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Introduction

Introduction

@ membranes: D-dimensional extended objects embedded in a
d-dimensional space subject to quantum and/or thermal
fluctuations

o fluctuating membranes / random surfaces occur in several
domains:




Introduction

@ chemical physics / biology :

(Aronovitz - Lubensky, Helfrich, David - Guitter, Le Doussal - Radzihovsky,
Nelson - Peliti,’70’s- 90's)

—> structures made of amphiphile molecules (ex: phospholipid)

e one hydrophilic head
e hydrophobic tails

— bilayers:
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Introduction

@ condensed matter physics: graphene, silicene, phosphorene . ..

uni-layers of atoms located on a honeycomb lattice
@ striking properties:

o high electronic mobility, transmittance, conductivity,. ..
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@ mechanical properties: both extremely strong and soft

material:

— example of genuine 2D fluctuating membrane
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Fluid vs polymerized membranes

Fluid vs polymerized membranes

Properties of fluid membranes

@ very weak interaction between molecules
— free diffusion inside the membrane plane
= no shear modulus

@ very small compressibility and elasticity

= main contribution to the energy: bending energy

~
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Fluid vs polymerized membranes

Energy:

@ point of the surface described by the embedding:

e (0',0?%) = local coordinates on the membrane

or

e tangent vectors €, = —— = O,I' a=1,2
X do?
. N e X ey
e a unit norm vector normal to (e1,ez): A =
|e1 X 62‘




Fluid vs polymerized membranes

@ curvature tensor K: K, ;, = —1. dpe, = €e,. Opid
@ K can be locally diagonalized with eigenvalues K7 and Ko

@ mean or extrinsic curvature:
1 1
H = 5([(1 +K2) = §TrK

o Gaussian or intrinsic curvature: K = K1 Ko = det Kab
= no role in fixed topology (Gauss-Bonnet theorem)

— bending energy:
F= g / Ao /g H>

® gy = 0,r.0,xr = metric induced by the embedding r(o)

@ /g ensures reparametrization invariance of F'




Fluid vs polymerized membranes

Low-temperature fluctuations in fluid membranes

@ a remark: with 9,i = K, €® one has:
K . K a2
F = 2/d20 (0,0)2 or F=-— Z n;.n;

where 10; is a unit normal vector on the plaquette &

@ very close to a O(N) nonlinear o-model / Heisenberg spin
system:

- with (rigidity) coupling constant x
- with "spins” living on a fluctuating surface

- with d playing the role of the number of components NV
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Fluid vs polymerized membranes

@ Low temperature: Monge parametrization
x =01, y =09 and z = h(x,y) with h height, capillary mode

o r(z,y) = (z,y, h(z,y))

(=0zh, —0yh, 1)
V1+ |Vh[?

@ i(z,y).e, =cosb(z,y) =

@ i(z,y) =

1

/ 2
- + |Vh| 11 /34
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Fluid vs polymerized membranes

@ Free energy:

Fe ’;/cﬂx (AR)? + O(RY)

e flat phase ? = fluctuations of 6(z,y) ?

<9(x7y)2>:k:BT/d2q 12 el <L>%oo

Kq K a

= no long-range order between the normals
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Fluid vs polymerized membranes

At next order in h, x is renormalized and decreased at long

distances.:
kr(q) = Kk — 3kpT é In L
RO = 2 \ 2 qa

= divergence of (f(x,y)?): worse

—> strong analogy with 2D-NLo model:

A

e correlations:  (fi(r).A(0)) ~ e T/€

@ correlation length — mass gap: € ~ qetmr/3kpTd

@ d/2= N-2

@ nothing really new ...
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Fluid vs polymerized membranes

Polymerized membranes

ex:
- organic: red blood cell, ...
- inorganic: graphene, phosphorene, ...

@ made of molecules linked by V' (|r; — rj])

—> free energy built from both bending and elastic energy
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Fluid vs polymerized membranes

Free energy and low-temperature fluctuations in
polymerized membranes

e reference configuration: ro(z,y) = (z,y,z = 0)

o fluctuations: r(z,y) =ro+ u, e +u,ex + hia

I\l




Fluid vs polymerized membranes

stress tensor: g, = % (OaX.Opr — Oyro.0prp) = % (OaX.Opr — Ogp)

—_

= Ugp = 5 [(%ub + Opugq + Ogu.0pu + O h 8bh]

@ u, describes the longitudinal — phonon-like — degrees of
freedom

@ h describes height, capillary — degrees of freedom

o free energy:
2 b 2 2 A 2
F~ /d X [2(Ah) = ol - §(uab)

Kk = bending rigidity A, u = elastic coupling constants

@ non-trivial coupling between longitudinal - in plane - and
height fluctuations = frustration of height fluctuations
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Fluid vs polymerized membranes

Gaussian approximation on phonon fields:
1
Uty B2 B [8aub + Opig + Ogh 8bh]
integrate over u:

Fopp== /d2 (Ah)? /dQ (PL 8ah 05h)°

o PL =54 — 8,0,/ V?
@ r~ bending, rigidity coupling constant

o IC=4pu(N+ n)/(2u+ A): Young elasticity modulus

17 /34



Fluid vs polymerized membranes

@ Self-consistent screening approximation (SCSA)
~ Schwinger-Dyson equation closed at large d

a ~ 12
[Qa Pg;, Qb]
Kerf(a+k)|q + k[

Kepr(Q) = K + k‘BTIC/d2k:

= Kepf(a) ~ rigidity increased by fluctuations !

VEkgTIK
q

@ normal fluctuations:

1
o(z, szT/dQ — < !
(0(z,y)7) = ks @@

— Long-range order between normals even in D = 2 ! |
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Fluid vs polymerized membranes

@ polymerized membranes = possibility of spontaneous
symmetry breaking in D = 2 and even in D < 2

—> low-temperature - flat - phase with non-trivial
correlations in the I.R.

Ghn(q) ~ ¢~“=)

Guu (Q) ~ q7(67D72n)

with 7 # 0 = associated e.g. to stable sheet of graphene
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Perturbative approaches

Perturbative approach of the flat phase
(Aronovitz and Lubensky'88)
@ Field theory of the flat phase:

N[ >

F~ /d2x [;(Ah)2 + 11(uap)? + (Uaa)z}

= perturbative expansion in A = \/x? and i = pu/k? in
Duc =4—¢

@ non-trivial fixed point governs the flat phase
e increasing rigidity k.rf(q) ~ ¢~ == orientational order
o decreasing elasticity K.r7(q) ~ ¢7 = positional disorder

~ ripples formation
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Perturbative approaches

However:

o flat phase properties: very poorly determined in D = 2
because D,. = 4

@ SCSA or weak-coupling tedious beyond leading order due to
e derivative interaction
o multiplicity of fields: h, u
e propagator structure:

Capillary modes: Gag(qQ) = 5Li
Kq
Phonon modes: G;;(¢?) = G1(¢?) [5”, _% q]i| + Ga(q?) ngj
with: , 1
G - -
1(q7) e Y
1
Ga(q®) =

Kt + ¢ (24 A) ¢?
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FRG approach

FRG approach to polymerized membranes

(Kownacki and D.M.'08, Essafi, Kownacki and D.M.'14, Coquand and
D.M.'16)

o Effective action: I'y[0,,r] expanded around the flat phase
configuration:

D
r(x)=¢ Z To €
a=1

Ty [8ur] = / iPx g(aaaar)%

+ uy (Bar.9r — (2 0ap)” + 2 (8ar.00r — D ¢2)°

+ ...

FFooo

+ u1o (8ar.85r = <2 6@6) (aﬁr.&yr = (:2 5/37) X
(&,r.&;r — = 575) (85r.8ar — = 55a)




FRG approach

o Flat phase: 17 = 0.849 (SCSA: 0.821 (Le Doussal and
Radzihovsky'92)

MC computation with a interatomic potential for graphene:
7 = 0.850 ! (Los, Katsnelson, Yazyev, Zakharchenko and Fasolino'09)

@ amazingly:
e no correction beyond the leading order in field: (9r)? !
(Essafi, Kownacki and D.M."14)
e almost no correction beyond the leading order in
field-derivatives 9% !
(Braghin and Hasselmann’10)

@ key point: graphene very well described by the ordered phase
of a derivative-“¢*-like” theory at leading order !
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FRG approach

Extension to membranes in various physical situations : |

@ anisotropic membranes = tubular phase
(Essafi, Kownacki and D.M."11)
e production of organic nanotubes
o applications in bio- and nano-technology (drug delivery
devices, electrochemical sensors, etc)

Flat Tubular Crumpled
Phase Phase Phase

24 /34



FRG approach

@ anisotropy between the x and y directions
Tulr] = [de dy { Z2(020)? + to(9er) + “L(8,r.0,r — (2)?
elr) = [do dy § L0 + £,(8m)? + 2L (Oyr.0yr — )

@ transition between a crumpled phase with ¢, = 0 at high T
and a tubular phase with ¢, # 0 at low T’

@ general phenomenon of anisotropic scaling: q| o qZ

e Lifshitz critical behaviour: disordered+homogenous ordered+
spatially modulated, phases meet together

e Horava-Lifshitz theory/gravity: breaks Lorentz invariance

S = / dt dPx atqb) —%(6?¢)2+V(¢)}

= improves UV behaviour

25 /34



FRG approach

Upper critical dimension: D = 5/2 "very close” to D = 2
= €¢=15/2— D in good position ?
e perturbatively: n = —0.0015 <0 ! (rigidity: K ~ 1/¢")

e-expansion: ‘“unreliable” and ‘“qualitatively wrong”
(Radzihovsky and Toner’95)

e FRG approach:
(Essafi, Kownacki and D.M."11)

0.364

|
0362} -
|
0.3600 |

0.358

0.1 0.2 0.3 7\‘0.4 0.5 0.6 0.7 0.8

n = 0.358(4) > 0 to be compared to MC data ... B /34



FRG approach

o effects of quantum fluctuations on the flat phase of
polymerized membrane / graphene
(quantum fluctuation important up to T ~ 1000 K )

@ perturbative approach: (Kats and Lebedev.’14, Amorim et al'14)
quantum membranes at 7' = 0 asymptotically free in the UV !
— unstable wrt quantum fluctuations !
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FRG approach

preliminary work: FRG flow from the effective action for quantum
membranes (Coquand and D.M.'16)

I = /O " i / Py {S(OTP)Q + 20,0077

ok
4

+ (a’Yr‘aVr - Ck25'yy)2 + % (8»71'.(971' = D§k2)2}

RG equations g, 7i;, and ¢y,

@ quantum membranes governed by a IR trivial fixed point
— stability of quantum membranes at T=0

@ Cross-overs:
e quantum to classical regime
o classical weak-coupling to classical strong-coupling regime
= improved with respect to SCSA approach

(see O. Coquand, ERG 2016 and Phys. Rev. E 94, 032125 (2016)) Bs /34




FRG approach

o effect of disorder
origin: imperfect polymerization, protein, etc

e isotropic defects = elastic disorder
e anisotropic defect = curvature disorder

s g n Srg s
@

mﬁﬁm@%
(b) &V,
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FRG approach

Hamiltonian:
H[r] = /d% {;(@L@Hr(x) - %)
+ )\(aur(x).ayr(x) — (%6, (1+2 TIL(:L‘)))
+ ,u(aur(x).aﬂ.r(x) — D1+ Zm(:r))) }
with c(x) and m(x) Gaussian random fields

@ average over (quenched) disorder using replica trick:

— Z" —1
F =logZ = lim

n—0 n
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FRG approach

— effective action with interacting replica :

rr]zfddxgj{g<aiair“(x)>2 A(ar (x )8r°‘(x)—D(2>2
%(81‘ (x ).ajr“(x)gz(sijf}

_Sx Za dir®(x).0;0;1° (x)
_ % (&ra(x).aira (x) — D<2) (ajrﬁ (x).0;r" (x) — D<2)

o,

_% 3 (aira(x)ﬁjr"‘(X) — 42615) (&rﬂ(x).ajrﬁ(x) - Czéia‘)

a,f

with Ay, Ay, A, disorder variances
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FRG approach

@ SCSA: (Radzihovsky and Nelson'91)
Rers(@) = K MHA.K/fk o P )
o o " rers2(a+K)la+ K[*

a ~ 72
[Ga Py db]
(a+k)lg+Kk[*

—(Ax+A,) ICQ/ko:
Reff

with k¢ renormalized only by thermal fluctuations

@ weak coupling (Morse and Lubensky’92)

— stability of the ordered fixed point
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FRG approach

@ SCSA: (Radzihovsky and Nelson'91)
kP, (q) = Kesr(q) +Ax /C/ko [(ja Pab qb]2
o 7 " rers2(a+K)la+ K[*

2
ang;qb]
—(Ax + A, ICQ/ko: [
(B +A0) Fer(@F K)a T K7

with k¢ renormalized only by thermal fluctuations

@ weak coupling (Morse and Lubensky’92)

— stability of the ordered fixed point

@ FRG approach (Coquand, Essafi, Kownacki, D.M.'17): new fixed
point not seen within perturbation theory

@ new failure of perturbative approach ?
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FRG approach

Conclusion

Perturbative approaches of membranes fail in several situations

D = 2 far from the upper critical dimension D,
D, is fractional

missing of fixed point 7

The FRG seems efficient in all these cases ... but
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FRG approach

Prospects

@ self-avoidance (David, Duplantier, Guitter, Le Doussal, Wiese)

b
H=Ho+, / dPz dPy 5(x(x) — r(y))
— disappearance of the — high T" — crumpled phase 7
problem: non-locality in D-space

@ graphene-like systems: interaction between electronic and
membranes degrees of freedom

— fermionic matter coupled to fluctuating metric

H= —i/d%@@yae;(@- + Q)T

with: 9ij = 51']' + 2uij
(Coquand, Le Doussal, D.M., Radzihovsky) B4 /34
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