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o Inhomogeneities are treated as perturbations on top of an
expanding homogeneous background.

O Under gravitational attraction, the matter overdensities grow and
produce the observed large-scale structure.

O The distribution of matter at various redshifts reflects the detailed
structure of the cosmological model.

o Define the density field § = dp/po and its spectrum

(6(k)o(a)) = dp(k + q)P(k).
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The characteristic scale of the baryon acoustic oscillations is
approximately 150 Mpc (490 million light-years) today.

It corresponds to the wavelength of sound waves (the sound
horizon) in the baryon-photon plasma at the time of
recombination ( Z = &aeday/a@ — 1 = 1100).

It is also imprinted on the spectrum of the photons of the cosmic
microwave background.

Comparing the measured with the theoretically calculated
spectra constrains the cosmological model.

The aim is to achieve a 1% precision both for the measured and
calculated spectra.

Galaxy surveys: Euclid, DES, LSST, SDSS ...
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In the linearized hydrodynamic equations each mode evolves
independently. Higher-order corrections take into account
mode-mode coupling.

Calculation of the matter spectrum beyond the linear level.
(Crocce, Scoccimarro 2005)

Baryon acoustic oscillations (k ~ 0.05 — 0.2 h/Mpc): Mildly
nonlinear regime of perturbation theory.

Higher-order corrections dominate for k ~ 0.3 — 0.5 h/Mpc.
The theory becomes strongly coupled for k & 1 h/Mpc.
The deep UV region is out of the reach of perturbation theory.

Way out: Introduce an effective low-energy description in terms
of an imperfect fluid (Baumann, Nicolis, Senatore, Zaldarriaga
2010, Carrasco, Hertzberg,Senatore 2012, Pajer, Zaldarriaga
2013, Carrasco, Foreman, Green, Senatore 2014)
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O Coarse-graining: Integrate out the modes with kK > k;, and
replace them with effective couplings in the low-k theory.

O Wetterich equation for the coarse-grained effective action I'k[4]:

oklg] 1 @ 5\ OR
ot _2Trl(rk WHRK) aInk

o For a standard kinetic term and potential Ux[¢], with a sharp
cutoff, the first step of an iterative solution gives

AN yd
Ua®) = V(&) + 5 [ i In (6% + V'(9)).

O The low-energy theory contains new couplings, not present in the
tree-level action. It comes with a UV cutoff k.
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© Why is this intuition relevant for the problem of classical
cosmological perturbations?

O The primordial Universe is a stochastic medium.

o The fluctuating fields (density, velocity) at early times are
Gaussian random variables with an almost scale-invariant
spectrum.

O The generation of this spectrum is usually attributed to inflation.

O The coarse graining can be implemented formally on the initial
condition for the spectrum at recombination.
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O Question: Is dark matter at large scales (in the BAO range) best
described as a perfect fluid?

o | shall argue that there is a better description in the context of the
effective theory.

o Going beyond the perfect-fluid approximation, the description
must include effective (shear and bulk) viscosity and nonzero
speed of sound.

o Formulate the perturbative approach for viscous dark matter.
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kxn ~ 1 — 3 h/Mpc (length ~ 3 — 10 Mpc):

The fluid description becomes feasible.

Scales k > kj correspond to virialized structures, which are
essentially decoupled.

km ~ 0.5 —1 h/Mpc (length ~ 10 — 20 Mpc):

The fluid parameters have a simple form. The description
includes effective viscosity and speed of sound, arising through
coarse-graining.

The viscosity results from the integration of the modes k > k.
The form of the power spectrum ~ k=3 implies that the effective
viscosity is dominated by k ~ k.

km acts as an UV cutoff for perturbative corrections in the
large-scale theory.

Good convergence, in contrast to standard perturbation theory.
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Dark matter can be treated as a fluid because of its small
velocity and the finite age of the Universe. Dark matter particles
drift over a finite distance, much smaller than the Hubble radius.
The phase space density f(x,p, 7) = fo(p)[1 + d¢(X, p, P, T)] can
be expanded in Legendre polynomials:

or(k,p, B, 7) = > _(~)"(2n + 1)8;" (k, p, 7)Pa(K - P).
n=0

The Vlasov equation leads to:

d(S;n] n+1 [n+1] n [n—1]
G = g )
with v, = p/am the particle velocity.
The time 7 available for the higher 6,[”] to grow is ~ 1/H.

A fluid description is possible for kv, /H < 1.

Estimate the particle velocity from the fluid velocity v at small
length scales.

n>2,
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At the comoving scale k, the linear evolution indicates that
(0/H)% ~ K*P(k),

with § = kv and PL(k) the linear power spectrum.

The linear power spectrum scales roughly as k2 above ~ k.
k3Pt (k) is rougly constant, with a value of order 1 today. Its time
dependence is given by D?, with D; the linear growth factor.

If the maximal particle velocity is identified with the fluid velocity
at the scale k;,, we have

H

The dimensionless factor characterizing the growth of higher 5;”]
is kKVp/H ~ Dik/kn.

Scales with k > kn,/D, require the use of the whole Boltzmann
hierarchy.

In practice, the validity of the fluid description extends beyond k.
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O The shear viscosity is estimated as 1/(p + p) ~ ke Vp, With fiee
the mean free path.

o For the effective viscosity we can estimate /.. ~ v,/H, with
H = #/a. In this way we obtain

5 H?
(/)Z—f;)aH ~ hreeVpH ~ 2= D2.

Vet H = 2
m

O There is also a nonzero speed of sound. The linearized
treatment of the Boltzmann hierarchy gives

3
Vet H = §c§

on the growing mode.
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© Basic formalism

o Determination of the effective viscosity
O Calculation of the spectrum

o Conclusions

o S. Floerchinger, N. T., U. Wiedemann
arXiv:1411.3280[gr-qc], Phys. Rev. Lett. 114: 9, 091301 (2015)

o D. Blas, S. Floerchinger, M. Garny, N. T., U. Wiedemann
arXiv:1507.06665[astro-ph.CO], JCAP 1511, 049 (2015)

o S. Floerchinger, M. Garny, N. T., U. Wiedemann
arXiv:1607.03453[astro-ph.CO], JCAP 1701 no.01, 048 (2017)
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viscous fluid

o Work within the first-order formalism.
Energy-momentum tensor:

T = putu” + (p + mp) AHY + 7.

p: energy density

p: pressure in the fluid rest frame

mp: bulk viscosity

mH¥: shear viscosity, satisfying: u, 7" =m# =0

A* projector orthogonal to the fluid velocity: A*” = gh¥ + utu”
o New elements:

Bulk viscosity: mp, = —(V,u?

Shear viscosity tensor:

1 1
T = —2not = —2 <§ (A*PY u” + APV Ut — §AW(vpuP)> :
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o Einstein equations:
G =8nGnT,,

o Conservation of the energy momentum tensor (V, T#* = 0):

UPY up + (p+ P)V U — ¢ (V)2 — 2000, = 0
(p+ P+ mp)UtV u? + APEV (P + mp) + AP V7t = 0.
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Ansatz for the metric:
ds? = &(7) [- (1 +2¥(7,x)) dr® + (1 — 2d(7, X)) dx dx] .

The potentials ¢ and W are weak. Their difference is governed
by the shear viscosity. We can take ¢ ~ ¥ <« 1.

The four-velocity u* = dx*/+/—ds? can be expressed through
the coordinate velocity v/ = dx’/dr and the potentials ¢ and V:

1 =
ut = 1,V).
ay/1+2v — (1 —2¢)\72( )
Neglect vorticity and consider the density § = % and velocity

f = V fields. Combine them in a doublet ¢4 2 = (5, —0/#),
where H = a/ais the Hubble parameter.
The spectrum is
(pa(k, 7)ep(Q, 7)) = dp(k + q)Pap(k, 7).
P(k, 7') = P11 (k, 7’).
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Linear power spectrum and the one- and two-loop corrections in
standard perturbation theory (SPT) at z = 0.
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Higher-order (loop) corrections dominate for k = 0.3 — 0.5 h/Mpc.
The theory becomes strongly coupled for k ~ 1 h/Mpc.

The deep UV region is out of the reach of perturbation theory.
Higher-order corrections are increasingly more UV sensitive.

For small k, the one-loop depends on the dimensionful scale

4 ° 4 °
4o =5 [ daPa.n) = F 0k [ daPHa.0).

with n = Ina = —In(1 + z) and D, (n) the linear growth factor:
d(k,n) = Dr(n)d(k, 0) on the growing mode.

For the spectrum, the complete expression is (Blas, Garny,
Konstandin 2013)

61 25
%ﬁ%&m=—(g g)ﬁﬁ#wm.
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(in terms of pressure and viscosity)

D. Blas, S. Floerchinger, M. Garny, N. T., U. Wiedemann
arXiv:1507.06665[astro-ph.CQO], JCAP 1511, 049 (2015)

Introduce an effective low-energy description in terms of an
imperfect fluid (Baumann, Nicolis, Senatore, Zaldarriaga 2010,
Carrasco, Hertzberg,Senatore 2012, Pajer, Zaldarriaga 2013,
Carrasco, Foreman, Green, Senatore 2014)

Integrate out the modes with k = k;, and replace them with
effective couplings (viscosity, pressure), determined in terms of

o%(1) / oG (g, ) = ‘5 DE () / dq PL(q.0).

For a spectrum ~ 1/k3, the integral is dominated by the region
near K,. The deep UV does not contribute significantly.
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effective viscous theory

P(x, T) = pO(T) + (Sp(xa T) p(xa T) =0+ 5p(xv T)
5 = —= 0=Vv

5 H? H _3 H?
G = Foaslry M= =tam)
m

with as, a,, = O(1) today.
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© We rely on a hierarchy supported by linear perturbation theory
for subhorizon perturbations.
(1) We treat § and 6/# as quantities of order 1, V as a quantity of
order H/k and W, ® as quantities of order H2/k2.
(2) We assume that a time derivative is equivalent to a factor of #,
while a spatial derivative to a factor of k.
(3) We assume that ¢, vH are of order H2/k2.

o Keeping the dominant terms, we obtain

—

b4+ VV+H (W) +6Vi = 0
V+HV + (W) + Vo + 2(1 — 5)V6

—v(1 =) <v2\7+%*(6|7)> = 0
2 3 2
VRO = SQnH.
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Use Fourier-transformed quantities to obtain
o+ 0k+/d3pd3q5(k— P—a)ai(p,q)dply =0
) 4 2 3 2 2
O+ (H+ gk ) Ot ( 5mH — c2k? ) bk
+ /dspdsqé(k— p—4q)

(,81 (P, Q) dp g + B2(P,q) Op Oq + B3(P, q) dp 9q) =0,

with
ai(p.q) = (pg—gq)q
fi(p.q) = ci(p+a)q
2p .
Bo(p,a) = %
Ba(p.q) = —iv(p+q)q-

N. Tetradis University of Athens

Effective Description of Dark Matter as a Viscous Fluid



Motivation Framework Perturbation theory Effective viscosity Results FRG improvement Conclusions

[e]e]e]e]e) 000000000 [e]e]e]e]0) 0O000e000000 000000000000 00000000000
Define the doublet
5
o1(k,n) k(7)
RGN
wa(k,n -
(k.n) >

where n = In a(7). The evolution equations take the form

Oyda(k) = —Qap(k, 77)s0b(k)+/ d®p *q 5(K—P—a)vabc(P, A, 1) 6(P) o(Q),

where

0 —1
k,m) = ( 0 tasly 1+%+ols )

and a prime denotes a derivative with respect to n. The nonzero
elements of a5 are expressed in terms of a+1(p, q), 51(P, q), B2(P, q),
B3(p,d).
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O Define the spectra, bispectra and trispectra as

(pa(k,n)eb(d,n)) =0p(k + ) Pas(k, 1)
(pa(k, n)eb(d, ) pc(P; 1)) =0p(K + q + P)Bavc(k, g, P, 1)
(palk,m)en(d:m)ec(P;M)¢a(r,n)) =5p(k + a)dp(P + r)Pabs(K, 1) Pea(P, 7)
+0p(K+ P)do(d + r)Pac(K, 1) Ppa(d, 1)
+0p(K + r)dp(d + P)Paa(K, 1) Poc(d, 1)
+dp(k+ P +q + 1) Qavca(K, P, 4, T, 7).
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Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hierarchy.
Essential (rather crude) approximation: Neglect the effect of the
trispectrum on the evolution of the bispectrum (Pietroni 2008).
In this way we obtain

877Pab(ka 77) = _QacPcb(k» 77) — chPac(ka 7])
+ [ aDaca(k. ~,a - K)Buca(k, ~0,0 - k)
+7bed(K, —0, 4 — K)Baca(K, —9,9 — K)],
OnBabc(K, =, 9 — K) = —QaqBapc(K, —q, q — K) — QpgBagc(k, —0,q — k)
—QcqBapa(k, —0,q — k)
+2 / a®q[Yaze(k, —a, 9 — k) Pa(q, 1) Pec(k — g, 1)

+’dee(_q, q — k7 k)PdC(k - q7 77)Pea(k7 77)
+70de(q — k7 k7 —q)Pda(k7 W)Peb(qy 77)] o
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Expand the fields in powers of the initial perturbations at n = ry,
salicn) = 3 [ Faroa,2n k-3 a)
n i

XFn,a(q1 o> ns 77)5q1 (770) o 5qn(770) :
From the equation of motion we can get evolution equations for
the kernels F;, 4

(Onbab + Qab(K, 1)) Fno(Q1,- -, dn, ) =
n
Z'Yabc(q1 + -+ dm, Am+1 +"'+qn)
m=1

XFm,b(qh cee aqn’lv U)Fn—m,c(Qm-H P aqna 77) .

When neglecting the pressure and viscosity terms, the solution is
known analytically for an Einstein-de Sitter Universe.

For non-zero pressure and viscosity, the time-dependence does
not factorize. We solve the differential equations numerically.
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o For the matching one could use the propagator
. dpa(k, )
Gav(K, i1, 7 )6®) (k — K’ =<a—~ :
ab(K, 77, 77') ( ) Sop(K, i)
o Define appropriate fields for the background to be effectively

Einstein-de Sitter to a very good approximation: D, (7}) = exp(7}).
O The one-loop propagator of the perfect-fluid theory is

Gab(k, s 77/) = gab(ﬁ = ﬁl) - kZen—n 0(2)'(77) (323}) 53;5> ?
50 25
where the linear propagor for the growing mode is

Lo €T3 2
gab(n_n)—_s 3 K
O The contribution from k > kp, can be isolated by taking

o W _ 4 N
74— oGl = 5 exp(2i) | daP.0).
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Compute the propagator of the viscous theory at linear order, for
kinematic viscosity and sound velocity of the form
_ 2 5
UH:—HZBVGZUH— CEZ_I)__BS
P dp

27 % Hz
K3
The propagator contains a contribution

- k? e’ (3 2
69an(K, 1) = —k—g(ﬁu + Bs) 45 (9 6)
m

in addition to the perfect-fluid linear contribution (for 77 > 7’).
Identify the linear contribution ~ k?c2 and ~ k?vH with the
one-loop correction ~ k202, of the perfect -fluid propagator.
This can be achieved with 1% accuracy, and gives

Bs + B, = kﬁquk(o)

Solve for the nonlinear spectrum in the effective viscous theory
with an UV cutoff k;, in the momentum integrations.
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O There are no free parameters in this approach.

O The results are independent of the ratio 3, /55 to a good
approximation. They depend mainly on the value of 3, + fs.

O They are also insensitive to the (mode-mode) couplings
proportional to the viscosity or the shound velocity. The
(mode-mode) couplings of the perfect-fluid theory are the
dominant ones.
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One-loop spectrum in the effective theory at z = 0.833.

N. Tetradis

Effective Des k Matter as a Viscous Fluid



ation theory Results FRG im
000®00000000

Pss(k,z=1.75), k,, =0.6h/Mpc

L e o e e L e e e e e e e L B
—lin (viscous)

o 1L (viscous)

_;: 1aF * 2L (viscous) : J
= L ]
:‘g [ as/a,=1 ]
S 1.2 ' o 4
2 : M
= e ]
R ]
O8[C, i T
0.00 0.05 0.10 0.15 0.20 0.25 0.30

k [h/Mpc]
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Comparison of results for the power spectrum obtained within the
viscous theory normalized to the N-body result at z = 0. The grey band
corresponds to an estimate for the error of the N-body result.
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One- and two-loop results in standard perturbation theory (shown as
dashed and dotted lines, respectively), computed with various values of an
ad-hoc cutoff A (coloured lines), as well as in the limit A — oo (black lines).
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The velocity-velocity spectrum obtained within the viscous theory,
compared to results from N-body simulations at z = 0. The pink band
corresponds to a 10% error for the N-body results.
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One- and two-loop results in standard perturbation theory (shown as
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compared to results from N-body simulations at z = 0. The pink band
corresponds to a 10% error for the N-body results.
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» We guessed
v(r)H = 3a, (1) k2 , C3(1) = as(T )k2 , with v, as $ 1.
) At one Ioop we found
vH=23p,¢en% k2 , C2=pse”n H kg , With Bs + B, = 25 k202,(0).
We generalize the framework by considering
vH = 3\, (k) "2 c2 = \g(k) ex(kIny2,
> The scale dependence of the parameters can be determined

through renormalization-group methods. This requires a
functional representation of the problem.
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S. Floerchinger, M. Garny, N. T., U. Wiedemann
arXiv:1607.03453[astro-ph.CO], JCAP 1701 no.01, 048 (2017)

We follow and extend Matarrese, Pietroni 2007.
We are interested in solving

Ondalk) = —Qan(K, n)66(K)
+ / o g5 (K — p — 4)1a60(P, 9, 1) @(P) Pe(q)

with stochastic initial conditions determined by the primordial
power spectrum PY, (k).
This can be achieved by computing the generating functional

1
ZlJ, K; P’ = / D¢Dy exp{ -5 xa(0)PZx1(0)
+ i/dﬁ [Xa(0ab0y + Qab)Pb — YabcXaPbPc + Jada + Koxp) }
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© One can now define the generating functional of connected
Green’s functions

W[J, K; P°] = —ilog Z|J, K; P°).

O The full power spectrum P, and the propagator G, can be
obtained through second functional derivatives of W,

2w
6Ja(—k,n) 6Jp(K', 1) J, K=0
2w
0Ja(—K,m) Kb(K', ') | ) k=0
2w
6Ka(—k,n) SKb(K', 1) | 5. k=0

I(S(k — k,) Pab(ka ;s 77,) i

—5(k — k') G (k. n,7')
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O The effective action is the Legendre transform

Mg, x: P7) = / dnd*k {Jada + Koxs} — W[J, K: PO,

where ¢a(k» 77) = (SW/éJa(kv 77)7 Xb(ka 7]) = 5W/5Kb(ka 77)
O The inverse retarded propagator satisfies

[ i DB, )R ") = b0~ ).

O It can be computed from the effective action

52r

d¢a(—k,n) dop(k',7")
821

dxa(—K,n) dop(K',7’)
621

dxa(—K,m) oxp(K',1")

N. Tetradis

= O y
J, K=0

= —5(k—K)DE(k,n,7),
J, K=0

= —id(k —K)Ha(k,7,7')
J, K=0
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O “Renormalized” field equations

5
o) o, x]

Moxl = Kal(x;n),

— Ja(xa 77)7

_ 0
dxa(X;n)

o For vanishing source fields J = K = 0, we have xy = 0 and the
first equation is trivially satisfied.

N. Tetradis University of Athens

Effective Descripti ark Matter as a Viscous Fluid



Motivation Framework Perturbation theory Effective viscosity Results FRG improvement Conclusions
[e]e]e]e]e} 000000000 [e]e]e]e]e} 00000000000 000000000000 00000e00000

o Modify the initial power spectrum so that it includes only modes
with wavevectors |q| larger than the coarse-graining scale k:

Pi(a) = P°(a) ©(la| - k).

O The coarse-grained effective action satisfies the Wetterich
equation

arulod = 2T d (M@0 — i (P — P?)) aPR ).
2
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O Use an ansatz of the form

rk[¢a X] - / d77 l/dSQXa(—qa 17) (6aba77 + ﬁc’:lb(qv 77)) ¢b(q7 77)
- / 3k Ppd®q i (k — p — q)vase(k, P, Q)xa(—K, 7)6n(P. 1)

i , ,
— §/d3QXa(q777)Hab,k(q’77ﬂ7)Xb(qan)"‘“'

)

where

Q( )= 0 —1
W=\ 230, + As(k)exngz 142 4 (ketng? )

» Derive differential equations for the k-dependence of
Av(K), As(k), (k).
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O A prescription is needed in order to project the general form of
the inverse retarded propagator
DE(@,n,7') = 6200 (0 — 1) + Qan(a,)3(n — 0) + Z5o(@,m,7)
to the form

D (a,n, An) = (5ab&7 — Qan(a, n)) d(n—n').

o The projection is performed through a Laplace transform.
O At the first order of an iterative solution of the exact RG equation,
one finds

31 78
As(k) = 7—Oa§k, (k) = gagk, (k) = 2.
This validates our intuitive matching through the propagator.

O At the next level, the k-dependence of A\, (k), As(k), (k) can be
derived.
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RG evolution of A, (k), As(k) and (k). We have initialized the flow at
k = A =1 h/ Mpc with the one-loop values. The solid lines correspond to the
solution of the full flow equations, while the dashed lines correspond to the
solution of the one-loop approximation.
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RG evolution of the sum A, (k) + As(k). The various lines correspond
to the RG evolution obtained when imposing initial values at A = 1 h/Mpc
(light blue) or A = 3 h/Mpc (dark blue), respectively. The dashed line shows
the perturbative one-loop estimate for comparison.
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RG evolution of the power law index (k) characterizing the
time-dependence of the effective sound velocity and viscosity. The various
blue lines show the RG evolution when initializing the RG flow at
A =1 h/Mpc (light blue) or A = 3 h/Mpc (dark blue), respectively.
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The nature of dark matter is still unknown. It is reasonable to
consider possibilities beyond an ideal, pressureless fluid.
Standard perturbation theory cannot describe reliably the
short-distance cosmological perturbations.

It is possible to “integrate out” the short-distance modes in order
to obtain an effective description of the long-distance modes.
One must allow for nonzero speed of sound and viscosity, whose
form and time-dependence can be computed through the FRG.

The nonlinear spectrum computed through the effective theory is
in good agreement with results from N-body simulations.

Perturbation theory seems to converge quickly for the effective
theory if the UV cutoff is taken in the region 0.4 — 1 A/ Mpc.
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