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From correlation functions to QCD phenomenology

QCD correlation functions:
Input into hadron phenomenology via QCD bound state eqs..

Bethe-Salpeter equations for mesons
form factors, decays, reactions, ...

covariant Faddeev equations for baryons
form factors, Compton scattering, meson production, ...

Why transition form factors?
E.g., sensitivity to shape!
Deformed quantum object:
Superposition of all orientations
Detect deviation from sphericity:
Transition between deformed states

Baryons non-spherical? Why?
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Relativistic Three-Fermion Bound State Equations

cf. talks by Eichmann, Roberts, Williams . . .

Dyson-Schwinger eq. for 6-point fct. =⇒ 3-body bound state eq.:

BOUND STATE:

Pole in G(3)

or (equiv.) for P2 = −M2
B

Pole in T (3)

bound state amplitudes:

covariant 3-body bound state eq. (cf., Bethe-Salpeter for 2-body BS):
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Relativistic three-fermion bound state equations

3-body bound state eq.:

NB: With 3-particle-irreducible interactions K̃ (3) neglected:
Poincaré-covariant Faddeev equation.

Elements needed for bound state equation:
Tensor structures (color, flavor, Lorentz / Dirac) of the BS ampl.
Full quark propagators for complex arguments
Interaction kernels K2,3

Needed for coupling to e.m. current:
Full quark-photon vertex
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Structure of Baryonic Bound State Amplitudes

∼ 〈0|qαqβqγ |BI〉 ∝ ΨαβδI (with multi-indices α = {x ,D, c, f , . . .})

and I baryon (multi-)index =⇒ baryon quantum numbers

C. Carimalo, J. Math. Phys. 34 (1993) 4930.

Comparison to mesonic BS amplitudes 〈0|qαq̄β|MI〉 ∝ ΦαβI :
scalar and pseudoscalar mesons: 4 tensor structures each
vector and axialvector mesons: 12 tensor struct. each, 8 transv.
tensor and higher spin mesons: 8 transverse struct. each

which are functions of two Lorentz-invariant variables.
C. H. Llewellyn-Smith, Annals Phys. 53 (1969) 521.
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Structure of Baryonic Bound State Amplitudes
Facts about the decomposition:

Independent of any truncation of the bound state equation.
Only Poincaré covariance and parity invariance exploited.
It includes all possible internal spin and orbital angular momenta.
For positive-parity, positive-energy (particle) baryons it consists of

spin-1
2 particle: 64 elements

# elements
s-wave 8
p-wave 36
d-wave 20

G. Eichmann et al., PRL 104 (2010) 201601

spin-3
2 particle: 128 elements

s-wave 4
p-wave 36
d-wave 60
f-wave 28

H. Sanchis Alepuz et al. PRD 84 (2011) 096003

Note: Four-spinor nature of baryon amplitudes, in used Dirac basis,
e.g., upper components s-wave, lower components p-waves!

lower components↔ antiparticles
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Structure of Baryonic Bound State Amplitudes

Facts about the decomposition:
Independent of any truncation of the bound state equation.
Only Poincaré covariance and parity invariance exploited.
It includes all possible internal spin and orbital angular momenta.
For positive-parity, positive-energy (particle) baryons it consists of

spin-1
2 particle: 64 elements

# elements
s-wave 8
p-wave 36
d-wave 20

G. Eichmann et al., PRL 104 (2010) 201601

spin-3
2 particle: 128 elements

s-wave 4
p-wave 36
d-wave 60
f-wave 28

H. Sanchis Alepuz et al. PRD 84 (2011) 096003

Each tensor structure is multiplied by a function of five
Lorentz-invariant variables!
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Structure of Baryonic Bound State Amplitudes

2.6 Hadron spectrum 47

uuu uud ddu ddd uus uds dds ssu ssd sss

S ∆++ ∆+ ∆0 ∆− Σ+ Σ0 Σ− Ξ0 Ξ− Ω−

D1 p n Σ+ Σ0 Σ− Ξ0 Ξ−

D2 Λ0

A Λ0

Table 2.3: SU(3)F flavor wave functions for baryons.

symmetric (from SS ′ or AA′) or antisymmetric (from SA). From two doublets one
can construct singlets and another doublet. Here are all the possible combinations:

S ′′ : D · D′ := aa′ + ss′ , SS ′ , AA′ ,

A′′ : D ×D′ := as′ − sa′ , SA , (2.87)

D′′ : D ∗ D′ :=

(
as′ + sa′

aa′ − ss′

)
, SD , A×D := A

(
s
−a

)
.

Here we have simply defined the operations × and ∗ to fit our purposes. You can verify
the validity of this equation by using the transformation properties of Eq. (2.86). The
M matrices are real and orthogonal, so that for example D · D′ is invariant under any
of the permutations in Eq. (2.86), hence it must be a symmetric singlet.

Flavor wave functions for baryons. [See also Edwards et al, 2011] Now, if we want
to construct the flavor wave function for a baryon with flavor content uud (such as the
proton or the ∆+), we take φ1 = φ2 = u and φ3 = d. From Eqs. (??)–(??) we get

S(uud) = 2 (uud+ udu+ duu) ,

D1(uud) = 2

(
udu− duu

− 1√
3
(udu+ duu− 2uud)

)
(2.88)

and D2(uud) = A(uud) = 0. Apart from overall normalization, S(uud) is the flavor
wave function of the ∆+ and D1(uud) is that of the proton. Had we started from ddu
instead of uud, we would have obtained the wave functions for the ∆0 and the neutron
(replace u ↔ d in the equation above). The combination uuu returns only a singlet
(∆++), and from uds we get everything: S, A and two doublets. If we take all 10
combinations with different flavor content into account (uuu, ddd, sss, uud, uus, ddu,
dds, ssu, ssd, uds), the permutation group gives us

• ten symmetric singlets, which form the flavor decuplet with ∆, Σ, Ξ and Ω,

• eight doublets that form the flavor octet, including proton, neutron, Σ, Ξ and Λ,

• and one antisymmetric singlet from uds, the flavor singlet for Λ.

This is just what Eq. (??) says; the result is collected in Table ??. Including charm as
a fourth flavor, we can immediately extend the construction to SU(4)F which would
give us 20 symmetric singlets, 20 doublets and 4 antisymmetric singlets:

4⊗ 4⊗ 4 = 20S ⊕ 20MA
⊕ 20MS

⊕ 4A . (2.89)
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M I S 1
2

+ 3
2

+ 5
2

+ 1
2

− 3
2

− 5
2

−

8 1
2

0 N(0.94) N (1.72) N (1.68) N (1.54) N (1.52) N (1.68)

N (1.44) N (1.90) N (1.65) N (1.70)

N (1.71) N (1.88)

10 3
2

0 ∆ (1.91) ∆(1.23) ∆(1.91) ∆(1.62) ∆(1.70) ∆(1.93)

∆ (1.60)

∆ (1.92)

8 0 −1 Λ(1.12) Λ (1.89) Λ(1.82) Λ(1.67) Λ(1.69) Λ(1.83)

Λ (1.60) Λ(2.11) Λ(1.80)

1 0 −1 Λ (1.81) Λ(1.41) Λ(1.52)

8 1 −1 Σ(1.19) Σ(1.92) Σ(1.75) Σ(1.67) Σ(1.78)

Σ (1.66)

10 1 −1 Σ(1.39) Σ(1.94)

8 1
2

−2 Ξ(1.31) Ξ (1.69) Ξ (1.82)

10 1
2

−2 Ξ (1.53)

10 0 −3 Ω(1.67)

Table 2.2: SU(3)F classification of known baryons in terms of JP , isospin I and strangeness
S. Only well-established states (three and four-star resonances, PDG 2012) are included, with
masses in GeV. The table includes both ground states and excitations. Similarly to the singlet-
octet mixing in the meson sector, baryons with same I and S quantum numbers can mix among
the multiplets. In these cases, the assignment above is based on quark-model expectations. The
bold entries show the s−wave ground states according to the quark model.

the fundamental triplet representation of SU(3). Product representations can again be
arranged in irreducible SU(3) representations, and also into irreducible representations
of the permutation group SN . For example, this yields for a baryon:

3⊗ 3⊗ 3 = 10S ⊕ 8MA
⊕ 8MS

⊕ 1A . (2.80)

Can be constructed according to the ..., Clebsch-Gordan coefficients. For SU(3)C only
the antisymmetric singlet is allowed since baryons are colorless. For SU(3)F , which we
are interested in here, all combinations can (and do) appear.

Permutation group. Cheng-Li p.105 for reason why this works. Suppose u, d and s
denote the three flavor vectors that transform under the fundamental representation of
SU(3). Combining three of them gives us in total 3× 3× 3 = 27 possible combinations
which can be arranged according to the permutation group S3. To this end, let us
introduce the vector φi which can stand for any member of the set {u, d, s}. Without
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Figure 2.1: SU(3)F meson singlet and octet; baryon singlet, octet and decuplet.

Green functions and Poincaré transformations. Should I include something
here? How do fields, states and GFs transform?

Bound-state poles and hadron wave functions. Hadrons defined as poles in
Green functions. Must carry the quantum numbers of the currents. Meson wave func-
tions as quark-antiquark bound states will have the same form as the currents (flavor-
octet, flavor-singlet). (Connection between fundamental and product representations
of SU(3)F ?)

Baryons: analogous, produced by baryon currents. Observable: gauge-invariant
currents, quark fields at same space-time point (or connected by link!). Baryon wave
functions from three-quark currents, invariant under color and flavor transformations,
tensor products (Cheng-Li 104, commute with permutation group).

Hadronic current matrix elements. In analogy to Eq. (??), define the Green
function

(GJ)a,αβγδ(x, x1, x2, x3, x4) := 〈0|T Ja(x)ψα(x1)ψβ(x2)ψγ(x3)ψδ(x4) |0〉 . (2.66)

If we work out all possible time orderings, retain the s−channel contribution and insert
two complete sets of states before and after the interaction with the current, we should
eventually find

(GJ)a,αβγδ(q, q
′, p, p′)

∣∣∣
s channel

=
∑

λλ′

iχb
αβ(q, p)

p2 −m2
λ + iε

〈λb| Ja(0) |λ′
c〉

iχc
δγ(q

′,−p′)

p′2 −m2
λ′ + iε

,

(2.67)
so that the residue at each bound-state pole is proportional to the hadron’s current.
Can also describe transition currents from one meson (λb) to another (λ′

c).

2.6 Hadron spectrum

So far we have only investigated the flavor structure of the QCD Lagrangian and its
group-theoretical implications for the physical spectrum. In principle we should be
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ishes at k2 = 0. The first term supplies the necessary in-
frared strength and is characterized by two parameters:
an infrared scale Λ and a dimensionless width parameter
η, cf. Fig. 3.
In combination with the interaction of Eq. (9), the RL

truncation has been extensively used in Dyson-Schwinger
studies of hadrons. Upon setting the scale Λ = 0.72 GeV
to reproduce the experimental pion decay constant, RL
provides a reasonable description of pseudoscalar-meson,
vector-meson, nucleon and ∆ ground-state properties, see
e.g. [60–63] and references therein. Moreover, these ob-
servables have turned out to be largely insensitive to the
shape of the coupling in the infrared [59, 62]; i.e., to a
variation of the parameter η around the value η ≈ 1.8.

Progress has also been made for other meson quan-
tum numbers such as axial-vector and pseudoscalar isos-
inglet mesons whose properties are subject to substan-
tial corrections beyond rainbow-ladder [64–70]. However,
such analyses typically require a significant amplification
of numerical effort which is not yet feasible for stud-
ies in the baryon sector. Important attractive contribu-
tions beyond RL come from a pseudoscalar meson-cloud
which augments the ’quark core’ of dynamically gener-
ated hadron observables in the chiral regime and van-
ishes with increasing current-quark mass. Such effects
are missing in a RL truncation. Thus, the present work
aims at investigating the electromagnetic form factors of
the nucleon’s quark core.
We note that through Eq. (9) all parameters of the

interaction α(k2), and thereby all equations that appear
in subsequent sections, are fixed by using information
from pion properties only.

B. Nucleon amplitude

Upon having determined the input of the covariant
Faddeev equation through Eqs. (6–9) one can proceed
with its solution. First results for the nucleon’s mass
and bound-state amplitude were reported in Ref. [33, 34].
While the mass can be reliably determined with rela-
tively modest numerical accuracy, the form-factor com-
putation requires a significantly higher resolution of the
Faddeev amplitude, especially at larger photon momen-
tum transfer. In the present work we use a solution tech-
nique that exploits the permutation-group properties of
the amplitude. This enables us to drastically reduce the
involved CPU times and solve the Faddeev equation with
its full momentum dependence. The method is described
in App. C.
The structure of the nucleon amplitude, together with

its basis decomposition and permutation-group proper-
ties, is discussed in detail in App. B. In the following we
will highlight some key aspects. The spin-flavor structure
of the on-shell nucleon amplitude can be expressed as

Ψ = Ψ · F =
2∑

n=1

Ψn Fn , (10)

where the Dirac amplitude Ψ and the isospin-1/2 flavor
tensor F of Eq. (B2) transform as doublets under the
permutation group S3, with mixed-antisymmetric entries
Ψ1, F1 and mixed-symmetric components Ψ2, F2, respec-
tively. The structure of Eq. (10) ensures the Pauli princi-
ple: the nucleon amplitude involving its full spin-flavor-
color structure must be antisymmetric under quark ex-
change, hence its spin-flavor part has to be symmetric.
The spinor parts Ψn involve 64 covariant, orthogonal and
momentum-dependent Dirac structures Xk,ijω,

Ψn(p, q, P ) =
∑

kijω

fn,kijω Xk,ijω , (11)

which are discussed in detail in App. B 2. The ampli-
tude dressing functions fn,kijω depend on the 5 Lorentz-
invariant momentum variables

p2 , q2 , z0 = p̂T · q̂T , z1 = p̂ · P̂ , z2 = q̂ · P̂ , (12)

where a hat denotes a normalized 4-vector and the sub-
script ’T ’ a transverse projection with respect to the nu-
cleon momentum P . The total momentum-squared is
fixed: P 2 = −M2.
The orthogonal basis elements Xk,ijω are eigenstates

of total quark spin and orbital angular momentum in
the nucleon’s rest frame; the corresponding partial-wave
decomposition is explained in App. B 3. The rest-frame
nucleon amplitude is dominated by s−wave components,
i.e. by the subset of eight relative-momentum indepen-
dent basis elements which carry total quark spin s = 1/2
and orbital angular momentum l = 0. We denote them
here by

S± := X1,11± = Λ±γ5C ⊗ Λ+ ,

V± := X1,21± = 1√
3
γα
T Λ±γ5C ⊗ γα

T Λ+ ,

P± := X2,11± = (γ5 ⊗ γ5) S± ,

A± := X2,21± = (γ5 ⊗ γ5)V± ,

(13)

where the γ−matrices γα
T are transverse with respect to

the nucleon momentum P . The remaining basis elements
are either p− or d−waves. Table I shows the s−, p− and
d− wave contributions to the nucleon’s canonical normal-
ization integral (23) at different current-quark masses.
The s−wave elements contribute roughly 2/3 to the norm
and the p−waves the remaining third. The p−wave con-
tribution decreases, albeit very slowly, with higher quark
mass which signals a substantial amount of orbital an-
gular momentum in the nucleon’s rest-frame amplitude
well beyond the strange-quark mass.
To analyze the s−wave components in the nucleon am-

plitude in more detail it is instructive to rearrange the
eight basis elements of Eq. (13) in permutation-group
multiplets. This yields the orthonormal doublets

Ψ(1) =

(
S+
A+

)
, Ψ(2) =

1√
3

(
2P+ S−
2 Ṽ − A−

)
,

Ψ(3) =
1√
3

(
S− − P+

√
3V

A− + Ṽ +
√
3 P̃

)
,

(14)

5

  [ ]
0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

 
 
 
 

FIG. 4: (Color online) Result for the three dominant s−wave
contributions in the nucleon’s Faddeev amplitude. The plot
shows the zeroth Legendre and Chebyshev moments (in the
variables y1, z0 and z1, z2, respectively) of the dressing func-
tions si defined via Eqs. (14) and (16).

where the upper entries are mixed-antisymmetric with
respect to the first two Dirac indices and the lower entries
mixed-symmetric, and two further singlets

ΨA =
1√
3

(
S− − P−

√
3V

)
,

ΨS =
1√
3

(
A− + Ṽ −

√
3 P̃

) (15)

which are fully antisymmetric or symmetric, respectively.

Here we defined P := (P+ + P−)/2, P̃ := (P+ − P−)/2
and accordingly for V and Ṽ.

Eqs. (14–15) imply that, without including a depen-
dence on the relative momenta, only three fully sym-
metric Dirac-flavor combinations Ψ(i) · F can arise in the
s = 1/2, l = 0 subspace. They appear in combination
with symmetric singlet dressing functions which are lin-
ear combinations of those associated with the basis ele-
ments in Eq. (13) and must depend on symmetric combi-
nations of the momentum variables in Eq. (12). Denot-
ing them by si, a fully symmetric spin/momentum-flavor
amplitude is then obtained via

Ψ =
3∑

i=1

si Ψ
(i) · F+ . . . , (16)

where the dots refer to further combinations of Eqs. (14–
15) with mixed-(anti-)symmetric dressing functions, and
also to the remaining p− and d−wave components. In
Eq. (B7) we define momentum variables that transform
as multiplets under S3, namely a symmetric singlet vari-
able

x :=
p2

4
+

q2

3
, (17)

mπ [GeV] 0.14 0.34 0.75
s−wave 0.66 0.67 0.69
p−wave 0.33 0.32 0.30
d−wave 0.01 0.01 0.01

TABLE I: s−, p− and d−wave contributions to the nucleon’s
canonical normalization at three pion masses, expressed as
fractions of 1. The first column corresponds to the physical
u/d−quark mass.

and four dimensionless angular variables y1, y2, w1, w2

which form doublets. The dressing functions si can then
only depend on the variable x and the symmetric combi-
nations y21 + y22 , w

2
1 + w2

2, and y1w1 + y2w2.

The full solution of the Faddeev equation indeed re-
veals the three singlet dressing functions si to contribute
the bulk to the s−wave fraction in the normalization.
Their angular dependence is weak, especially in the vari-
ables z2 and z0, and a corresponding polynomial expan-
sion vanishes rapidly. The zeroth angular moments of
the three si are plotted in Fig. (4) as a function of the
variable

√
x. All three dressing functions turn out to be

large; in particular, s1 and s3 are almost identical in size.

The resulting current-mass evolution of the nucleon’s
mass is displayed in Fig. 5. The pion mass was ob-
tained from its pseudoscalar-meson Bethe-Salpeter equa-
tion with the same rainbow-ladder input. The scale
Λ in Eq. (9) was fixed to reproduce the experimental
pion decay constant. In agreement with previous meson
and quark-diquark studies, the sensitivity to the infrared
shape of the effective coupling α(k2) is small; this is in-
dicated by the band which corresponds to a variation
η = 1.8 ± 0.2, cf. Fig. 3. At the physical u/d−quark
mass, our result MN = 0.94 GeV is in excellent agree-
ment with the experimental value, and its current-mass
evolution compares reasonably well with lattice data at
higher quark masses.

In connection with Fig. 5 we reiterate that contri-
butions from a pseudoscalar-meson cloud are absent
in a rainbow-ladder truncation; the current approach
can therefore be viewed to describe a hadronic quark
core. Such corrections can be estimated from chiral
effective field theory and would yield a reduction of
∼ 20 − 30% of the nucleon’s core mass in the chiral re-
gion [63]. The proximity between our calculated mass
and the experimental and lattice values therefore sug-
gests a non-perturbative cancelation mechanism beyond
rainbow-ladder. Indeed, such a behavior emerges for
the ρ−meson where attractive pion-cloud effects beyond
RL are essentially saturated by further repulsive con-
tributions from the quark-gluon vertex and the quark-
antiquark kernel [67–70]. In addition, the second type of
corrections dominates in scalar and axial-vector mesons
which explains why these quantum numbers are not
well reproduced in a RL truncation. Given the quali-
tatively quite similar behavior of the ρ−meson mass in
the present framework in comparison with lattice data, as

9

TABLE I: Relations between the basis elements Ai j of Eq. (20) and {Si j, Pi j}. The corresponding relations for Vi j are obtained by interchanging
Si j ↔ Pi j. Similar dependencies hold for the Ti j, e.g.: T+11 = −2 A+11. The superscripts r = ± are not displayed for better readability.

A11 = P33 + P44 + rS22 A12 = P34 − P43 − rS21 A13 = P31 − P42 + rS24 A14 = P32 + P41 − rS23

A21 = P43 − P34 − rS12 A22 = P33 + P44 + rS11 A23 = P32 + P41 − rS14 A24 = P42 − P31 + rS13

A31 = P13 − P24 + rS42 A32 = P23 + P14 − rS41 A33 = P11 + P22 + rS44 A34 = P12 − P21 − rS43

A41 = P14 + P23 − rS32 A42 = P24 − P13 + rS31 A43 = P21 − P12 − rS34 A44 = P11 + P22 + rS33

TABLE II: Orthonormal Dirac basis Xr
i j,k of Eq. (21) constructed from a partial-wave decomposition. The first two columns denote the eigen-

values of total quark spin s and intrinsic orbital angular momentum l in the nucleon rest frame. The third and fourth columns define the relation
between the Xr

i j and the basis elements from Eq. (19-20). Each row involves 4 covariants; the superscripts r = ± are not displayed for better
readability. The fifth column shows the momentum-dependent covariants Ti j which appear in Eq. (21); we have abbreviated p̂T → p and
q̂t → q for clarity.

s l Xr
1 j,1 Xr

1 j,2 T1 j

1/2 0 S11 P11 1 ⊗ 1
1/2 1 S12 P12 1 ⊗ 1

2 [ /p, /q ]

1/2 1 S13 P13 1 ⊗ /p
1/2 1 S14 P14 1 ⊗ /q

s l
√

3 Xr
2 j,1

√
3 Xr

2 j,2

√
3 T2 j

1/2 0 V11 A11 γ
µ
T ⊗ γµT

1/2 1 V12 A12 γ
µ
T ⊗ γµT 1

2 [ /p, /q ]

1/2 1 V13 A13 γ
µ
T ⊗ γµT /p

1/2 1 V14 A14 γ
µ
T ⊗ γµT /q

s l
√

6 Xr
3 j,1

√
6 Xr

3 j,2

√
6 T3 j

3/2 2 3 S33 − V11 3 P33 − A11 3 /p ⊗ /p − γµT ⊗ γµT
3/2 1 3 S34 − 3 S43 − 2 V12 3 P34 − 3 P43 − 2 A12 3 ( /p ⊗ /q − /q ⊗ /p) − γµT ⊗ γµT [ /p, /q ]

3/2 1 3 S31 − V13 3 P31 − A13 3 /p ⊗ 1 − γµT ⊗ γµT /p
3/2 1 3 S41 − V14 3 P41 − A14 3 /q ⊗ 1 − γµT ⊗ γµT /q

s l
√

2 Xr
4 j,1

√
2 Xr

4 j,2

√
2 T4 j

3/2 2 2 S44 + S33 − V11 2 P44 + P33 − A11 /p ⊗ /p + 2 /q ⊗ /q − γµT ⊗ γµT
3/2 2 S34 + S43 P34 + P43 /p ⊗ /q + /q ⊗ /p
3/2 2 −2 S42 + S31 − V13 −2 P42 + P31 − A13 /q ⊗ [ /q, /p ] − 1

2 γ
µ
T ⊗ [ γµT , /p ]

3/2 2 2 S32 + S41 − V14 2 P32 + P41 − A14 /p ⊗ [ /p, /q ] − 1
2 γ
µ
T ⊗ [ γµT , /q ]
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2 [ /p, /q ]

1/2 1 S13 P13 1 ⊗ /p
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√

3 Xr
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√
3 Xr

2 j,2
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3 T2 j

1/2 0 V11 A11 γ
µ
T ⊗ γµT

1/2 1 V12 A12 γ
µ
T ⊗ γµT 1

2 [ /p, /q ]

1/2 1 V13 A13 γ
µ
T ⊗ γµT /p

1/2 1 V14 A14 γ
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T ⊗ γµT /q

s l
√

6 Xr
3 j,1

√
6 Xr

3 j,2

√
6 T3 j

3/2 2 3 S33 − V11 3 P33 − A11 3 /p ⊗ /p − γµT ⊗ γµT
3/2 1 3 S34 − 3 S43 − 2 V12 3 P34 − 3 P43 − 2 A12 3 ( /p ⊗ /q − /q ⊗ /p) − γµT ⊗ γµT [ /p, /q ]

3/2 1 3 S31 − V13 3 P31 − A13 3 /p ⊗ 1 − γµT ⊗ γµT /p
3/2 1 3 S41 − V14 3 P41 − A14 3 /q ⊗ 1 − γµT ⊗ γµT /q

s l
√

2 Xr
4 j,1

√
2 Xr

4 j,2

√
2 T4 j

3/2 2 2 S44 + S33 − V11 2 P44 + P33 − A11 /p ⊗ /p + 2 /q ⊗ /q − γµT ⊗ γµT
3/2 2 S34 + S43 P34 + P43 /p ⊗ /q + /q ⊗ /p
3/2 2 −2 S42 + S31 − V13 −2 P42 + P31 − A13 /q ⊗ [ /q, /p ] − 1

2 γ
µ
T ⊗ [ γµT , /p ]

3/2 2 2 S32 + S41 − V14 2 P32 + P41 − A14 /p ⊗ [ /p, /q ] − 1
2 γ
µ
T ⊗ [ γµT , /q ]

〉N|)3x(ψ)2x(ψ)1x(T ψ|0〈) =3, x2, x1x(χ

) =p, q, P(χ

Flavor Color⊗ ⊗

48 Hadrons

In the SU(2)F case, on the other hand, we get four symmetric singlets (the four ∆
baryons) and two doublets (proton and neutron):

2⊗ 2⊗ 2 = 4S ⊕ 2MA
⊕ 2MS

. (2.90)

Temp-delete.

S(uud) = uud+ udu+ duu

D1(uud) =

(
udu− duu

− 1√
3
(udu+ duu− 2uud)

)

D1(ddu) =

(
dud− udd

− 1√
3
(dud+ udd− 2ddu)

)
(2.91)

∑

k

fk(p
2, q2, p · q, p · P, q · P ) τkαβγδ(p, q, P ) (2.92)

Full baryon wave function. The full baryon wave function transforms under the
direct product of the flavor, color and Poincaré group. It must be totally antisymmetric
under quark exchange as required by the Pauli principle (spin-statistics theorem), since
the three quarks are anticommuting Grassmann fields. We have discussed the SU(3)F
flavor wave functions above, one has SF , DF orAF . Baryons are color singlets, therefore
the color part must be the antisymmetric SU(3)C color singlet combination AC in
Eq. (2.80). In order to obtain a fully antisymmetric total wave function, the product
of Poincaré and flavor representations must be totally symmetric, and from Eq. (??)
we see that this is only possible if they have the same permutation group symmetry:

Atotal = AC (DF · DP ) or AC (SF SP ) or AC (AF AP ). (2.93)

The question remains what the Poincaré representations look like. In the nonrelativistic
quark model, they are assumed to be the direct product of O(3) orbital and SU(2) spin
wave functions. The latter are also decomposed according to Eq. (??) (replace u by ↑
and d by ↓) and yield four permutation-group singlets S with spin 3/2 and two doublets
D with spin 1/2. For orbital ground states (L = 0), the orbital wave functions are
spatially symmetric, so that the only possible Poincaré states are SP and DP , and in
that case the total angular momentum J equals the quark spin. The flavor octet DF

in Eq. (??) must appear in combination with DP and the decuplet SF in combination
with SP , hence ground-state octet baryons carry spin 1/2 and decuplet baryons carry
spin 3/2. We also see that the flavor-singlet baryon Λ0 (with flavor wave function AF )
cannot be constructed in this way, therefore it must be orbitally excited. The possible
combinations and their identification with observed states are highlighted in color in
Table ??.

For orbital excitations, the quark-model construction works in the same way as for
mesons, with the rules ... replaced by ...
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in Eq. (??) must appear in combination with DP and the decuplet SF in combination
with SP , hence ground-state octet baryons carry spin 1/2 and decuplet baryons carry
spin 3/2. We also see that the flavor-singlet baryon Λ0 (with flavor wave function AF )
cannot be constructed in this way, therefore it must be orbitally excited. The possible
combinations and their identification with observed states are highlighted in color in
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For orbital excitations, the quark-model construction works in the same way as for
mesons, with the rules ... replaced by ...

Dirac

Momentum

Eichmann, Alkofer, Krassnigg, Nicmorus,  PRL 104 (2010)

Complete, orthogonal Dirac tensor basis
(partial-wave decomposition in nucleon rest frame):
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TABLE III: Orthonormal Dirac basis Xr
i j,k of Eq. (21) constructed from a partial-wave decomposition. The first two columns denote the

eigenvalues of total quark spin s and intrinsic orbital angular momentum l in the nucleon rest frame. The third and fourth columns define the
relation between the Xr

i j and the basis elements from Eq. (19-20). Each row involves 4 covariants; the superscripts r = ± are not displayed for
better readability. The fifth column shows the momentum-dependent covariants Ti j which appear in Eq. (21); we have abbreviated p̂T → p and
q̂t → q for clarity.

s l Ti j

1/2 0 1 ⊗ 1
1/2 0 γ

µ
T ⊗ γµT

1/2 1 1 ⊗ 1
2 [ /p, /q ]

1/2 1 1 ⊗ /p
1/2 1 1 ⊗ /q
1/2 1 γ

µ
T ⊗ γµT 1

2 [ /p, /q ]

1/2 1 γ
µ
T ⊗ γµT /p

1/2 1 γ
µ
T ⊗ γµT /q

3/2 1 3 ( /p ⊗ /q − /q ⊗ /p) − γµT ⊗ γµT [ /p, /q ]

3/2 1 3 /p ⊗ 1 − γµT ⊗ γµT /p
3/2 1 3 /q ⊗ 1 − γµT ⊗ γµT /q

3/2 2 3 /p ⊗ /p − γµT ⊗ γµT
3/2 2 /p ⊗ /p + 2 /q ⊗ /q − γµT ⊗ γµT
3/2 2 /p ⊗ /q + /q ⊗ /p
3/2 2 /q ⊗ [ /q, /p ] − 1

2 γ
µ
T ⊗ [ γµT , /p ]

3/2 2 /p ⊗ [ /p, /q ] − 1
2 γ
µ
T ⊗ [ γµT , /q ]

TABLE IV: Irreducible multiplets of the permutation group S3, constructed from the 8 covariants {Sr
11, Pr

11 ,A
r
11, Vr

11}.

ψ1
MA = S+11 ψ2

MA =
∑

r Pr
11 + S−11 ψ3

MA =
∑

r

(
Vr

11 − Pr
11

)
+ 2 S−11 ψA =

∑
r

(
Vr

11 + Pr
11

)
− 2 S−11

ψ1
MS = A+11 ψ2

MS =
∑

r rVr
11 − A−11 ψ3

MS =
∑

r r
(
Vr

11 + 3Pr
11

)
+ 2 A−11 ψS =

∑
r r
(
−Vr

11 + 3Pr
11

)
− 2 A−11

TABLE V: (adapted from Ref. [35]) Nucleon masses obtained from
the Faddeev equation in setups A and B and compared to the quark-
diquark result. The η dependence is indicated for setup B in paren-
theses.

Q-DQ [29] Faddeev (MA) Faddeev (MS)
Setup A 0.94 0.99 0.97
Setup B 1.26(2) 1.33(2) 1.31(2)

s waves
(8)

p waves
(36)

d waves
(20)

γδBαβA=αβγδ)B⊗A(

5

V. RESULTS

The explicit numerical implementation of the Faddeev
equation is described in App. A. The massive computa-
tional demand in solving the equation primarily comes from
the five Lorentz-invariant momentum combinations of Eq. (7)
upon which the amplitudes depend. In analogy to the sep-
arability assumption of the nucleon amplitude in the quark-
diquark model we omit the dependence on the angular vari-
able z0 = p̂T · q̂T but solve for all 64 dressing functions
fk(p2, q2, 0, z1, z2).

The resulting nucleon masses at the physical pion mass in
both setups A and B are shown in Table V. As a consequence
of Eq. (27), the two states ΨMA and ΨMS emerge as indepen-
dent solutions of the Faddeev equation. Both separate equa-
tions produce approximately the same nucleon mass, where
the deviation of ∼ 2% is presumably a truncation artifact as-
sociated with the omission of the angle z0. For either solution
typically only a small number of covariants are relevant which
are predominantly s-wave with a small p-wave admixture.
The corresponding amplitudes for the mixed-antisymmetric
solution are shown in Fig. 2. Comparing the relative strengths
of the amplitudes allows to identify the dominant contribu-
tions:

ΨMA :
∑

r

{
Sr

11, Vr
11, Sr

13, Vr
13, Xr

33,1

}
,

ΨMS :
∑

r

{
Ar

11, rVr
11, rPr

11, rVr
13, Xr

33,2

}
.

(29)

Fig. 3 displays the angular dependence in the variable z1
through the first few Chebyshev moments of the amplitudes
S±11 which contribute to ΨMA . The angular dependence in the
variable z2 is small compared to z1. This is analogous to the
quark-diquark model, where the dependence on the angle be-
tween the relative and total momentum of the two quarks in a
diquark amplitude is weak.

The evolution of MN and the ρ-meson mass from the BSE
vs. m2

π is plotted in Fig. 4 and compared to lattice results. The
findings for MN are qualitatively similar to those for mρ: setup
A, where the coupling strength is adjusted to the experimental
value of fπ, agrees with the lattice data. This behavior can
be understood in light of a recent study of corrections beyond
RL truncation which suggests a near cancellation in the ρ-
meson of pionic effects and non-resonant corrections from the
quark-gluon vertex [42]. Setup B provides a description of a
quark core which overestimates the experimental values while
it approaches the lattice results at larger quark masses.

A comparison to the consistently obtained quark-diquark
model result exhibits a discrepancy of only ∼ 5%. This sur-
prising and reassuring result indicates that a description of the
nucleon as a superposition of scalar and axial-vector diquark
correlations that interact with the remaining quark provides
a close approximation to the consistent three-quark nucleon
amplitude.

Ti j (Λ±γ5C ⊗ Λ+)
(γ5 ⊗ γ5) Ti j (Λ±γ5C ⊗ Λ+)

(30)

VI. CONCLUSIONS AND OUTLOOK

We have provided details on a fully Poincaré-covariant
three-quark solution of the nucleon’s Faddeev equation. The
nucleon amplitude which is generated by a gluon ladder-
exchange is predominantly described by s- and p-wave Dirac
structures, and the flavor independence of the kernel leads to
a mass degeneracy. The resulting nucleon mass is close to
the quark-diquark model result which stresses the reliability
of previous quark-diquark studies.

Due to the considerable computational efforts involved,
more results and an in-depth investigation with regard to the
complete set of invariant variables will be presented in the fu-
ture. Further extensions of the present work will include an
analogous investigation of the ∆-baryon, more sophisticated
interaction kernels, e.g. in view of pionic corrections, and ul-
timately a comprehensive study of baryon resonances.
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APPENDIX A: NUMERICAL IMPLEMENTATION

Similar to the analogous case of a two-body Bethe-Salpeter
equation, the Faddeev equation (2) can be viewed as an eigen-
value problem for the kernel K̃(3):

K̃(3)(P2)Ψi = λi(P2)Ψi , (A1)

where P is the total momentum of the three-quark bound state
and enters the equation as an external parameter. Upon pro-
jection onto given quantum numbers, the eigenvalues of K̃(3)
constitute the trajectories λi(P2). An intersection λi(P2) = 1
at a certain value P2 = −M2

i reproduces Eq. (2) and therefore
corresponds to a potential physical state with mass Mi. The
largest eigenvalue λ0 represents the ground state of the quan-
tum numbers under consideration and the remaining ones λi≥1
its excitations; the associated eigenvectors Ψi are the bound-
state amplitudes. (Note that in this context one has to keep
in mind the possibility of anomalous states in the excitation
spectra of bound-state equation solutions [47].) To obtain the
ground-state solution, Eq. (A1) is solved via iteration within
a ’guess range’ P2 ∈ {−M2

min, −M2
max}, where Mmax is de-

termined from the singularity structure of the quark propa-
gator (see e.g. [36, 48]). Upon convergence of the eigen-
value λ0(P2) the procedure is repeated for different P2 until
λ0(P2 = −M2) = 1, thereby defining the nucleon mass M.

From a numerical point of view, it is advantageous to split
the Faddeev equation for K̃(3) = KS S into an equation for a
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Quark Propagator and Rainbow Truncation

Dyson-Schwinger eq. for Quark Propagator:

S−1(p) = Z2S−1
0 + g2Z1f

∫
d4k

(2π)4γ
µS(k)Γν(k ,p; q)Dµν(q)

Rainbow truncation
Projection onto tree-level tensor γµ, restrict momentum dependence

Z1f
g2

4π
Dµν(q)Γν(k ,p; q) →





Z1f
g2

4π
Tµν(q)

Z (q2)

q2

(
Z1f + Λ(q2)

)
γν

=: Z 2
2 Tµν(q)

αeff (q2)

q2 γν
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Interaction Kernels and Rainbow-Ladder Truncation

Truncation of the quark-gluon vertex in the quark DSE.
The BSE interaction kernel must be truncated accordingly.
Physical requirement: Chiral symmetry
axial WT id. relates quark DSE and bound-state eq. kernel.

Ladder truncation
qq̄ kernel compatible with rainbow truncation and axial WT id.:

K qq̄ = 4πZ 2
2
αeff (q2)

q2 Tµν(q)γµ ⊗ γν

Together constitute the DSE/BSE Rainbow-Ladder truncation.

Note: the truncation can and should be systematically improved!
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Interaction Kernels and Rainbow-Ladder Truncation

Rainbow-Ladder truncated three-body BSE:

The three-body irreducible kernel K (3) is neglected
(Faddeev approximation).

Quark-quark interaction K (2): same as quark-antiquark
truncated kernel. (!Different color factor!)

Rainbow-Ladder truncated covariant Faddeev equation
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Interaction Kernels and Rainbow-Ladder Truncation

Models for effective interaction:
Maris-Tandy model (Maris & Tandy PRC60 1999)

α(k2) = αIR(k2; Λ, η) + αUV (k2)

Purely phenomenological model.

Λ fitted to fπ.

Ground-state pseudoscalar properties
almost insensitive to η around 1.8

Describes very succesfully hadron properties.

0,1

1

10

k2 (GeV2)
0,001 0,01 0,1 1 10 100 1.0001.000

 MT η=1.8

 AFW

DSE motivated model (R.A.,C.S. Fischer,R. Williams EPJ A38 2008)

α(k2; ΛS,ΛB,ΛIR ,ΛYM)

DSE-based in the deep IR.

Designed to give correct masses of π, ρ and η′ (UA(1) anomaly!).

4 energy scales! Fitted to π, K and η′.
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Interaction Kernels and Rainbow-Ladder Truncation

Note: The resulting qq-interaction is chirality-conserving,
flavour-blind and current-quark mass independent.

Beyond Rainbow-Ladder
“Corrections beyond-RL” refers to
corrections to the effective coupling but also to additional
structures beyond vector-vector interaction.
They can induce a different momentum dependence of the
interaction.
They can also induce a quark-mass and quark-flavour
dependence of the interaction
Question: how important are beyond-RL effects?
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Coupling of E.M. Current and Quark-Photon Vertex

Electromagnetic current in the three-body approach:

by “gauging of equations”
M. Oettel, M. Pichowsky and L. von
Smekal, Eur. Phys. J. A 8 (2000) 251;
A. N. Kvinikhidze and B. Blankleider,
Phys. Rev. C 60 (1999) 044003.

Impulse appr. + Coupling to + Coupling to + Coupling to
spectator q 2-q kernel 3-q kernel

not present not present
in RL appr. in Faddeev appr.

Additional Input: Quark-Photon Vertex
cf. talk by Sternbeck
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Coupling of E.M. Current and Quark-Photon Vertex

cf. talk by Sternbeck
Quark-Photon Vertex:

Vector WT id. determines vertex up to purely transverse parts:
“Gauge” part (Ball-Chiu vertex)
completely specified by dressed quark propagator.
Can be straightforwardly calculated in Rainbow-Ladder appr.:

important for renormalizibility (Curtis-Pennington term),
anomalous magnetic moment,
contains ρ meson pole!

The latter property is important to obtain the correct physics!

All elements specified to calculate baryon amplitudes and properties:
Use computer with sufficient RAM (∼ tens of GB) and run for a few hours . . .
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Some Selected Earlier Results

Both models designed to
reproduce correctly DχSB and
pion properties within RL.
They capture beyond-RL
effects at this quark-mass.
This behaviour extends to other
light states (ρ, N, ∆), one gets a
good description.
Both interactions similar at inter-
mediate momentum region:
∼ 0.5− 1 GeV is the relevant
momentum region for DχSB &
ground-state hadron props.
Slight differences at larger
current masses, however,
qualitative model indep.PoS QNP2012 (2012) 112
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Some Selected Earlier Results

Nucleon electromagnetic form factors

Good agreement with
recent data at large 

~ nucleon quark core
    without pion effects 

Good agreement with
lattice at large quark 
masses

Nucleon em. FFs
vs. momentum transfer
Eichmann,  PRD 84 (2011)
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Some Selected Earlier Results

Nucleon electromagnetic form factors
Nucleon magnetic moments: 
isovector (p-n), isoscalar (p+n)

[ ]

[ ]

!!
But: pion-cloud cancels in   quark core 

       Exp:     = –0.12   
Calc:    = –0.12(1)
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Pion-cloud effects missing 
in chiral region ( divergence!), 
agreement with lattice at 
larger quark masses.
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∆→ Nγ Electromagnetic Transition Form Factors

Sanchis Alepuz, Fischer, RA, Eur.Phys.J. A54 (2018) 41 [arXiv:1707.08463].
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Magnetic f.f.: Large Q2 good, at small Q2 missing pion cloud effects?!
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∆→ Nγ Electromagnetic Transition Form Factors
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Deformations of N and ∆!
- Non-rel. quark model:

sub-lead. d-wave?
- Relativistically: Four-spinors

with lower components!
Leading order: p-wave!

- Inherent to the approach!

RSM = −M2
N
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∆

√
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G∗M
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Magnetic Hyperon-Octet Transition Form Factors
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Tiny isospin, small SU(3) breaking!
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Magnetic Hyperon-Octet Transition Form Factors

transition ∆N Σ∗ +Σ+ Σ∗ 0Σ0 Σ∗ 0Λ

GM(0)(η = 2.0) 2.0 1.1 0.5 1.0
GM(0)(η = 1.6) 0.8 1.3 0.6 1.1

exp. 3.04 (11) 4.10 (57) 3.35 (57)

transition Ξ∗ 0Ξ∗ 0 Σ∗ −Σ− Ξ∗ −Ξ∗ −

GM(0)(η = 2.0) 1.8 -0.05 -0.07
GM(0)(η = 1.6) 1.5 -0.04 -0.02

exp. <0.8

Extrapolated result for GM(0) for quark-core calculation
compared to estimates of experimental values.
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Σ0 − Λ transition

Only octet-octet transition
PANDA (FAIR): also time-like transition f.f.
Considerable theoretical interest
Related to low-energy constants,
Our results: dGE

dQ2

∣∣∣
Q2=0

= 0.053..0.073 , dGM
dQ2

∣∣∣
Q2=0

= 1.93..1.75 .
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Expt.: |µΣ0Λ| = (1.61 ± 0.08) µN
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Summary and Outlook

Hadrons from QCD bound state equations:

I QCD bound state equations:
Unified approach to mesons and baryons feasible!

I In rainbow-ladder appr. meson observables
and octet / decuplet masses and (e.m., axial, . . . ) form factors;
incl. N, ∆ & hyperon transition form factors, . . .

I Lower spinor components =⇒ non-spherical baryons!

NB: Calculation of bound state amplitudes in boosted frames have started recently.
[H. Sanchis-Alepuz, in preparation]

I Even in ground state form factors beyond rainbow-ladder effects
at small Q2! Likely hadronic (pionic) effects!

I Systematic approach:
Include knowledge on quark-gluon and on quark-photon vertices.
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Quark Propagator and Rainbow Truncation

All (non-perturbative) approaches to QFT employ Euclidean momenta:
Connection to the world of real particles requires analytic continuation!

2�2M2
��2M2

Im(p2)
Re(p2)

In bound state eqs.:
Knowledge of the quark
propagator inside parabolic
region required.
Parabola limited by nearest
quark singularities:
M < 2mq(3mq) for
mesons (baryons)
ground states unaffected
by singularities.

Lattice: Values for real p2 ≥ 0 only.
Dyson-Schwinger / ERG eqs.: complex p2 accessible.
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Some Selected Earlier Results

∆ electromagnetic form factors
H. Sanchis-Alepuz et al., Phys. Rev. D 87 (2013) 095015 [arXiv:1302.6048 [hep-ph]].
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GE2 and GM3:
Deviation from
sphericity!
Important:
Difference to
quark-diquark
model in GE2
and GM3.
Large GE2 for
small Q2!
“Small” GM3?
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Some Selected Earlier Results

Ω electromagnetic form factors
H. Sanchis-Alepuz et al., Phys. Rev. D 87 (2013) 095015 [arXiv:1302.6048 [hep-ph]].
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Again
deviation from
sphericity!
Only weak
quark mass
dependence!
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Electromagnetic Transition Form Factors

[H. Sanchis Alepuz, C. S. Fischer, RA, arXiv:1707.08463.]

Technical complications: Limits on accessible Q2 range due to
Poles of quark propagator.
Analytic continuation of Chebychev expansion.

Here: Maris-Tandy model interaction (bands indicate parameter dep.)

Transition f.f. more involved: Initial & final states have different masses!

NB: Calculation of bound state amplitudes directly in boosted frames
have started recently [ H. Sanchis-Alepuz, R. Williams, in preparation].
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