4 — ¢

@ in principle for arbitrary initial density matrices, in praxis mainly Gaussian
initial states

@ allows to treat also dissipation

o useful also to treat initial state fluctuations or forced noise in classical
statistical theories

o difficult to recover thermal equilibrium, in particular non-perturbatively

o formalism algebraically somewhat involved

Imt

max




Causality

[Floerchinger, JHEP 1609 (2016) 099]
o consider derivative of field equation (in flat space with /g = 1)

é or §

580(y) 5%a () e~ 5Bo(z) """

@ inverting this equation gives retarded Green's function

0

6Jb(y) (I)a(x) = Afb({lﬁ,y)

@ only non-zero for x future or null to y

o Causality: Field expectation value ®,(x) can only be influenced by the
source J;(y) in or on the past light cone v/



Energy-momentum tensor for scalar field

Analytic action
1
o0 8] = [ ae/a{ 520, 79" 0,00, + U (o, T)
1
+500T) lojoselw0,)] 800, |

@ Energy-momentum tensor
(T (@) =Z(p, T)0" ;8" ¢;

1o} 1
- (g“” + U“U”TafT) {Ez(p,T)g“”awjau«Pj +U(p, T)}

Generalizes T*" for scalar field and T"" = (e + p)u”u” + g""p for ideal
fluid with pressure p = —U and enthalpy density € + p = sT = fTBiTU.
o General covariance and covariant conservation law imply

Vu(TH(x)) =0 == Differential eqgs. for 8" (x)



Entropy production for scalar field

o Entropy current

L L (L 8 1 «@
st = prBAK, = — T {*Z(p,T)g P 0ap; 05, +U(p,T)}

o Generalized entropy density

0

1 o
56 = 51 { Z(p,T)g"" Batp; 05 + Ulp, T)}

o Entropy generation positive semi-definite for C'(p,T') > 0

V‘Ls“ =C(p,T) (B Ou;) (ﬂ Ovpj) >

e For fluid at rest u* = (1,0,0,0)

. C(p,T) . .
Vs = sa = (;2 L

entropy increases when ¢; oscillates. Example: Reheating after inflation.



Damped harmonic oscillator 1

e Equation of motion
miE+ct+kr =0

or
T+ 2Cwox + ng =0

with wo = y/k/m and ¢ = ¢/V4mk

@ What is action for damped oscillator? This does not work:
deo m:c*(cu) [w? + 2iw Cwo — wh] z(w)
21 2 0
o Consider inverse propagator
w2+ 2i si(w) w Cwo — wg

with
si(w) = sign (Imw)

zero crossings (poles in the eff. propagator) are broadened to branch cut



Damped harmonic oscillator 2

e Take for effective action

INEY :/;L: %m*(w) [—w2 — 21 81(w) w Cwo + wg] z(w)

1 1 1
:/dt {—§mdc2 + 509: sr(0y)T + 51@9{:2}
where the second line uses
si(w) = sign(Imw) — sign(Imid;) = sign(Re d;) = sr(:)
o Variation gives up to boundary terms

or :/dt {mjv' ox + écéaz sr(O) T — %ci:sR(Qt)éx + kx&r}

Set now sgr(9;)éx — —dz and dx sr(0:) — dx. Defines 9|

o Equation of motion for forward time evolution

or

ox

=mi+ct+kx=0

ret



Ideal fluid

o Consider effective action
Clguss 8] = Calyun 8] = [ a5 U(T)

with effective potential U(T") = —p(T") and temperature
1

V =9uv BB

@ Variation of g, at fixed 8" leads to
" = (e + p)u"u’ +pg™”

where e + p=Ts = Ta%p is the enthalpy density

@ Describes ideal fluid. General covariance of covariant conservation
V. T"” =0 leads to ideal fluid equations

utdue+ (e +p)Vuu! =0,
(e +p)u"Vyuu” + A0,p = 0.



Viscous fluid

@ Analytic action

Clguos 81 = [ {UC0) + § lguws (L] @0(T) + (DA V ) }

with projector
AP = Py + guv
and

1 1 1
wv — [ Z AR AMB L Z ABBARC _ APV AQB o
o (2 + 3 a-1 Vaug

leads to

v or v, B v v v v
(1) = — 2 e8] (e plutut + pgh” — 20" — (AT uf

o Describes viscous fluid with shear viscosity 7(T") and bulk viscosity ¢(T')
o Entropy production

Vst = % [Qnawa‘“' + C(Vpup)2]



FEquations of motion from the Feynman action ¢

o Consider damped harmonic oscillator as example. Time-ordered or
Feynman action is obtained from analytic action by replacing
si(w) — sign(w)

dw m . .
Ttime ordered[x} = / g 51’ (UJ) [-UJQ — 22|UJ‘ CUJO +UJ§] a:(w)

o Field equation 5755 Tiime orderea[] = J () would give

[fwz — 24|w| Cwo + wg] z(w) = J(w)

@ Violates reality constraint z*(w) = z(—w) for J*(w) = J(—w)
@ Solution not causal

x(t) = /t Ap(t—t)J(t)

because Feynman propagator Ap(t —t') not causal.

@ In contrast, retarded variation of analytic action leads to real and causal
equation of motion



Tree-like structures
@ Discontinuous terms in analytic action could be of the form

Poiec[@] = / A2 /G {F10)(x) sr (v (@) 52r) g[®](z)}

@ More general, tree-like structure are possible such as

Poisc[®] = F1®)(x) sr(u*(x) 52
fA

or

Toicl®] = / {719)(@) sr (" (2) 52) 9l@)(w, 9, 2) sw (" (1) 55) h[@)(y)
x s (1 (2) 52¢) J1@](2) }

) gl®](z, ) 5w (u" (4) 52) RIP](v) }

o For retarded variation calculate 6" and set sg(u”9,) — —1 if derivative
operator points towards node that is varied and sg(u”9,) — 1 if derivative
operator points in opposite direction



Analé/tz(' continuation of FRG equations
[Floerchinger, JHEP 1205 (2012 021?

o Consider a point pi — p° = m? where P (m?) = 0.
@ One can expand around this point

Pi= Z(-pi+ 7 +m) £
Po=2Zv+---

o Leads to Breit-Wigner form of propagator (with 4> = mI")

1 —pj +p° +m? 4+ is(po) mI’
Z (—pg+p*+m2)2+m2r?

G(p) =

o A few flowing parameters describe efficiently the singular structure of the
propagator.

A2 /A2
Vi /A
0.00008

0.00006

0.00004

000002

0

~0.00002




Truncation for relativistic scalar O(N) theory

. _ N T
with p = 1 >im ¢

o Goldstone propagator massless, expanded around py — p% =0

Py(po, P) = Zo (—ps + °)

o Radial mode is massive, expanded around p3 — 5° = m?
Py(po, §) + poPp(po, p) + Ui, + 2pUy,
~ 2o (=93 + 8 +md) — is(po) 7]



Flow of the effective potential

1 (N —1)
i1
t k(p)|p 2 po—itwn . ﬁg—pg-i—U'-‘r%quk

+ . }iaR
Z0[(* = i) —is(po)f] + U + 200" + LR S Zs

@ Summation over Matsubara frequencies po = i27T'n can be done using
contour integrals.

@ Radial mode has non-zero decay width since it can decay into Goldstone
excitations.

o Use Taylor expansion for numerical calculations

1
Uk(p) = Uk(po.k) + mi(p — pox) + 5>\k(p — pok)’



Bulk viscosity

o Bulk viscous pressure is negative for expanding universe

Touk = —C Vyut = —C3H <0

o Negative effective pressure
Deff = P + Thulk < 0

would act similar to dark energy in Friedmann's equations
[Murphy (1973), Padmanabhan & Chitre (1987), Fabris, Goncalves & de Sa Ribeiro (2006),
Li & Barrow (2009), Velten & Schwarz (2011), Gagnon & Lesgourgues (2011), ...]

o Is negative effective pressure physical?

o In context of heavy ion physics: instability for pes < 0 (“cavitation”)
[Torrieri & Mishustin (2008), Rajagopal & Tripuraneni (2010), Buchel, Camanho & Edelstein
(2014), Habich & Romatschke (2015), Denicol, Gale & Jeon (2015)]

@ What precisely happens at the instability?



Is negative effective pressure physical?

o Kinetic theory

3
pese) = [ i e fa ) 2 0

o Stability argument

Pt © Peif (€)

Peft (€) Peif (€)

€2

If there is a vacuum with € = per = 0, phases with pef < 0 cannot be
mechanically stable. (But could be metastable.)



