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Quark Distribution 

•  Hadron	state	of	four-momentum	P	
•  U	link	operator	providing	the	gauge	invariance	
•  Proportional	to	x	contains	sub-leading	twist	pieces	

Light	Front	

hP | ̄(0)�µU [0, x] (x)|P i = Pµh(P · x, x
2) + xµg(P · x, x

2) (1)

q(u) = P+

Z
dx�

2⇡
eiuP+x�h(P+x�, 0) (2)

q̃(y, P3) = P3

Z
dx3

2⇡
e�iyP3x3h(�P3x3,�x

2
3) (3)

1 P3 (4)

q(x, k1, k2) = P+

Z
dz�

2⇡
eixP+z�

Z
dz1

2⇡
eik1z1

Z
dz2

2⇡
eik2z2h(P+z�,�z

2
1 � z

2
2) (5)

q̃(y, P3) = P3

Z
dk1

Z
dxq(x, k2

1 + (x� y)2P 2
3 ) (6)

O(mb/⇤) = Z(mb/⇤,⇤/µ)o(µ)+O(1/mb)+...) q̃(P3/⇤) = Z(P3/⇤,⇤/µ)q(µ)+O(1/P 2
3 )+...

(7)

S
�1(k) = i� · k +M (8)

�⇡(k, k � P ) = i�5N

Z 1

�1

dz

⇢
⇢0(z)

M
2

(k � 1
2P + z

2P )2 +M2
+ ⇢1(z)

1

2

M
4

((k � 1
2P + z

2P )2 +M2)2
+ ...

�

+i�5� · k� · (k � P )N
1

2

Z 1

�1

dz⇢2(z)

⇢
M

2

((k � 1
2P + z

2P )2 +M2)2
+ ...

�

+�5-odd terms

�⇡(k1, k2) = �⇡(k, k � P ) = i�5N

Z 1

�1

dz

⇢
⇢(z)

M
2

(k � 1
2P + z

2P )2 +M2

�
(9)

⇢0(z) = ⇢1(z) = ⇢2(z) =
3

4
(1� z

2) (10)

1

hP | ̄(0)�µU [0, x] (x)|P i = Pµh(P · x, x
2) + xµg(P · x, x

2) (1)

q(u) = P+

Z
dx�

2⇡
eiuP+x�h(P+x�, 0) (2)

q̃(y, P3) = P3

Z
dx3

2⇡
e�iyP3x3h(�P3x3,�x

2
3) (3)

1 P3 (4)

q(x, k1, k2) = P+

Z
dz�

2⇡
eixP+z�

Z
dz1

2⇡
eik1z1

Z
dz2

2⇡
eik2z2h(P+z�,�z

2
1 � z

2
2) (5)

q̃(y, P3) = P3

Z
dk1

Z
dxq(x, k2

1 + (x� y)2P 2
3 ) (6)

O(mb/⇤) = Z(mb/⇤,⇤/µ)o(µ)+O(1/mb)+...) q̃(P3/⇤) = Z(P3/⇤,⇤/µ)q(µ)+O(1/P 2
3 )+...

(7)

S
�1(k) = i� · k +M (8)

�⇡(k, k � P ) = i�5N

Z 1

�1

dz

⇢
⇢0(z)

M
2

(k � 1
2P + z

2P )2 +M2
+ ⇢1(z)

1

2

M
4

((k � 1
2P + z

2P )2 +M2)2
+ ...

�

+i�5� · k� · (k � P )N
1

2

Z 1

�1

dz⇢2(z)

⇢
M

2

((k � 1
2P + z

2P )2 +M2)2
+ ...

�

+�5-odd terms

�⇡(k1, k2) = �⇡(k, k � P ) = i�5N

Z 1

�1

dz

⇢
⇢(z)

M
2

(k � 1
2P + z

2P )2 +M2

�
(9)

⇢0(z) = ⇢1(z) = ⇢2(z) =
3

4
(1� z

2) (10)

1



Lei	Chang	(NKU) 

Quark Distribution 

•  Hadron	state	of	four-momentum	P	
•  U	link	operator	providing	the	gauge	invariance	
•  Proportional	to	z	contains	sub-leading	twist	pieces	

Light	Front	 Finite	momentum	
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Quark Distribution 

•  Hadron	state	of	four-momentum	P	
•  U	link	operator	providing	the	gauge	invariance	
•  Proportional	to	z	contains	sub-leading	twist	pieces	

Light	Front	 Finite	momentum	

The	transverse-momentum	unintegrated	parton	distribution(TMD)	

Radyushkin	relation	

Similar	in	Distribution	Amplitude	
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Quark Distribution 

•  Hadron	state	of	four-momentum	P	
•  U	link	operator	providing	the	gauge	invariance	
•  Proportional	to	z	contains	sub-leading	twist	pieces	

Light	Front	 Finite	momentum	

hP | ̄(0)�µU [0, z] (z)|P i = Pµh(P · z, z2) + zµhz(P · z, z2) (1)

q(x) = P+

Z
dz�
2⇡

eixP+z�h(P+z�, 0) (2)

q̃(y, P3) = P3

Z
dz3
2⇡

e�iyP3z3h(�P3z3,�z23) (3)

1 P3 (4)

q(x, k1, k2) = P+

Z
dz�
2⇡

eixP+z�

Z
dz1
2⇡

eik1z1
Z

dz2
2⇡

eik2z2h(P+z�,�z21 � z22) (5)

q̃(y, P3) = P3

Z
dk1

Z
dxq(x, k2

1 + (x� y)2P 2
3 ) (6)

1

•  It	not	possible	to	provide	infinite	P3(Lattice	and	DSEs)	
•  How	can	one	then	recover	infinite	limit	from	a	moderately-large-P3?	
•  LaMEF…idea from HQEF	
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O(mb/⇤) = Z(mb/⇤,⇤/µ)o(µ)+O(1/mb)+...) q̃(P3/⇤) = Z(P3/⇤,⇤/µ)q(µ)+O(1/P 2
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Matching	coefficients	
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Quark Quasi Distribution----lQCD Progress 4
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FIG. 4: Comparison of unpolarized PDF at momenta 6⇡
L

(green band), 8⇡
L (orange band), 10⇡

L (blue band), and
ABMP16 [39] (NNLO), NNPDF [40] (NNLO) and CJ15 [38]
(NLO) phenomenological curves.

well as the phenomenological determinations CJ15 [38],
ABMP16 [39] and NNPDF31 [40]. We find that as the
momentum increases, the data approach phenomenolog-
ical results. In particular, increasing the nucleon mo-
mentum from 6⇡

L to 8⇡
L has a large e↵ect on the PDFs

shape, with the latter approaching the phenomenologi-
cal curve. Furthermore, we find a saturation of PDFs
for 8⇡

L and 10⇡
L , indicating that LaMET may be appli-

cable for P � 8⇡
L . The interplay of real and imaginary

parts of renormalized MEs leads to unphysical oscilla-
tions in quasi-PDFs, resulting from the periodicity of the
Fourier transform, and propagated through the match-
ing procedure to light-cone PDFs. The e↵ect is natu-
rally suppressed for large nucleon boosts, when MEs de-
cay to zero fast enough, before e�ixPz becomes negative.
For the currently attained momenta, the decay of renor-
malized ME is still relatively slow (cf. Fig. 3), which
manifests itself in distorted approach of the PDF to zero
for x & 0.5 and unphysical minimum in the antiquark
part, for x ⇡ �0.2. The oscillations, as expected, are
smoothened out as the momentum increases (which is vis-
ible particularly at the level of quasi-PDFs), and are more
severe in the negative region. Nevertheless, this is the
first time when clear convergence is demonstrated with
simulations using a physical pion mass value. Clearly,
momentum 6⇡

L is not high enough to reconstruct light-
cone PDFs. However, we observe a similar behavior of
the lattice data at momentum 10⇡

L as compared to phe-
nomenological results, with some overlap in the small-x
region. The slope of the two curves is compatible for the
positive-x region, and both curves go to zero for x . �0.3
and x & 1. Compatible results are extracted for h�3 , but
with increased uncertainties.

In Fig. 5, we present polarized PDFs for the three mo-
menta, together with DSSV08 [41] and JAM17 [42] phe-
nomenological data. We find a milder dependence on
the nucleon momentum, and 10⇡

L is much closer to phe-
nomenological curves with significant overlap with the
JAM17 data for 0 < x < 0.5. For the region 0.5 < x < 1,
the slope of the lattice data changes, possibly due to oscil-

lations mentioned above, but it approaches zero around
x = 1. For the negative-x region, the lattice data also
approach zero, with a dip at small-x and large uncertain-
ties, another consequence of oscillations.
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FIG. 5: Comparison of polarized PDF at momenta 6⇡
L (green

band), 8⇡
L (orange band), 10⇡

L (blue band), DSSV08 [41] and
JAM17 NLO phenomenological data [42].

Simulating at the physical point is crucial for obtain-
ing data that are close to the global analyses data. This
is demonstrated in Fig. 6. In the top panel, we compare
phenomenological estimates with results from Ref. [17] at
m⇡=375 MeV and volume 323⇥64 (B55). As the nucleon
momentum increases, one observes that the B55 data
saturate away from phenomenological curves, wrongfully
leading to discouraging conclusions for quasi-PDFs ap-
proach. In the lower panel of Fig. 6, we plot data from
this work with the B55 ensemble, both at momentum
⇠1.4 GeV. As can be seen, there is a clear pion mass
dependence and the B55 data are away from the global
analyses curves.
Conclusions:
We present the first ever lattice calculation of un-

polarized and helicity PDFs where long-standing ob-
stacles, such as large momenta, physical pion mass
and non-perturbative renormalization have been ad-
dressed. To investigate the nucleon momentum de-
pendence, we employed three values corresponding to
0.83, 1.11, 1.38 GeV, with appropriately increased num-
ber of measurements for the latter ones to keep statistical
uncertainties under control.
Lattice MEs are renormalized non-perturbatively in

the RI0 scheme and are converted to the MS-scheme
at µ=2 GeV. Light-cone PDFs are reconstructed upon
Fourier transform and matching with target mass cor-
rections. Our final results for PDFs are highlighted in
Figs. 4,5. We are able to compare with phenomenolog-
ical results for the first time, as all necessary steps of
extracting physical PDFs have been applied and no chi-
ral extrapolation is needed. As shown in Fig. 6, there
is strong pion mass dependence and a similar behavior
between lattice and phenomenology is only established
at the physical pion mass ensemble. A further investiga-
tion of possible discretization and volume e↵ects, as well
as an improved treatment of the unphysical oscillations,

Reconstruction	of	light-cone	parton	distribution	functions	
from	lattice	QCD	simulations	at	the	physical	point	
C.	Alexandrou,	et	al,	arXiv:1803.02685	
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Quark quasi Distribution Amplitudes----lQCD Progress 

Kaon	Distribution	Amplitude	from	Lattice	QCD	and	the	
Flavor	SU(3)	Symmetry	
J-W	Chen,	et	al	(LP3),	arXiv:1712.10025	
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Pion quasi Distribution Function----lQCD Progress 

No	Report	Yet!	
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Pion quasi Distribution Function----lQCD Progress 

First	direct	lattice-QCD	calculation	of	the	x-dependence	of	
the	pion	parton	distribution	function	
J-W	Chen,	et	al	(LP3),	arXiv:1804.01483	

5

FIG. 4. Comparison between the results using and without
using the derivative method proposed in our earlier work [32],
for the largest momentum 4 in units of 2⇡/L.

promising features compared with previous attempts at
determining the pion valence-quark distribution. Our
distribution is comparable quantitatively with the results
extracted from experimental data as well as from the
Dyson-Schwinger equation. Future calculations at phys-
ical pion mass and larger momentum will be able to dis-
cern discrepancies in various existing analyses. Further
improvement on this calculation will be pursued with
smaller lattice spacing which will allow us to research
larger pion momentum while keeping the discretization
small and higher statistics for more precise results.

VI. ACKNOWLEDGMENTS

We thank the MILC Collaboration for sharing the
lattices used to perform this study. The LQCD cal-
culations were performed using the Chroma software
suite [93]. This research used resources of the National
Energy Research Scientific Computing Center, a DOE
O�ce of Science User Facility supported by the O�ce
of Science of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231 through ALCC and
ERCAP; facilities of the USQCD Collaboration, which

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

1

2

3

4

x

q
v�

LP3

DSE

ASV

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

x

x
q
v�

LP3

DSE

ASV

FIG. 5. Our pion valence-quark PDF result (LP3, red) at the
scale µ = 4 GeV, contrasted with analysis from the Dyson-
Schwinger equation [14] (DSE, green) at the scale 5.2 GeV
and from a fit to Drell-Yan data from Ref. [7] (ASV, blue) at
4 GeV.

are funded by the O�ce of Science of the U.S. De-
partment of Energy, and supported in part by Michi-
gan State University through computational resources
provided by the Institute for Cyber-Enabled Research.
JWC is partly supported by the Ministry of Science and
Technology, Taiwan, under Grant No. 105-2112-M-002-
017-MY3 and the Kenda Foundation. LCJ is supported
by the Department of Energy, Laboratory Directed Re-
search and Development (LDRD) funding of BNL, un-
der contract de-ec0012704. YSL is supported by Science
and Technology Commission of Shanghai Municipality
(Grant No.16DZ2260200) and National Natural Science
Foundation of China (Grant No.11655002). HL and YY
are supported by the US National Science Foundation
under grant PHY 1653405 “CAREER: Constraining Par-
ton Distribution Functions for New-Physics Searches”.
AS and JHZ are supported by the SFB/TRR-55 grant
“Hadron Physics from Lattice QCD”. JHZ is also sup-
ported by a grant from National Science Foundation of
China (No. 11405104). YZ is supported by the U.S. De-
partment of Energy, O�ce of Science, O�ce of Nuclear
Physics, from de-sc0011090 and within the framework of
the TMD Topical Collaboration.

•  Box	size	L=3fm	and	pion	mass	310MeV	
	
•  Distribution	is	comparable	quantitatively	with	

the	results	extracted	from	experimental	data	
as	well	as	from	the	Dyson-Schwinger	equation	
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Pion/Kaon quasi DA/DF----Phenomenology  

•  Quasi-parton	distribution	functions:	a	study	in	the	diquark	spectator	model	
						L.	Gamberg,	et	al,	arXiv:	1412.3401	
•  Pion	distribution	amplitude	and	quasi-distributions	
						A.	Radyushkin,	arXiv:	1701.02688	
•  Quasi-distribution	amplitudes	for	pion	and	kaon	via	the	nonlocal	chiral-quark	model	
						S.	Nam,	arXiv:	1704.03824	
•  Nonperturbative	partonic	quasidistributions	of	the	pion	from	chiral	quark	models	
						W.	Broniowski,	E.	R.	Arriola,	arXiv:	1707.09588	
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Pion/Kaon quasi DA/DF----Phenomenology  

•  Quasi-parton	distribution	functions:	a	study	in	the	diquark	spectator	model	
						L.	Gamberg,	et	al,	arXiv:	1412.3401	
•  Pion	distribution	amplitude	and	quasi-distributions	
						A.	Radyushkin,	arXiv:	1701.02688	
•  Quasi-distribution	amplitudes	for	pion	and	kaon	via	the	nonlocal	chiral-quark	model	
						S.	Nam,	arXiv:	1704.03824	
•  Nonperturbative	partonic	quasidistributions	of	the	pion	from	chiral	quark	models	
						W.	Broniowski,	E.	R.	Arriola,	arXiv:	1707.09588	
•  Pion	and	kaon	valence-quark	quasiparton	distributions	
						S.	Xu,	LC,	C.	D.	Roberts,	H.	Zong,	arXiv:	1802.09552	

What	is	the	lowest	value	of	P3	for	which	the	quasi-distribution	provides	a	realistic	
sketch	of	the	true	distribution?	
It	is	possible	to	provide	information	about	endpoint	behavior?	
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•  Pion	is	Massless...	

Why	Pion-----Messager	of	QCD 

• 	In	October	1934,	Hideki	Yukawa	predicated	the	existence	of	a	“heavy	quantum”	
meson,	exchanging	nuclear	force	between	neutrons	and	protons.		
• 	It	was	discovered	by	Cecil	Powel	in	1949	in	cosmic	ray	tracks	in	a	photographic	
emulsion.	
• 	Pion	was	nicely	accommodated	in	the	Eight	Fold	way	of	Murray	Gell-Mann	in	1961.	
• 	Yoichiro	Nambu	associated	it	with	CSB	in	1960. 
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Pion’s	dichotomy 
Goldstone	boson	and	Bound	State 
Maris,	Roberts	and	Tandy,	Phys. Lett. B420(1998)	267-273 

Ø  Pion’s	Bethe-Salpeter	amplitude	
	Solution	of	the	Bethe-Salpeter	equation	

	
	
	
Ø  Dressed-quark	propagator	

Ø  Axial-vector	Ward-Takahashi	identity	entails(chiral	limit)	

•  Given	the	dichotomy	of	pion	the	fine-tuning	should	not	play	any	role	in	an	explanation	of	pion	properties;	
•  Descriptions	of	pion	within	frameworks	that	cannot	faithfully	express	symmetries	and	their	breaking	

patterns(such	as	constituent-quark	models)	are	unreliable;	
•  Hence,	pion	properties	are	an	almost	direct	measure	of	the	dressed-quark	mass	function.			
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Pion/Kaon PDF----endpoint behavior 

•  One	of	the	earliest	predictions	of	the	QCD	parton	model	(1974,1975):	
	 	qπ(x)	∼	(1-x)2	

•  Owing	to	the	validity	of	factorisation	in	QCD,		
	qπ(x)	is	directly	measurable	in		πN	Drell-Yan	experiments		

•  E615	@	FNAL	(Conway:1989fs):	leading-order	analysis	of	πN	Drell-Yan		
	 		qπ(x)	∼	(1-x)1	

		Numerous	“explanations”	

•  Nambu	–	Jona-Lasinio	model,	translationally	invariant	regularisaion	
	 		qπ(x)	∼	(1-x)0,		
	which	becomes	“1”	after	evolving	from	a	low	resolution	scale		

•  NJL	models	with	a	hard	cutoff	&	also	some	duality	arguments:	
	 	qπ(x)	∼	(1-x)1	

•  Relativistic	constituent	quark	models:		
	 	qπ(x)	∼	(1-x)0…2	
	depending	on	the	form	of	model	wave	function	

•  Instanton-based	models	
	 	qπ(x)	∼	(1-x)1…2	
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Pion/Kaon PDF----endpoint behavior 

•  One	of	the	earliest	predictions	of	the	QCD	parton	model	(1974,1975):	
	 	qπ(x)	∼	(1-x)2	

•  Owing	to	the	validity	of	factorisation	in	QCD,		
	qπ(x)	is	directly	measurable	in		πN	Drell-Yan	experiments		

•  E615	@	FNAL	(Conway:1989fs):	leading-order	analysis	of	πN	Drell-Yan		
	 		qπ(x)	∼	(1-x)1	
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, (1)

where

B(u, v) =

Z 1

0
dy y

u�1 (1 � y)v�1
, (2)

and B(u, v) = �(u)�(v)
�(u+v) withN⌧ =

p
⇡

�(⌧�1)

�(⌧� 1
2 )
. For fixed u

and large v we have B(u, v) ⇠ �(u)v�u: We thus recover
the hard-scattering scaling behavior [54, 55]

F⌧ (Q
2) ⇠

✓
1

Q2

◆⌧�1

, (3)

for large Q
2 = �t. For integer ⌧ Eq. (1) generates the

pole structure [53]

F⌧ (Q
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M2
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1

⌘
· · ·

⇣
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with M
2
n = 4�

�
n+ 1

2

�
, n = 0, 1, 2 · · · ⌧ � 2, correspond-

ing to the ⇢ vector meson and its radial excitations. No-
tice that the Beta function in (1) can be rewritten as
B
�
⌧ � 1, 1 � ↵(t)

�
with Regge trajectory

↵(t) =
t

4�
+

1

2
, (5)

slope ↵
0 = 1

4� and intercept ↵(0) = 1
2 . This expression is

identical to the Veneziano amplitude [58]
�
1 � ↵(s), 1 � ↵(t)

�
, (6)

in the t-channel. In the s-channel it leads to a fixed pole
1 � ↵(s) ! ⌧ � 1, since no resonances are formed [59].
The shift in the pole structure [28] incorporated in
Eq. (1) thus yields the leading Regge trajectory for the
⇢-meson (5).
Writing the flavor FF in terms of the valence GPD

H(x, ⇠, t) at zero skewness F q(t) =
R 1
0 dxH

q(x, t), with

H
q(x, t) ⌘ H

q(x, ⇠ = 0, t) = q(x) exp [tf(x)] , (7)

Eqs. (1) and (2) imply that the twist-⌧ PDF, q⌧ (x), and
the profile function f(x) are

q⌧ (x) =
1

N⌧

�
1 � w(x)

�⌧�2
w(x)�

1
2 w

0(x), (8)

f(x) =
1

4�
log

✓
1

w(x)

◆
. (9)

Therefore, q(x) and f(x) in (7) are both determined from
(8) and (9) in terms of the arbitrary reparametrization
function y = w(x), which satisfies

w(0) = 0, w(1) = 1, (10)

and is monotonically increasing in the interval 0  x  1.
The simplest choice for w(x), with conditions (10),

is w(x) = x. It leads to the t-dependence q(x, t) =
x
�↵0t

q(x), thus to

f(x) =
1

4�
log

✓
1

x

◆
, (11)

which is the Regge theory motivated ansatz for small-x
given in Ref. [60]. We therefore impose the constraint

w(x) ⇠ x, for x ⇠ 0, (12)

to incorporate the small-x Regge behavior in the GPDs.
To study the behavior of w(x) at large-x we perform a

Taylor expansion near x = 1:

w(x) = 1 � (1 � x)w0(1) +
1

2
(1 � x)2w00(1) + · · · . (13)

Upon substitution of (13) in (8) we find that the lead-
ing term in the expansion, which behaves as (1 � x)⌧�2,
vanishes if w0(1) = 0. Hence setting

w
0(1) = 0 and w

00(1) 6= 0, (14)

we find

q⌧ (x) ⇠ (1 � x)2⌧�3
, (15)

which is precisely the perturbative QCD (pQCD) inclu-
sive hard counting rule for large-x [61–63].
From Eq. (9) it follows that the conditions (14) are

equivalent to f
0(1) = 0 and f

00(1) 6= 0. Since log(x) ⇠
1 � x for x ⇠ 1, the simplest ansatz for f(x) consistent
with (10), (12) and (14) is

f(x) =
1

4�


(1 � x) log

✓
1

x

◆
+ a(1 � x)2

�
, (16)

with a being a flavor independent parameter. From (9)

w(x) = x
1�x

e
�a(1�x)2

, (17)

an expression which incorporates Regge behavior at
small-x and inclusive counting rules at large-x.

Nucleon GPDs

The nucleon GPDs are extracted from nucleon FF
data [64–68] choosing specific x- and t-dependences of
the GPDs for each flavor. One then finds the best fit
reproducing the measured FFs and the valence PDFs.
In our analysis of nucleon FFs [57], three free parame-
ters are required: These are r, interpreted as an SU(6)
breaking e↵ect for the Dirac neutron FF, and �p and �n,
which account for the probabilities of higher Fock com-
ponents (meson cloud), and are significant only for the
Pauli FFs. The hadronic scale � is fixed by the ⇢-Regge
trajectory [28], whereas the Pauli FFs are normalized to
the experimental values of the anomalous magnetic mo-
ments.

4

TABLE I. Results for the total angular momentum of quarks.

2Ju 2Jd

This work 0.561± 0.008 �0.100± 0.002

[3] 0.58 -0.06

[66] 0.46, 0.56 �0.007, �0.019

[68] 0.572± 0.214 �0.098± 0.014

[77] 0.74± 0.12 0.08± 0.08

[78] 0.74± 0.12 �0.03± 0.08

[79] 0.62± 0.08 0.11± 0.08

FIG. 3. Model comparison (red band) for xq(x) in the pion
with the NLO fits [81, 82] (gray band and green curve) and the
LO extraction of Fermilab E615 Drell-Yan data [83]. NNLO
results are also included (light blue band).

the contribution from higher Fock components was deter-
mined from the analysis of the time-like region [80]. Up
to twist-4

q
u,d̄
v (x) = (1 � �)q⌧=2(x) + �q⌧=4(x), (22)

where the PDFs are normalized to the valence quark con-
tent of the pion

R 1
0 dx q

u,d̄
v (x) = 1, and � = 0.125 repre-

sents the meson cloud contribution in [28].
The pion PDFs are evolved to µ

2 = 27GeV2 at next-
to-leading order (NLO) to compare with the NLO global
analysis in [81, 82] of the data [83]. The initial scale is
set at µ0 = 1.1±0.2GeV from the matching procedure in
Ref. [73] at NLO. The result is shown in Fig. 3, and the
t-dependence of Hq(x, t) is illustrated in Fig. 4. We have
also included the NNLO results in Fig. 3, to compare
with future data analysis.

Our results are in good agreement with the data anal-
ysis in Ref. [81] and consistent with the NNPDF results
through the GPD universality described here. There
is however a tension with the data analysis in [82] for
x � 0.6 and with the Dyson-Schwinger results in [84]
with (1 � x)2 fallo↵ at large-x. Our nonperturbative re-
sults fallo↵ as 1�x from the leading twist-2 term in (22).

A softer fallo↵ ⇠ (1�x)1.5 in Fig. 3 follows from DGLAP
evolution.

FIG. 4. Pion GPD for di↵erent values of �t = Q
2.

CONCLUSION AND OUTLOOK

The results presented here for the GPDs provide a new
structural framework for the exclusive-inclusive connec-
tion which is fully consistent with the LFHQCD results
for the hadron spectrum. The PDFs are flavor-dependent
and expressed as a superposition of PDFs q⌧ (x) of dif-
ferent twist. In contrast, the GPD profile function f(x)
is universal. Both q(x) and f(x) can be expressed in
terms of a universal reparametrization function w(x),
which incorporates Regge behavior at small-x and in-
clusive counting rules at large-x. A simple ansatz for
w(x), which satisfies all the physics constraints, leads
to a precise description of parton distributions and form
factors for the pion and nucleons in terms of a single
physically constrained parameter. In contrast with the
eigenfunctions of the holographic LF Hamiltonian [28],
the e↵ective LFWFs obtained here incorporate the non-
perturbative pole structure of the amplitudes, Regge be-
havior and exclusive and inclusive counting rules. The
analytic structure of FFs and GPDs leads to a connection
with the Veneziano amplitude (6) which could give fur-
ther insights into the quark-hadron duality and hadron
structure. The fallo↵ of the pion PDF at large-x is an
unresolved issue [85] which requires a new generation of
experiments.
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Universality	of	Generalized	Parton	Distributions	in	
Light-Front	Holographic	QCD	
Guy	F.	de	Téramond,	et	al,	arXiv:1801.09154	
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Pion/Kaon PDF----DSEs story 

Ø  Valence-quark	distributions	in	the	pion	
						M.	Hecht,	C.	D.	Roberts,	S.	M.	Schmidt,	arXiv:	nucl-th/0008049	
Ø  Pion	and	Kaon	valence-quark	parton	distribution	functions	
						T.	Nguyen,	et	al,	arXiv:	1102.2448	
Ø  Valence-quark	distribution	functions	in	the	kaon	and	pion	
						C.	Chen,	arXiv:	1602.01502	

•  Dressed-quark	basis	and	symmetry-preserving	(beyond-handbag)	expressions	used	to	analyse	π	&	K	valence-quark	
PDFs	…	guarantee	that	at	hadronic	scale	

	qV(x;ζH)	∝	(1-x)2	on	x	≃	1		
	
•  Flavour-dependence	of	DCSB	modulates	the	strength	of	SU(3)-flavour	symmetry	breaking	in	meson	PDFs,	as	it	does	in	

every	other	nonperturbative	quantity		
	
•  At	hadronic	scale	ζH:		

–  valence	dressed-quarks	carry	roughly	two-thirds	of	pion’s	light-front	momentum,	with	the	bulk	of	the	remainder	
carried	by	glue	…	sea-quarks	carry	roughly	5%	

–  contrast,	valence	dressed-quarks	carry	approximately	95%	of	the	kaon’s	light-front	momentum,	with	the	
remainder	lying	in	the	gluon	distribution	…	sea-quarks	carry	≃	0	%	

•  heavier	s-quarks	radiate	soft	gluons	less	readily	than	lighter	quarks	and	momentum	conservation	
subsequently	constrains	gluons	associated	with	the	kaon’s	u-quark	

summary	
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Bound state and quantum field theory 

		

Field	theory	Successful:	
•  Nonrelativistic	quantum	

mechanics	to	handle	
bound	state;	

•  Perturbation	theory	to	
handle	relativistic	effects	

Field	theory	not	Successful	yet:	
•  Growth	of	the	running	coupling	constant	

in	the	infrared	region;	
•  Confinement;	
•  Dynamical	Chiral	Symmetry	Breaking;	
•  Possible	nontrivial	vacuum	structure	in	

hadron	

Trace	anomaly	
Ø  All	renormalisable	four-

dimensional	theories	
possess	a	trace	anomaly;	

Ø  The	size	of	the	trace	
anomaly	in	QED	must	be	
great	deal	smaller	than	
that	in	QCD.	

It	is	not	at	all	clear	that	renormalizable	field	theories	possess	any	bound	states.	
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Hadron	bound	state	problem 

Constituent	quark	
model->	intuitive	
understanding	of	
many	low	energy	
observables.	
	
Minimum	number	
of	constituents	
required	

Feynman’s	parton	
model->	intuitive	
understanding	of	high-
energy	phenomena.	
	
Constituent	picture;	
Probabilistic	
interpretation	of	
distribution	functions	

QCD	vacuum	in	the	hadron	is	very	complicated	medium	
Individual	quarks	and	gluons	are	lost	in	the	sea	

	
	

Both	the	constituent	quark	model	and	the	parton	model	
are	put	in	peril	by	QCD	with	a	possible	complicated	

vacuum	structure.	
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Dyson-Schwinger	Equation	scope	
Study	bound	state	problem	within	an	continuum	field	theory 

Faddeev 
Equation Bethe 

Salpeter 
Equation  

Masses, 
Decays 
Form 

Factors 

Theory Vs. 
Experiment 

Quark 
Propagator 

Schwinger- 
Dyson  

Equations 



Lei	Chang	(NKU) 

Dyson-Schwinger	Equation	scope	

Bethe-Salpeter	Equations	for	meson	bound	state	



Lei	Chang	(NKU) 

candidate 

RGI INTERACTION

TOP- 
DOWN

BOTTOM- 
UP

ab-initio 
computation  
of interaction

infer 
interaction 
by fitting 
data

main ingredient 
in D/B SE

Gap equation’s interaction kernel
RGI	interaction	
	
	

D.Binosi	

Ø  Top-down	approach	–	ab	initio	computation	
of	the	interaction	via	direct	analysis	of	the	
gauge-sector	gap	equations	

Ø  Bottom-up	scheme	–	infer	interaction	by	fitting	
data	within	a	truncation	of	the	matter	sector	
DSEs	that	are	relevant	to	bound-state	
properties.			
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Bridging	a	gap	between	continuum-QCD	&	ab	initio	predictions	of	hadron	observables	
	D.	Binosi	(Italy),	L.	Chang	(Australia),	J.	Papavassiliou	(Spain),		
	C.	D.	Roberts	(US),	arXiv:1412.4782	[nucl-th]	,		
	Phys.	Lett.	B	742	(2015)	183	

	
	

candidate 

RGI INTERACTION

TOP- 
DOWN

BOTTOM- 
UP

ab-initio 
computation  
of interaction

infer 
interaction 
by fitting 
data

main ingredient 
in D/B SE

DB beyond RL

Lei	Chang	and	C.	D.	Roberts,	Phys.	Rev.	Lett.103	(2009)	081601;	
Lei	Chang,	Yu-xin	Liu	and	C.	D.	Roberts,	Phys.	Rev.	Lett.106	(2011)	072001	
	

	–	Interaction	predicted	by	modern	analyses	of	QCD's	gauge	sector	coincides	with	that	required	to	describe	ground-
state	observables	using	the	sophisticated	matter-sector	ANL-PKU	DSE	truncation	

D.Binosi	
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Dynamical	Chiral	Symmetry	Breaking 

•  Is	a	crucial	emergent	phenomenon	in	QCD	
•  Expressed	in	hadron	wave	functions	not	in	

vacuum	condensates	
•  Contemporary	theory	indicates	that	it	is	

responsible	for	more	than	98%	of	the	
visible	mass	in	the	Universe;	namely,	given	
that	classical	massless-QCD	is	a	conformally	
invariant	theory,	then	DCSB	is	the	origin	of	
mass	from	nothing.			

•  Dynamical,	not	spontaneous	
–  Add	nothing	to	QCD	,		

	No	Higgs	field,	nothing!		
	Effect	achieved	purely		
	through	quark+gluon		
	dynamics.	
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Pion’s	dichotomy 
Goldstone	boson	and	Bound	State----On	the	light	front 

•  Analytical	structure	of	mass	function	in	the	whole	momentum	region	needed;	
•  Chebyshev	polynomials	of	BSE	amplitude	does	work	

					Consider																				up	to	logarithm	in	the	ultraviolet	region	
	
	
					Power	suppress	of	amplitude	ensure	the	light	front	physics	safe	
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Pion’s	LFWF	definition 
we can write the paper now!

Let’s begin with the defintion of the lowest twist light front wave functions

 "#(x, k
2
?) =

1

f⇡

Z
d
2
kk

⇡
�(n · k+ � xn · P )trCD[�5� · n�(k+, k�)] (1)

and

k
i
? ""(x, k

2
?) =

1

f⇡

Z
d
2
kk

⇡
�(n · k+ � xn · P )trCD[�5�ni�(k+, k�)] (2)

with k± = k ±
P
2 , �ni =

I
2(� · n�i � �i� · n) and � is the pion BS wave function. Where

 "#(x, k
2
?) denotes the pion light front wave function with anti parallel quark helicity and

 ""(x, k
2
?) the parallel quark helicity. For finite x and k? the above integration is convergent

and there is no need for the regularization at this stage. The renormalization constant Z2

has to be introduced when one performs the integration on k? to get PDA.

1 Rainbow-Ladder truncation

We solved BS wave function within rainbow-ladder truncation

S
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�1
(k�) = �

4

3
Z

2
2

Z ⇤

dq

Dµ⌫(k � q)�µ�(q+, q�)�⌫ (3)

and the quark propagator satisfies the following equation
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4

3
Z

2
2

Z ⇤

dq

Dµ⌫(k � q)�µS(q)�⌫ (4)

the renormalization point has been choosen at µ = 2GeV .

1.1 gluon models

The Qin-Chang model taks the form
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with ! = 0.5GeV and D ⇤ ! = (0.89GeV )
3
. I introduced another modified model as
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extracted by the MEM from the above wave function data, and
the leading twist PDA can be then obtained via Eq. (3).

Figure 4: Obtained PDA of π-meson and that of ηc-meson and the comparison
with previous results (φπ computed by the Nakanishi representation [5] (dashed
curve) and φηc calculated by brute-force procedure [7] (dot-dashed curve)). The
asymptotic form is also exhibited with dotted curve.

We have carried out calculations by choosing the same pa-
rameters ω = 0.5 GeV and Dω = (0.87 GeV)3 as the same
as those in Ref. [5] to produce the π-meson PDA; and ω =
0.8 GeV and Dω = (0.7 GeV)3 (the corresponding leptonic de-
cay constant of ηc is about 0.28 GeV) to calculate the ηc-meson
PDA. After setting this, the calculated Mbs for π and ηc are
0.138 GeV and 0.29 GeV, respectively. The regulated scales
are chosen to be the quark mass scale which are 0.35 GeV and
1.6 GeV, respectively.

In Fig. 2, we exhibit the obtained wave functions for π and
ηc meson with the extracted weight function compared with the
input Bethe-Salpeter wave functions. We can see the results are
compatible. The interesting thing is the behaviour of the ex-
tracted weight functions shown in Fig. 3. For pion, the weight
function g(γ, 1 − 2x) shows a δ function behaviour respective
to γ, which suggests that the one-variable Nakanishi-like repre-
sentation in previous work is very insightful. The previous work
based on such ansatz for pion’s PDA and form factors would be
appropriate. However, such a simple representation might not
be appropriate in heavy meson cases, as shown in the figure,
the weight function is a smooth function that extends to a large
scope. This behaviour means that the pion’s BS wave function
can be well described by the weight function at a fixed mass
scale, and recalling the BS equations, we can find that such a
behaviour might be owing to the behaviour of the interaction
kernel we employed here, for which is infrared constant.

With the extracted weight function, we then compute the P-
DAs of π and ηc meson. The presently obtained results via
MEM and the comparison with previous results are illustrated
in Fig. 4. The error band is given by varying the MEM param-
eters m0 = 0.1 ∼ 10 and Λ = 1 ∼ 30 GeV2. Such a behaviour
can Despite the slight uncertainties of the error band, the Fig. 4
shows apparently that the PDAs of the pseudoscalar mesons π
and ηc presently obtained via the MEM and DSE approach of

QCD match the previous results given in the same dynamical
method in the valence region very well and the slight differ-
ence in the middle region of x is tolerable. It is noticeable that
the previous results of PDAs are reconstructed from the Mellin
moments via some specific formula, Gegenbauer polynomials
for pion and the Gaussian behaviour for ηc. The most exciting
observation for pion’s PDA is that it confirms the concave be-
haviour as the prediction made in the previous work, and since
the PDA is obtained here without any assumed structure, such a
standpoint is quite conclusive. We also notice that at end points,
for both cases, the extracted PDAs are slightly larger than the
previous results. Such behavior at end points occurs in every
case we tried in MEM procedure, therefore, we cannot confirm
it as the real behavior of PDAs, and it is very probable that it’s
just an artificial phenomenon of the MEM procedure. With the
current choice of Ndata and assumed error σ our mock analy-
sis has shown that the MEM can reproduce the weight function
with an error of around 10%. The PDA can be well reconstruct-
ed, however, it is still difficult to extract further information,
for example, the meson’s light front wave function. The direct
improvement can be done by enlarging the size Ndata of input
data and also choosing different values of θ j, such work is in
progress. However, such a good agreement for the general fea-
tures of PDAs confirms the previous results on one hand and, on
the other hand, indicates that the MEM is efficient to determine
the PDAs.

4. Summary and Remarks. In this Letter we propose a
practical algorithm to determine the PDAs of mesons in the
framework of meson’s Bethe-Salpeter equation and Dyson-
Schwinger equation approach of QCD. The key point of our
new algorithm is to implement the MEM to extract the weight
function of the Nakanishi representation of the meson’s Bethe-
Salpeter wave function. The merit of the MEM is that one nei-
ther needs to rely on the limit knowledge of the Chebyshev mo-
ments of the meson’s Bethe-Salpeter amplitude to parameterize
the Nakanishi weight function (like previous π case) by special
form, nor has to be restricted by the limit number of Mellin mo-
ments (like previous ηc case) to suppose some special forms of
PDA. The potential advantage of MEM can be applied to find
the light-front wave function of meson when one has the Bethe-
Salpeter wave function in hand, which we will leave it for future
work. The MEM procedure might get in some trouble if the ex-
tracted weight function is not positive definite that might be the
case of PDA for scalar meson’s ground state and excited state,
and it will be solved by splitting the weight function into an odd
part zg1(γ, 1−2x) and an even part g2(γ, 1−2x). The difficulty of
this procedure is when the Bethe-Salpeter wave function is not
monotonous, the error will become very large. This problem in-
dicates that more complex structures are needed in addition to
the structure in Eq. (1). However, the equivalence of the three
methods mentioned above allows us to choose appropriate one
to analyze the PDA case-by-case.

Acknowledgments. Work supported by the Thousand Tal-
ents Plan for Young Professionals (LC), and the National Nat-
ural Science Foundation of China with contract No. 11435001
and the National Key Basic Research Program of China with

5

Physics Letters B 770 (2017) 551–555

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Bayesian extraction of the parton distribution amplitude from the 

Bethe–Salpeter wave function

Fei Gao b,c, Lei Chang a,∗, Yu-xin Liu b,c,d

a School of Physics, Nankai University, Tianjin 300071, China
b Department of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
c Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
d Center for High Energy Physics, Peking University, Beijing 100871, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 November 2016
Received in revised form 24 April 2017
Accepted 25 April 2017
Available online 10 May 2017
Editor: J.-P. Blaizot

Keywords:
Parton distribution function
Nakanishi representation
Bethe–Salpeter amplitude
Maximum entropy method
Light-front wave function

We propose a new numerical method to compute the parton distribution amplitude (PDA) from the Eu-
clidean Bethe–Salpeter wave function. The essential step is to extract the weight function in the Nakanishi 
representation of the Bethe–Salpeter wave function in Euclidean space, which is an ill-posed inversion 
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1. Introduction

The parton distribution amplitudes (PDAs) of mesons, encoding 
the meson structure on the light front, play an essential role in the 
hard exclusive processes. The cross sections of the processes can 
be written as the convolution of the hard-scattering kernel which 
can be computed perturbatively, and the PDAs of the hadrons in-
volved [1,2]. The leading twist parton distribution amplitudes of 
mesons are defined by integrating out the transverse momentum 
k⊥ from the light front wave function, which are obtained through 
projecting meson’s Bethe–Salpeter wave function onto the light-
front.

Although some efforts have been made to calculate Bethe–
Salpeter equation (BSE) directly in Minkowski space (see, e.g., 
Ref. [3]) with a simple scattering kernel, many BSE calculations 
are still carried out in Euclidean space which are much easier to 
handle. The challenge in the Euclidean scheme is how to project 
the discrete Euclidean wave function data on the light-front to 
get light-front quantities. The Nakanishi representation of the wave 
function provides a natural way to solve this problem. This chal-

* Corresponding author.
E-mail address: leichang@nankai.edu.cn (L. Chang).

lenging question amounts to whether it is possible to compute 
the weight function of the Nakanishi representation if one has an 
appropriate solution of the BSE in Euclidean space. Nakanishi rep-
resentation was proposed in Ref. [4] to parameterize the relativistic 
two-particle bound state in Minkowski space.

Despite lacking a non-perturbative proof of uniqueness of the 
weight function in the Euclidean case, we suppose that the wave-
function can still be parametrized by the following similar form,

!(k, P ) =
1∫

− 1

dz

∞∫

0

dγ
g(γ ,1 − 2x)

(k2 + zk · P + 1
4 P 2 + M2 + γ )3

, (1)

where k2 > 0 is the space-like momentum and P 2 = − M2
bs with 

Mbs the bound state mass and M is an infrared regulated scale. 
The weight function g(γ , 1 − 2x) is a two-dimensional function in 
real space. The corresponding leading twist two-particle light-front 
parton distribution can be defined as

ϕ(x) =
∫

d4kδ(n · k − xn · P )!(k − P
2

, P ) , (2)

where n is the light-like vector n2 = 0. We neglect the possible 
spin structure for simplification at the moment. With the help of 
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TABLE II. Mellin moments, 102⟨xm⟩, of the 0+- and 1−−-
meson leading-twist PDAs computed using the method de-
scribed in connection with Eq. (16) and Fig. 1. The entry “x”
indicates that the extrapolated result is not accurate to bet-
ter than 5% and is therefore discarded. (The Bethe-Salpeter
wave functions are calculated in RL-truncation with a renor-
malisation scale ζ = ζ2. Dimensioned quantities in GeV.)

JP (qq̄) n m = 0 1 2 3 4 5 6

0+ uū 0 0 3.46 3.46 3.03 2.59 2.29 2.10

uū 1 0 0.438 0.438 −0.383 −1.21 −1.78 −2.11

us̄ 0 3.12 5.05 3.99 3.04 x x x

ss̄ 0 0 4.08 4.08 3.52 2.95 2.48 x

1− uū ∥ 1 10.7 5.35 1.31 −0.737 −1.66 x x

⊥ 1 −4.57 −2.29 −5.15 −6.58 −6.88 x x

as telegraphed following Eq. (24), the masses of all listed
systems are “inflated” by our choice mG = 1.1GeV, leav-
ing room for corrections to RL truncation, such as meson-
meson final-state interactions, which might sometimes be
considered as introducing a molecular component, to re-
duce the quoted mass and introduce a width [3, 4].

C. PDAs: ground-state and first radial excitation

One now has in hand all elements necessary for a
computation of the scalar meson leading-twist PDAs
via Eq. (5). Notably, in using RL truncation the
Bethe-Salpeter amplitudes we obtain describe idealised
scalar bound-states, with simple valence-quark struc-
ture and zero width. The observed scalar reso-
nances are more complex [1, 2], but the f0(500),
K∗

0 (800), f0(980), a0(980) systems do contain valence-
quark-antiquark components (whose strength is currently
model-dependent), and these pieces yield the leading-
twist PDA.
We work in the isospin symmeric limit, and the mo-

ments of the ground-state uū ∼ dd̄ ∼ [uū + dd̄] system
are listed in Table II. They were obtained as described
in connection with Eq. (16), a procedure whose reliabil-
ity is illustrated by Fig. 1. In this case we found that
sound estimates could be obtained for m ≤ 6, although
the signals for the fifth and sixth moments were lost for
r2 ! 0.2GeV2. Higher moments showed greater curva-
ture and hence could not readily yield extrapolated re-
sults that were accurate to better than 5%. They were
therefore discarded. We verified that the same results
are obtained using different forms of regulator function
in Eq. (16). It is noteworthy that the first of Eqs. (13) is
recovered nontrivially, viz. the m = 1, 2 moments possess
different sensitivity to r2, but the extrapolation curves
converge to the same point; and the second is satisfied to
better than 0.1%, despite all three moments having been
extrapolated independently. We used a third identity:

0++ : ⟨x6⟩ = 3⟨x1⟩ − 5⟨x3⟩+ 3⟨x5⟩ , (25)






◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼◼
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
▲▲▲▲▲▲▲▲▲▲▲▲▲▲

▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼

✶✶✶✶✶✶✶✶✶✶✶
✶✶✶✶✶✶✶✶✶✶✶✶✶✶✶

✶✶✶✶✶✶✶✶✶✶✶✶✶✶

!"!! !"!# !"!$ !"!% !"!& !"'!!"!'!

!"!'(

!"!#!

!"!#(

!"!)!

!"!)(

!!('/*+,!)

<
!!
>

!/
!
"#

FIG. 1. The uū moments in Table II are the r2 → 0 extrapola-
tions of the curves depicted in this figure: ⟨x1⟩, black squares;
⟨x2⟩, red diamonds; ⟨x3⟩, blue-up-triangles; ⟨x4⟩, green down-
triangles; ⟨x5⟩, purple circles; ⟨x6⟩, orange asterisks. The
curves are [2, 1]-Padé fits to the points depicted. Other fit-
ting forms were also employed, with no material change in the
results.

to aid in constraining extrapolations for the fifth and
sixth moments.
Using the moments in Table II, the PDA of a uū scalar

bound-state may be reconstructed using the method in-
troduced and tested in Refs. [22, 30, 31, 34, 40]. We write

φσ(x) = [xx̄]α−

zmax
∑

z=0

azσC
α
z (x− x̄) , (26)

where {Cα
z } are order-α Gegenbauer polynomials, α− =

α− 1/2. Notably, for 0++ systems, Eq. (11) entails that
the sum includes only odd Gegenbauer polynomials. We
take zmax = 3; and determine the parameters {α, azσ} via
a least-squares fit that requires the odd (independent)
moments of φσ(x) in Eq. (26) to match those in Table II,
with the results listed in Table III. The associated curves
reproduce the moments with a rms-relative-error of ap-
proximately 2% (ground state) and 0.1% (excited state).
The leading-twist PDAs of the ground and radially-

excited uū 0++ bound-states specified by Eq. (26) using
the parameters in Table III are depicted in the upper
panel of Fig. 2. As suggested by Eq. (10), and in qualita-
tive agreement with Ref. [19], the ground-state PDA has
one zero on 0 < x < 1. On the other hand, following the
pattern described in Ref. [29], the first radial excitation
has two additional zeros in this domain (three zeros alto-
gether). Naturally, in both cases the domains of positive
and negative support are precisely balanced so that the
leptonic decay constants vanish identically, with no tun-
ing required in this symmetry-preserving calculation.5

Pursuing the reasoning in Ref. [29] further, we predict
that at ζ = ζ2, the number of zeros in the leading-twist

5 It is notable that the light-front holographic model reviewed in
Ref. [55] yields φσ ≡ 0 for n ≥ 0, a result in conflict with both
this DSE analysis and sum rules phenomenology.
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Quark propagator: 

Bethe-Salpeter Amplitude: 

rho(z) is weight function accounting relative motion between the partons 
rho(z) is kind of even function; 
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the pion’s light-front wave function, ωπ(x), may be un-
derstood to describe the probability distribution of the
chiral condensate within the pion [21–25]. Given the
pseudo-Goldstone-boson character of the pion and kaon,
a comparison between the pointwise behaviour of this dis-
tribution amplitude within these mesons is particularly
interesting and potentially instructive.

The behaviour of the kaon’s twist-two PDA, ϕK(x), is
also determined primarily by DCSB [11, 26]. Indeed,
ϕK(x) is a broad, concave and asymmetric function,
whose peak is shifted 12-16% away from its position in
QCD’s conformal limit. These features show that the
heavier quark in the kaon carries more of the bound-
state’s momentum than the lighter quark; and also that
DCSB modulates the magnitude of flavour-symmetry
breaking because it is markedly smaller than one might
expect based on the difference between light-quark cur-
rent masses. Combining these features of ϕK(x) with
those of ϕπ(x) described above, one obtains an improved
understanding of the ratio of kaon and pion electromag-
netic form factors measured at large timelike momenta
[27]: it eliminates much of the discrepancy between ex-
periment and theory which appears if the conformal-limit
kaon and pion PDAs are used in the relevant hard scat-
tering formulae [26].

It would thus appear that a consistent picture is emerg-
ing from the confluence between continuum and lat-
tice QCD studies regarding the character of light-meson
twist-two PDAs. Namely, that at energy scales acces-
sible with existing and foreseeable facilities, reliable in-
sights concerning the Standard Model may only be ob-
tained by using the broad, concave PDAs whose nature
and origin we have indicated above. Herein, therefore, we
present calculations and results for all six kaon and pion
two-particle distribution amplitudes that appear to twist-
three in an expansion of the light-front wave functions of
these pseudoscalar mesons. These amplitudes have previ-
ously been estimated using their properties under confor-
mal transformations as the guiding principle in concert
with QCD sum rules [28, 29]; but our analysis is the first
to use the Dyson-Schwinger equations (DSEs) [30–33],
which have both a direct connection with QCD and can
completely chart the pointwise behaviour of these ampli-
tudes.

This document is organised as follows. In Sec. II we
introduce the distribution amplitudes and describe the
method that will be used in their computation. Sec-
tion III provides an algebraic illustration of our tech-
niques. The algebraic formulae we obtain also serve as a
benchmark against which to evaluate the nature of our
numerical results, described in detail in Sec. IV. A sum-
mary and perspective are presented in Sec. V.

II. DISTRIBUTION AMPLITUDES AND
BETHE-SALPETER WAVE FUNCTIONS

A. Definitions and Observations

A pseudoscalar meson, Pḡf (q), with mass mP , pos-
sesses three two-particle light-cone distribution ampli-
tudes to twist-three, which may be expressed thus [28]:

⟨0|ψ̄f (−x)γ5γ · nψg(x)|Pḡf (q)⟩

= fP n · q
∫ 1

0
du e−ix·q (2u−1)ϕ(2)

P (u, ζ) , (1a)

−⟨0|ψ̄f (−x)iγ5ψg(x)|Pḡf (q)⟩

= iρζP

∫ 1

0
du e−ix·q (2u−1)ω(3)

P (u, ζ) , (1b)

⟨0|ψ̄f (−x)iγ5σµνqµnνψg(x)|Pḡf (q)⟩

=
1

4
ρζP n · q

∫ 1

0
du e−ix·q (2u−1) d

du
υ(3)P (u, ζ) . (1c)

Here q2 = −m2
P ;

1 xµ = (z/2)nµ, with n a light-like
four-vector, n2 = 0, n · q = −mP ; the superscript labels
the twist-order, which will be omitted hereafter; ζ is the
renormalisation scale; and fP , ρ

ζ
P are, respectively, the

pseudovector and pseudoscalar projections of the meson’s
Bethe-Salpeter wave function onto the origin in config-
uration space, explicit expressions for which are given
in Eqs. (12) below. With the conventions specified by
Eqs. (1), each of the PDAs is unit normalised, viz.

∫ 1

0
du {ϕP (u; ζ) , ωP (u; ζ) , υP (u; ζ)} = 1 . (2)

The reason why we have expressed the left-hand-side
of Eq. (1c) in terms of a differentiated PDA will sub-
sequently become apparent – see, e.g., Eq. (25) and
the preceding analysis. In considering the twist-three
amplitudes, Eqs. (1b) and (1c), one should bear in
mind that they are not truly independent: a three-
particle (quark+antiquark+gluon) twist-three amplitude
connects them [6, 28].
Note that in order to produce quantities that are gauge

invariant for all values of x, each of the left-hand-sides in
Eqs. (1) should also contain a Wilson line:

W [−x, x] = exp ig

∫ x

−x
dσµAµ(σ) , (3)

between the quark fields. Plainly, for any light-front tra-
jectory, W [−x, x] ≡ 1 in lightcone gauge: n · A = 0,
and hence the Wilson line does not contribute when

1 We use a Euclidean metric: {γµ, γν} = 2δµν ; γ†
µ = γµ; γ5 =

γ4γ1γ2γ3, tr[γ5γµγνγργσ ] = −4ϵµνρσ ; σµν = (i/2)[γµ, γν ]; a·b =
∑4

i=1 aibi; and qµ timelike ⇒ q2 < 0.

hP | ̄(0)�µU [0, z] (z)|P i = Pµh(P · z, z
2) + zµhz(P · z, z

2) (1)
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Model-I:A smooth approximation to the step 
function 

 
Model-II:An integrable singularity form at 
boundary 
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Eqs. (10a) and (10c), it is apparent that

 
"#
K
(x, k2?) =

12

fK
YK(x;�2

?) , (11)

where ↵ ! x in Eqs. (6), (7). The ⇡-meson formula is
obvious by analogy. The compactness of these results is
one merit of the algebraic Ansätze in Eqs. (1).

Combining Eqs. (8), (9a), a twist-two dressed-parton
quasi-PDA (qPDA) is obtained via the replacement n !
ñ, ñ = (0, 0, 1, 0), viz.

fK '̃K(x) = trCD

Z

dk

�
x

ñ
(kK) �5� · ñ�(2)

K
(kK� ;PK) , (12)

where �x
ñ
(kK) = �(ñ · k�xñ ·PK); and

R
dk

is a Poincaré-
invariant definition of the four-dimensional integral. Fol-
lowing a series of steps similar to those used above, one
arrives directly at the following result:

'̃K(x) =
Pz

16⇡3

Z 1

0
d↵

Z 1

�1
dk  

"#
K
(↵, k2 + (x� ↵)2P 2

z
) .

(13)

The expression for '̃⇡(x) is obvious by analogy and
matches Eq. (20) in Ref. [11].

B. Numerical Illustrations

1. Wave Functions

It is now possible to study the Pz-evolution of the
pointwise-form of meson qPDAs and chart their connec-
tion with the objective PDA. To proceed, it is neces-
sary to specify the parameters and spectral densities in
Eq. (1). For the latter, we use

uG ⇢G(w) =
1

2bG0

⇥
sech2([w � w

G

0 ]/[2b
G

0 ])

+sech2([w + w
G

0 ]/[2b
G

0 ])
⇤
[1 + wvG] , (14)

where b
G

0 , w
G

0 , vG, are parameters, and uG is a derived
constant that ensures unit normalisation of the density.
This form is compact and yet has su�cient flexibility to
produce pion and kaon valence-quark PDAs and PDFs
whose features are consistent with contemporary predic-
tions.

Regarding the parameters, we choose Mu = 0.31GeV,
matching the infrared scale of the u-quark mass func-
tion obtained using modern gap-equation kernels [46]; set
Ms = 1.2Mu, which is typical of the size obtained in phe-
nomenologically e�cacious continuum analyses [23, 47];
float ⇤⇡,K to fit the leptonic decay constants:

f⇡ =
1

n · P⇡

trCD

Z

dk

�5� · n�⇡(k
⇡

�;P⇡) , (15a)

fK =
1

n · PK

trCD

Z

dk

�5� · n�K(kK� ;PK) , (15b)

FIG. 1. Leading-twist two-dressed-parton light-front wave
functions of the pion (upper panel) and kaon (lower panel).
Each is normalised such that

R
dxd2k? 

"#(x, k2
?) = 1.

where m⇡ = 0.14GeV, mK = 0.49GeV; and choose
b
G

0 , w
G

0 such that the meson PDAs are broad, concave
functions whose lowest nontrivial Mellin moments match
those obtained in modern analyses [7]:

h(2x� 1)2i'⇡ :=

Z 1

0
dx (2x� 1)2'⇡(x) ⇡ 0.25 , (16a)

h2x� 1i'K ⇡ �0.04 , h(2x� 1)2i'K ⇡ 0.25 . (16b)

With

⇤⇡ b
⇡

0 w
⇡

0 v⇡ ⇤K b
K

0 w
K

0 vK

Mu 0.1 0.73 0 2⇤⇡ b
⇡

0 0.95 0.16
(17)

we obtain f⇡ = 0.092GeV, fK = 0.11GeV, in agreement
with experiment [48], and satisfy Eqs. (16). Recall that in
connection with quantities that undergo QCD evolution,
our models should be understood as producing results
valid at an hadronic scale, ⇣H ⇠ 1GeV.
The pion and kaon leading-twist dressed-parton

LFWFs, obtained using Eqs. (1), (11), (14), (17), are
depicted in Fig. 1. Considered as a function of x, with
k
2
? fixed, these wave functions are broad and concave.

Conversely, at fixed x, they fall as 1/k4? on k
2
? �

⇤2
G
. In QCD, the behaviour is 1/k2? (up to ln k2?-

corrections). Our model’s decay rate is amplified because

3

Eqs. (10a) and (10c), it is apparent that

 
"#
K
(x, k2?) =

12

fK
YK(x;�2

?) , (11)

where ↵ ! x in Eqs. (6), (7). The ⇡-meson formula is
obvious by analogy. The compactness of these results is
one merit of the algebraic Ansätze in Eqs. (1).

Combining Eqs. (8), (9a), a twist-two dressed-parton
quasi-PDA (qPDA) is obtained via the replacement n !
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R
dk

is a Poincaré-
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dx (2x� 1)2'⇡(x) ⇡ 0.25 , (16a)

h2x� 1i'K ⇡ �0.04 , h(2x� 1)2i'K ⇡ 0.25 . (16b)

With
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0 w
K
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(17)

we obtain f⇡ = 0.092GeV, fK = 0.11GeV, in agreement
with experiment [48], and satisfy Eqs. (16). Recall that in
connection with quantities that undergo QCD evolution,
our models should be understood as producing results
valid at an hadronic scale, ⇣H ⇠ 1GeV.
The pion and kaon leading-twist dressed-parton

LFWFs, obtained using Eqs. (1), (11), (14), (17), are
depicted in Fig. 1. Considered as a function of x, with
k
2
? fixed, these wave functions are broad and concave.

Conversely, at fixed x, they fall as 1/k4? on k
2
? �

⇤2
G
. In QCD, the behaviour is 1/k2? (up to ln k2?-

corrections). Our model’s decay rate is amplified because

with	

•  Feynman	parametrisation	to	combine	denominator	products	into	a	single	quadratic	form	
•  Cauchy’s	theorem	to	evaluate	the	k4	integral	
•  Direct	evaluation	for	kperp	integral	
•  Numerical	integration	over	the	Feynman	parameters	
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Eqs. (10a) and (10c), it is apparent that
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YK(x;�2

?) , (11)

where ↵ ! x in Eqs. (6), (7). The ⇡-meson formula is
obvious by analogy. The compactness of these results is
one merit of the algebraic Ansätze in Eqs. (1).

Combining Eqs. (8), (9a), a twist-two dressed-parton
quasi-PDA (qPDA) is obtained via the replacement n !
ñ, ñ = (0, 0, 1, 0), viz.
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K
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where �x
ñ
(kK) = �(ñ · k�xñ ·PK); and

R
dk

is a Poincaré-
invariant definition of the four-dimensional integral. Fol-
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arrives directly at the following result:
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(13)

The expression for '̃⇡(x) is obvious by analogy and
matches Eq. (20) in Ref. [11].

B. Numerical Illustrations

1. Wave Functions

It is now possible to study the Pz-evolution of the
pointwise-form of meson qPDAs and chart their connec-
tion with the objective PDA. To proceed, it is neces-
sary to specify the parameters and spectral densities in
Eq. (1). For the latter, we use
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where b
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0 , vG, are parameters, and uG is a derived
constant that ensures unit normalisation of the density.
This form is compact and yet has su�cient flexibility to
produce pion and kaon valence-quark PDAs and PDFs
whose features are consistent with contemporary predic-
tions.

Regarding the parameters, we choose Mu = 0.31GeV,
matching the infrared scale of the u-quark mass func-
tion obtained using modern gap-equation kernels [46]; set
Ms = 1.2Mu, which is typical of the size obtained in phe-
nomenologically e�cacious continuum analyses [23, 47];
float ⇤⇡,K to fit the leptonic decay constants:
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FIG. 1. Leading-twist two-dressed-parton light-front wave
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II. PION AND KAON BOUND STATES

Many insights into the character of the pion and kaon
have been drawn using the following simple expressions
for the relevant dressed-quark propagators and Bethe-
Salpeter amplitudes [16, 21, 22, 25]:

Sf (k) = [�i� · k +Mf ]�(k2,M2
f
) , (1a)

nG�G(k;PG) = i�5

Z 1

�1
dw ⇢G(w)�̂(k2

w
,⇤2) , (1b)

where Mf is the dressed-quark mass evaluated in the
neighbourhood k

2 ' 0, f = u, s (we work in the isospin
symmetric limit, so Mu = Md); �(s, t) = 1/[s + t],
�̂(s, t) = t�(s, t); kw = k + (w/2)P , with P

2 = �m
2
G
,

G = ⇡,K; and ⇢G=⇡,K(w) is a spectral weight whose
form determines the pointwise behaviour of the asso-
ciated meson’s Bethe-Salpeter amplitude, with nG the
related canonical normalisation constant. One of the
strengths of these Ansätze is that they can be chosen
to ensure that a primarily algebraic computation yields
results which are pointwise similar to the most sophis-
ticated predictions currently available for parton distri-
bution amplitudes and functions, PDAs and PDFs. No-
tably, our approach to the continuum bound-state prob-
lem is Poincaré-covariant and hence, with complete gen-
erality, we may write

PG = (0, 0, Pz, iEP ) , EP = [P 2
z
+m

2
G
]
1
2 . (2)

One branch of our analysis will focus on the leading-
twist two-dressed-parton distribution amplitudes of the
⇡- and K-mesons, the computation of which requires a
projection onto the light-front of the given meson’s (un-
amputated) Bethe-Salpeter wave function. Working with
the K

+ meson as an illustration, this wave function is
(kK� = k � PK/2)

�K(kK� ;PK) = Su(k)�K(kK� ;PK)Ss(k � P ) ; (3)

and the part which contributes to the leading-twist
(twist-two) PDA is readily computed:

nK�
(2)
K

(kK� ;PK) = M (k;PK)

Z 1

�1
dw ⇢K(w)D(k;PK) ,

(4a)

M (k;PK) = ��5[� · PKMu + � · k(Mu �Ms)

+ �µ⌫kµPK⌫ ] , (4b)

D(k;PK) = �(k2,M2
u
)�((k � P )2,M2

s
)

⇥ �̂(k2
w�1,⇤

2) . (4c)

One may now introduce two Feynman parameters,
combine the denominators into a single quadratic form,
and thereby arrive at:

�
(2)
K

(kK� ;PK) = M (k;PK)

Z 1

0
d↵ 2XK(↵;�3(↵)) , (5)

with � = (k � ↵PK)2 + ⌦2
K
,

⌦2
K

= vM
2
u
+ (1� v)⇤2

+ (M2
s
�M

2
u
)
�
↵� 1

2 [1� w][1� v]
�

+ (↵[↵� 1] + 1
4 [1� v][1� w

2])M2
K
, (6)

XK(↵;�3) =

"Z 1�2↵

�1
dw

Z 1

1+ 2↵
w�1

dv

+

Z 1

1�2↵
dw

Z 1

w�1+2↵
w+1

dv

#
⇢K(w)

nK

⇤2

�3
. (7)

Formulae for the ⇡-meson are readily obtained by setting
s ! d, mK ! m⇡, and using isospin symmetry.
As has long been known [44] and is demonstrated for

parton distributions in, e.g. Refs. [19, 20, 23, 27, 45], dis-
tinctions between the K- and ⇡-mesons are driven by
dynamical chiral symmetry breaking (DCSB), expressed
in Eq. (6) by the di↵erence between the dressed s- and u

quark masses: (M2
s
�M

2
u
).

III. LIGHT-FRONT WAVE FUNCTIONS AND
QUASI-PDAS

A. Algebraic Analysis

The pseudoscalar meson’s leading-twist two-dressed-
parton light-front wave function (LFWF) can be written:

fK 
"#
K
(x, k2?) = trCD

Z

dkk

�
x

n
(kK)�5� · n�(2)

K
(kK� ;PK) ,

(8)

where fK is the kaon’s leptonic decay constant; the trace
is over colour and spinor indices;

R
dkk

= (1/⇡)
R
dk3dk4;

�
x

n
(kK) = �(n · k � xn · PK); and n is a light-like four-

vector, n
2 = 0, n · PK = �mK . The twist-two PDA

follows immediately:

'K(x) =
1

16⇡3

Z
d
2
k? 

"#
K
(x, k2?) , (9a)

Z 1

0
dx'K(x) = 1 . (9b)

Consider now the following Mellin moments:

hxmi "#
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=
12

fK

Z 1

0
d↵↵

m YK(↵;�2) , (10c)

where we have used Eqs. (5)–(7), and Y (↵;�2
?) =

[Mu(1�↵)+Ms↵]X (↵;�2
?), �? = k

2
?+⌦2

K
. Comparing
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Eqs. (10a) and (10c), it is apparent that
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12

fK
YK(x;�2

?) , (11)

where ↵ ! x in Eqs. (6), (7). The ⇡-meson formula is
obvious by analogy. The compactness of these results is
one merit of the algebraic Ansätze in Eqs. (1).

Combining Eqs. (8), (9a), a twist-two dressed-parton
quasi-PDA (qPDA) is obtained via the replacement n !
ñ, ñ = (0, 0, 1, 0), viz.

fK '̃K(x) = trCD

Z

dk

�
x

ñ
(kK) �5� · ñ�(2)

K
(kK� ;PK) , (12)

where �x
ñ
(kK) = �(ñ · k�xñ ·PK); and

R
dk

is a Poincaré-
invariant definition of the four-dimensional integral. Fol-
lowing a series of steps similar to those used above, one
arrives directly at the following result:

'̃K(x) =
Pz

16⇡3

Z 1

0
d↵

Z 1

�1
dk  

"#
K
(↵, k2 + (x� ↵)2P 2

z
) .

(13)

The expression for '̃⇡(x) is obvious by analogy and
matches Eq. (20) in Ref. [11].

B. Numerical Illustrations

1. Wave Functions

It is now possible to study the Pz-evolution of the
pointwise-form of meson qPDAs and chart their connec-
tion with the objective PDA. To proceed, it is neces-
sary to specify the parameters and spectral densities in
Eq. (1). For the latter, we use

uG ⇢G(w) =
1

2bG0

⇥
sech2([w � w

G

0 ]/[2b
G

0 ])

+sech2([w + w
G

0 ]/[2b
G

0 ])
⇤
[1 + wvG] , (14)

where b
G

0 , w
G

0 , vG, are parameters, and uG is a derived
constant that ensures unit normalisation of the density.
This form is compact and yet has su�cient flexibility to
produce pion and kaon valence-quark PDAs and PDFs
whose features are consistent with contemporary predic-
tions.

Regarding the parameters, we choose Mu = 0.31GeV,
matching the infrared scale of the u-quark mass func-
tion obtained using modern gap-equation kernels [46]; set
Ms = 1.2Mu, which is typical of the size obtained in phe-
nomenologically e�cacious continuum analyses [23, 47];
float ⇤⇡,K to fit the leptonic decay constants:

f⇡ =
1

n · P⇡

trCD

Z

dk

�5� · n�⇡(k
⇡

�;P⇡) , (15a)

fK =
1

n · PK

trCD

Z
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FIG. 1. Leading-twist two-dressed-parton light-front wave
functions of the pion (upper panel) and kaon (lower panel).
Each is normalised such that

R
dxd2k? 

"#(x, k2
?) = 1.

where m⇡ = 0.14GeV, mK = 0.49GeV; and choose
b
G

0 , w
G

0 such that the meson PDAs are broad, concave
functions whose lowest nontrivial Mellin moments match
those obtained in modern analyses [7]:

h(2x� 1)2i'⇡ :=

Z 1

0
dx (2x� 1)2'⇡(x) ⇡ 0.25 , (16a)

h2x� 1i'K ⇡ �0.04 , h(2x� 1)2i'K ⇡ 0.25 . (16b)

With

⇤⇡ b
⇡

0 w
⇡

0 v⇡ ⇤K b
K

0 w
K

0 vK

Mu 0.1 0.73 0 2⇤⇡ b
⇡

0 0.95 0.16
(17)

we obtain f⇡ = 0.092GeV, fK = 0.11GeV, in agreement
with experiment [48], and satisfy Eqs. (16). Recall that in
connection with quantities that undergo QCD evolution,
our models should be understood as producing results
valid at an hadronic scale, ⇣H ⇠ 1GeV.
The pion and kaon leading-twist dressed-parton

LFWFs, obtained using Eqs. (1), (11), (14), (17), are
depicted in Fig. 1. Considered as a function of x, with
k
2
? fixed, these wave functions are broad and concave.

Conversely, at fixed x, they fall as 1/k4? on k
2
? �

⇤2
G
. In QCD, the behaviour is 1/k2? (up to ln k2?-

corrections). Our model’s decay rate is amplified because
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FIG. 4. Upper panel – x-dependence of the pion’s quasi-
PDA, computed with Pz/GeV = 1 (short-dashed, red), 1.75
(dashed, purple), 2.4 (dot-dashed, blue), 3.0 (solid, green).
Lower panel – same for kaon. The dotted (black) curve in
both panels is the appropriate PDA from Fig. 2; and the thin
vertical lines at x = 0, 1 highlight the boundaries of support
for a physical PDA.

and owing to momentum conservation, that domain is
the neighbourhood of the endpoints, x = 0, 1, as evident
in Fig. 3.

The situation is somewhat di↵erent for the kaon. De-
picted in the lower panel of Fig. 3, the ratio departs from
unity by as much as 70%. The L1-deviation is 15% at
k
2
? = 0, initially drops with increasing k

2
?, but increases

on k
2
? & 0.1GeV2 to reach a limiting value of ⇡ 20%. In

such circumstances, with a well-chosen power-law form
for  F , Eq. (18) might provide a fair indication of in-
tegrated kaon properties, but it can only at best be a
sketchy guide to pointwise features of  K(x, k2?).

2. Quasi Parton Distribution Amplitudes

Eq. (13) can now be used to compute pion and kaon
qPDAs, with the results depicted in Fig. 4. Focusing first
on the pion (upper panel), it is evident that the result
obtained with Pz = 1.0GeV does not closely resemble
'⇡(x): the L1-di↵erence between the two curves is 42%
and the (2x�1)2-moment obtained by integrating '̃⇡(x)

on x 2 [0, 1] is just 33% of the objective value.1

The step to Pz = 1.75GeV brings material improve-
ment, so that the '̃⇡(x) provides a qualitatively sound
approximation to '⇡(x): the L1-di↵erence between the
two curves is 18%, the (2x � 1)2-moment is 78% of the
objective value, and one can reasonably conclude that
the target PDA is a broad, concave function.
Further increments in Pz, however, do not bring much

improvement. For example, with Pz = 3.0GeV, the L1-
di↵erence between the qPDA and the PDA is 10% and
the (2x�1)2-moment is 85% of the objective value. This
outcome is a reflection of the fact that once the perturba-
tive domain is entered, evolution in QCD is logarithmic.
It is noteworthy, too, that the pointwise forms of '̃⇡(x)

leak significantly from the domain 0 < x < 1. This
prevents a determination of the target PDAs endpoint
behaviour even with Pz = 3GeV. That behaviour is
crucial because it fixes the magnitude of the leading-
order, leading-twist perturbative QCD results for nu-
merous observables [43] and hence sets the benchmark
against which existing and foreseen experiments aimed
at testing solid QCD predictions must be compared
[18, 24, 28, 31, 50]. Notably, in order to reach Pz ⇡ 3GeV
in a lQCD simulation, one would need a lattice with
roughly 48 spatial sites and a spacing of 0.06 fm.
Turning attention now to the kaon qPDAs, there are

similarities with the pion case. Using Pz = 1.75GeV,
'̃K(x) provides some reliable qualitative information
about 'K(x): the L1-di↵erence between the two curves is
28%, the qPDA peaks at x = 0.45, and its (2x� 1)1 mo-
ment is 75% of the objective value. On the other hand,
the (2x�1)2-moment is just 29% of the goal. Once again,
incrementing Pz does not greatly improve the situation.
Using Pz = 3.0GeV, the L1-di↵erence between '̃K(x)
and 'K(x) is 20%, the qPDA peaks at x = 0.43, the
(2x� 1)1 moment is 82% of the objective value, but the
(2x � 1)2-moment is only 35% of the goal. In this case,
reducing the L1-di↵erence between '̃K(x) and 'K(x) to
10% would require Pz ⇡ 20GeV.
In closing this subsection we return to SU(3)-

flavour-symmetry violation in the kaon qPDAs, plotting
['̃K�(x)� '̃K+(x)]/2 in Fig. 5. Evidently, using modest
values of Pz, the qPDAs provide a fair pointwise descrip-
tion of the true di↵erence on x 2 [0.3, 0.7]. Again, how-
ever, the behaviour on large domains near the endpoints
is poorly represented. The figure also displays
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The objective value for this moment is 0.25, Eq. (16). On physical

grounds [19], the pion’s (2x�1)
2
-moment should lie between the

conformal limit value, 1/5, and the result obtained using '⇡(x) =
constant, viz. 1/3. Using '̃⇡(x;Pz = 1GeV), the moment de-

fined here takes the value 0.22: (0.22� 1/5)/(0.25� 1/5) = 0.33.
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and owing to momentum conservation, that domain is
the neighbourhood of the endpoints, x = 0, 1, as evident
in Fig. 3.

The situation is somewhat di↵erent for the kaon. De-
picted in the lower panel of Fig. 3, the ratio departs from
unity by as much as 70%. The L1-deviation is 15% at
k
2
? = 0, initially drops with increasing k

2
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on k
2
? & 0.1GeV2 to reach a limiting value of ⇡ 20%. In

such circumstances, with a well-chosen power-law form
for  F , Eq. (18) might provide a fair indication of in-
tegrated kaon properties, but it can only at best be a
sketchy guide to pointwise features of  K(x, k2?).
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approximation to '⇡(x): the L1-di↵erence between the
two curves is 18%, the (2x � 1)2-moment is 78% of the
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against which existing and foreseen experiments aimed
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[18, 24, 28, 31, 50]. Notably, in order to reach Pz ⇡ 3GeV
in a lQCD simulation, one would need a lattice with
roughly 48 spatial sites and a spacing of 0.06 fm.
Turning attention now to the kaon qPDAs, there are

similarities with the pion case. Using Pz = 1.75GeV,
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The objective value for this moment is 0.25, Eq. (16). On physical

grounds [19], the pion’s (2x�1)
2
-moment should lie between the

conformal limit value, 1/5, and the result obtained using '⇡(x) =
constant, viz. 1/3. Using '̃⇡(x;Pz = 1GeV), the moment de-

fined here takes the value 0.22: (0.22� 1/5)/(0.25� 1/5) = 0.33.

•  Pz=1.00GeV does not closely resemble true PDA; 
•  Pz=1.75GeV brings material improvement…a qualitatively sound approximation; 
•  Further increments in Pz do not bring much improvment...saturation; 
•  Not possible to provide true endpoint behavior; 
•  Matching condition need for further consideration. 
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Abstract Preprint no. ADP-14-20/T878
The impulse-approximation expression used hitherto to define the pion’s valence-quark distribution function is flawed because it
omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-
independent result that quarks dressed via the rainbow-ladder truncation, or any practical analogue, carry all the pion’s light-front
momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible
for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic
model to express the principal impact of both classes of corrections. This enables a realistic comparison with experiment that allows
us to highlight the basic features of the pion’s measurable valence-quark distribution, qπ(x); namely, at a characteristic hadronic
scale, qπ(x) ∼ (1 − x)2 for x ! 0.85; and the valence-quarks carry approximately two-thirds of the pion’s light-front momentum.

Keywords: deep inelastic scattering, Drell-Yan process, dynamical chiral symmetry breaking, Dyson-Schwinger equations,
π-meson, parton distribution functions

1. Introduction. With the advent of the constituent-quark
model, the pion came to be considered as a two-body problem.
This perception continued into the era of quantum chromody-
namics (QCD), with the pion being viewed as the simplest ac-
cessible manifestation of QCD dynamics and therefore the nat-
ural testing ground for theoretical methods that aim to elucidate
a wide range of QCD phenomena. Growing in parallel was an
appreciation that the pion occupies a special place in nuclear
and particle physics; viz., as the archetype for meson-exchange
forces, and hence plays a critical role as an elementary field
in the nuclear structure Hamiltonian [1, 2]. These conflicting
views are reconciled in the modern paradigm [3], which simul-
taneously describes the pion as a conventional bound-state in
quantum field theory and the Goldstone mode associated with
dynamical chiral symmetry breaking (DCSB). This dichotomy
entails that fine tuning cannot play any role in a veracious expla-
nation of pion properties and ensures that elucidating the nature
of its parton content is critical to any understanding of QCD.

One of the earliest predictions of the QCD parton model was
the behaviour of the pion’s valence-quark distribution function
at large Bjorken-x [4, 5]: qπ(x) ∼ (1 − x)2. Owing to the va-
lidity of factorisation in QCD, qπ(x) is directly measurable in
πN Drell-Yan experiments. However, as described elsewhere
[6], conclusions drawn from a leading-order analysis of these
experiments proved controversial, producing [7] qπ(x) ∼ (1− x)
and thus an apparent disagreement with QCD. We address this
issue herein by first correcting a commonly used expression for
the valence-quark distribution function and then illustrating its
consequences with an algebraic model that incorporates salient
features of QCD.

2. Quark distribution function in the pion. The hadronic
tensor relevant to inclusive deep inelastic lepton-pion scattering
may be expressed in terms of two invariant structure functions
[8]. In the deep-inelastic Bjorken limit [9]: q2 → ∞, P · q →
−∞ but x := −q2/[2P ·q] fixed, that tensor can be written (tµν =
δµν − qµqν/q2, P t

µ = tµνPν)

Wµν(q; P) = F1(x) tµν −
F2(x)
P · q

P t
µP

t
ν , F2(x) = 2xF1(x) . (1)

F1(x) is the pion structure function, which provides access to
the pion’s quark distribution functions:

F1(x) =
∑

q∈π
e2
q qπ(x) , (2)

where eq is the quark’s electric charge. The sum in Eq. (2) runs
over all quark flavours; but in the π+ it is naturally dominated
by u(x), d̄(x). Moreover, in the G -parity symmetric limit, which
we employ throughout, u(x) = d̄(x). [Importantly, Bjorken-x is
equivalent to the light-front momentum fraction of the struck
parton.] The structure function may be computed from the
imaginary part of the virtual-photon–pion forward Compton
scattering amplitude: γ(q) + π(P)→ γ(q) + π(P).
3. Rainbow-ladder truncation. Herein we analyse qπ(x) in
Eq. (2) within the context of the rainbow-ladder (RL) trunca-
tion of QCD’s Dyson-Schwinger equations [10]. That trunca-
tion is the leading-order term in a symmetry-preserving scheme
[11–13] which is accurate for, amongst other systems, isospin-
nonzero-pseudoscalar-mesons because corrections in this chan-
nel largely cancel owing to parameter-free preservation of the
Ward-Green-Takahashi (WGT) identities.
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model, the pion came to be considered as a two-body problem.
This perception continued into the era of quantum chromody-
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a wide range of QCD phenomena. Growing in parallel was an
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forces, and hence plays a critical role as an elementary field
in the nuclear structure Hamiltonian [1, 2]. These conflicting
views are reconciled in the modern paradigm [3], which simul-
taneously describes the pion as a conventional bound-state in
quantum field theory and the Goldstone mode associated with
dynamical chiral symmetry breaking (DCSB). This dichotomy
entails that fine tuning cannot play any role in a veracious expla-
nation of pion properties and ensures that elucidating the nature
of its parton content is critical to any understanding of QCD.

One of the earliest predictions of the QCD parton model was
the behaviour of the pion’s valence-quark distribution function
at large Bjorken-x [4, 5]: qπ(x) ∼ (1 − x)2. Owing to the va-
lidity of factorisation in QCD, qπ(x) is directly measurable in
πN Drell-Yan experiments. However, as described elsewhere
[6], conclusions drawn from a leading-order analysis of these
experiments proved controversial, producing [7] qπ(x) ∼ (1− x)
and thus an apparent disagreement with QCD. We address this
issue herein by first correcting a commonly used expression for
the valence-quark distribution function and then illustrating its
consequences with an algebraic model that incorporates salient
features of QCD.

2. Quark distribution function in the pion. The hadronic
tensor relevant to inclusive deep inelastic lepton-pion scattering
may be expressed in terms of two invariant structure functions
[8]. In the deep-inelastic Bjorken limit [9]: q2 → ∞, P · q →
−∞ but x := −q2/[2P ·q] fixed, that tensor can be written (tµν =
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Wµν(q; P) = F1(x) tµν −
F2(x)
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F1(x) is the pion structure function, which provides access to
the pion’s quark distribution functions:

F1(x) =
∑

q∈π
e2
q qπ(x) , (2)

where eq is the quark’s electric charge. The sum in Eq. (2) runs
over all quark flavours; but in the π+ it is naturally dominated
by u(x), d̄(x). Moreover, in the G -parity symmetric limit, which
we employ throughout, u(x) = d̄(x). [Importantly, Bjorken-x is
equivalent to the light-front momentum fraction of the struck
parton.] The structure function may be computed from the
imaginary part of the virtual-photon–pion forward Compton
scattering amplitude: γ(q) + π(P)→ γ(q) + π(P).
3. Rainbow-ladder truncation. Herein we analyse qπ(x) in
Eq. (2) within the context of the rainbow-ladder (RL) trunca-
tion of QCD’s Dyson-Schwinger equations [10]. That trunca-
tion is the leading-order term in a symmetry-preserving scheme
[11–13] which is accurate for, amongst other systems, isospin-
nonzero-pseudoscalar-mesons because corrections in this chan-
nel largely cancel owing to parameter-free preservation of the
Ward-Green-Takahashi (WGT) identities.

Preprint submitted to Physics Letters B 18 June 2014

2

FIG. 1. (Color online) Diagrammatic representation of par-
ton distributions. Top panel – the exact parton distribution
corresponding to Eq. (2); and bottom – Rainbow-ladder trun-
cation of the amplitude G. S2 is the qq̄ propagator.

of flavor f . The PDF is given by the correlator [22, 23]

qf (x) =
1

4⇡

Z
d� e

�ixP ·n�h⇡(P )| ̄f (�n) 6n f (0)|⇡(P )ic ,

(1)
expressed here in manifestly Lorentz-invariant form.
In the infinite momentum frame, qf (x) is the proba-
bility that a single f -parton has momentum fraction
x = k · n/P · n [23]. In the above, n

µ, and (for later
use) pµ, are light-like vectors satisfying n

2 = p
2 = 0 and

n · p = 2. They form a convenient basis for the lon-
gitudinal sector of 4-vectors. One has k · n = k

+ and
k · p = k

�. The dominant component of q is parallel to n,
i.e., q� dominates. Note that qf (x) = �qf̄ (�x), and that
the valence quark amplitude is qvf (x) = qf (x)� qf̄ (x).

It follows from Eq. (1) that
R 1
0 dx q

v
f (x) =

h⇡(P )|J+
f (0)|⇡(P )i/2P+ = F⇡(0) = 1. Approximate

treatments should at least preserve vector current
conservation to automatically obtain the correct
normalization.

In our DSE framework, dynamical information on the
various nonperturbative elements, such as propagators
and bound state amplitudes, is available in a Euclidean
momentum representation. (In our Euclidean metric:
{�µ, �⌫} = 2�µ⌫ ; �†µ = �µ; �5 = �4�1�2�3; a·b = ⌃4

i=1aibi;
6n = � ·n; and Pµ timelike ) P

2
< 0.) The corresponding

formulation of Eq. (1) is

qf (x) = �1

2

Z
d
4
k

(2⇡)4
�(k · n� xP · n) trcd[i 6nG(k, P )] ,

(2)
where trcd denotes a color and Dirac trace, and G(k, P )
represents the forward q̄-target scattering amplitude. In
Euclidean metric the vectors n, p, P satisfy n

2 = 0 = p
2,

n · p = �2, P 2 = �m
2
⇡, and P · n = �m⇡.

The top part of Fig. 1 illustrates Eq. (2). In rainbow-
ladder truncation, which treats only the valence qq̄ struc-
ture of the target, we have the decomposition illustrated

in the bottom part of Fig. 1. The 4-point function S2 is
the qq̄ two-body propagator and �⇡ is the Bethe-Salpeter
bound-state amplitude, both computed in the RL trun-
cation. The combination S2 ⌦ i 6n �(k · n� xP · n) =
S(`)�n(`;x)S(`), where �n(`;x) is a dressed vector ver-
tex. The RL truncation for the valence u⇡(x) is thus

u⇡(x) = �1

2

Z
d
4
`

(2⇡)4
trcd [�⇡(`, P )

⇥Su(`)�
n(`;x)Su(`)�⇡(`, P )Sd(`� P )] , (3)

wherein �n(`;x) is a generalization of the dressed-quark-
photon vertex, describing a dressed-quark scattering
from a zero momentum photon. It satisfies the usual
inhomogeneous BSE (here with a RL kernel) except that
the inhomogeneous term is i 6n �(`·n�xP ·n). The dressed-
quark propagator is S(`; ⇣) = 1/[i 6`A(`2; ⇣) +B(`2; ⇣)],
where ⇣ is the renormalization mass scale.
This selection of RL dynamics parallels precisely the

symmetry-preserving treatment of the pion charge form
factor at Q2 = 0, wherein the vector current is conserved
by use of ladder dynamics at all three vertices and rain-
bow dynamics for all three quark propagators [6, 19].

Equation (3) ensures
R 1
0 dx q

v
f (x) = 1 for f = u, d̄ auto-

matically since
R
dx�n(`;x) gives the Ward-identity ver-

tex and the result follows from canonical normalization
of the BS amplitude.
We adopt the representation `µ = 1

2 (↵p
µ + �n

µ) + k
µ
?

to transform to new variables ↵ = �` · n and � = �` · p,
thus converting Eq. (3) to the form

u⇡(x) =
�JE
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��
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We employ the RL-DSE model developed in Refs. [24–

26], in which the BSE kernel takes the form K =

�4⇡ ↵e↵(k2)Dfree
µ⌫ (k)�

i

2 �µ ⌦ �i

2 �⌫ , where k is the gluon
momentum. Here ↵e↵(k2) is a model running cou-
pling chosen such that it reproduces QCD’s one-loop
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singlet vector and axial-vector vertices satisfying their
respective Ward-Takahashi identities. This ensures that
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FIG. 1. (Color online) Diagrammatic representation of par-
ton distributions. Top panel – the exact parton distribution
corresponding to Eq. (2); and bottom – Rainbow-ladder trun-
cation of the amplitude G. S2 is the qq̄ propagator.

of flavor f . The PDF is given by the correlator [22, 23]

qf (x) =
1

4⇡

Z
d� e

�ixP ·n�h⇡(P )| ̄f (�n) 6n f (0)|⇡(P )ic ,

(1)
expressed here in manifestly Lorentz-invariant form.
In the infinite momentum frame, qf (x) is the proba-
bility that a single f -parton has momentum fraction
x = k · n/P · n [23]. In the above, n

µ, and (for later
use) pµ, are light-like vectors satisfying n

2 = p
2 = 0 and

n · p = 2. They form a convenient basis for the lon-
gitudinal sector of 4-vectors. One has k · n = k

+ and
k · p = k

�. The dominant component of q is parallel to n,
i.e., q� dominates. Note that qf (x) = �qf̄ (�x), and that
the valence quark amplitude is qvf (x) = qf (x)� qf̄ (x).

It follows from Eq. (1) that
R 1
0 dx q

v
f (x) =

h⇡(P )|J+
f (0)|⇡(P )i/2P+ = F⇡(0) = 1. Approximate

treatments should at least preserve vector current
conservation to automatically obtain the correct
normalization.

In our DSE framework, dynamical information on the
various nonperturbative elements, such as propagators
and bound state amplitudes, is available in a Euclidean
momentum representation. (In our Euclidean metric:
{�µ, �⌫} = 2�µ⌫ ; �†µ = �µ; �5 = �4�1�2�3; a·b = ⌃4

i=1aibi;
6n = � ·n; and Pµ timelike ) P

2
< 0.) The corresponding

formulation of Eq. (1) is

qf (x) = �1

2

Z
d
4
k

(2⇡)4
�(k · n� xP · n) trcd[i 6nG(k, P )] ,

(2)
where trcd denotes a color and Dirac trace, and G(k, P )
represents the forward q̄-target scattering amplitude. In
Euclidean metric the vectors n, p, P satisfy n

2 = 0 = p
2,

n · p = �2, P 2 = �m
2
⇡, and P · n = �m⇡.

The top part of Fig. 1 illustrates Eq. (2). In rainbow-
ladder truncation, which treats only the valence qq̄ struc-
ture of the target, we have the decomposition illustrated

in the bottom part of Fig. 1. The 4-point function S2 is
the qq̄ two-body propagator and �⇡ is the Bethe-Salpeter
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Z
d
4
`

(2⇡)4
trcd [�⇡(`, P )

⇥Su(`)�
n(`;x)Su(`)�⇡(`, P )Sd(`� P )] , (3)

wherein �n(`;x) is a generalization of the dressed-quark-
photon vertex, describing a dressed-quark scattering
from a zero momentum photon. It satisfies the usual
inhomogeneous BSE (here with a RL kernel) except that
the inhomogeneous term is i 6n �(`·n�xP ·n). The dressed-
quark propagator is S(`; ⇣) = 1/[i 6`A(`2; ⇣) +B(`2; ⇣)],
where ⇣ is the renormalization mass scale.
This selection of RL dynamics parallels precisely the

symmetry-preserving treatment of the pion charge form
factor at Q2 = 0, wherein the vector current is conserved
by use of ladder dynamics at all three vertices and rain-
bow dynamics for all three quark propagators [6, 19].
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R 1
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momentum. Here ↵e↵(k2) is a model running cou-
pling chosen such that it reproduces QCD’s one-loop
renormalization-group behavior for k2 & 2GeV2. A more
general method for treating K has recently become avail-
able [27]. The DSE that produces the dressed quark
propagator is also determined by ↵e↵(k2) [24–26]; and the
combination of the DSE and BSE produces dressed color-
singlet vector and axial-vector vertices satisfying their
respective Ward-Takahashi identities. This ensures that
the chiral-limit ground-state pseudoscalar bound-states
are the massless Goldstone bosons from dynamical chiral
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TABLE I. Illustrative selection of DSE results [6, 19, 20, 26]
obtained with the RL kernel employed herein compared with
experimental values [29]. (Dimensioned quantities are listed
in GeV or fm2, as appropriate.)

m⇡ f⇡ mK fK r2⇡ r2K+ g⇡�� r2⇡��

expt. 0.138 0.092 0.496 0.113 0.44 0.34 0.5 0.42
calc. 0.138 0.092 0.497 0.110 0.45 0.38 0.5 0.41

symmetry breaking [24, 25]; and it ensures electromag-
netic current conservation [28]. This kernel is found to be
successful for, amongst other things, light-quark meson
properties [26] including electromagnetic elastic [6, 19]
and transition [20, 21] form factors. The model param-
eters are the two current quark masses and one infrared
strength for ↵e↵(k2). Selected results related to the pion
and kaon are displayed in Table I.

In the evaluation of Eq. (4) we employ the full pseu-
doscalar meson Bethe-Salpeter amplitude

�⇡(`, P ) = �5 [iE⇡(q;P ) + 6PF⇡(q;P )

+ 6q G⇡(q;P ) + �µ⌫qµP⌫H⇡(q;P )] , (5)

where q = `� P/2 is the relative qq̄ momentum appropri-
ate to Eq. (3). For a charge-conjugation eigenstate (e.g.,
the pion), the invariant amplitudes E,F and H are even
in q · P , while G is odd. The kaon invariant amplitudes
contain both even and odd components. We expand the
q ·P dependence in Chebschev polynomials [26], keeping
terms of order n = 0� 3. The domain of `2 over which
the quark propagators are needed in this application is
larger than what is available from previous solutions of
the quark DSE. We therefore adopt a constituent mass
pole approximation for the denominator of the specta-
tor quark propagator [18]. A constituent spectator mass
of 0.4GeV permits a minimal adjustment to establish
the normalization hx0i. We compared the approximation
�n(`;x) ⇡ nµ@S

�1(`)/@`µ �(` · n� xP · n) with the bare
vertex truncation and found that both give essentially
the same distributions after re-enforcing the normaliza-
tion hx0i = 1.

In Fig. 2 we display our DSE result [30] for the va-
lence u-quark distribution evolved to Q

2 = (5.2 GeV)2

in comparison with ⇡N Drell-Yan data [3] at a scale
Q

2 ⇠ (4.05 GeV)2 obtained via a LO analysis. Our dis-
tribution at the model scale Q0 is evolved using leading-
order DGLAP. The model scale is fixed toQ0 = 0.57 GeV
by matching the xn moments for n = 1, 2, 3 to the exper-
imental analysis given at (2GeV)2 [33]. Our momentum
sum rule result 2 hxi = 0.74 (pion), 0.76 (kaon) at Q0

shows clearly the implicit inclusion of gluons as a dy-
namical entity in a true covariant bound-state approach.

In Fig. 2 we also show the result from the first
DSE study [18], which employed phenomenological
parametrizations of the nonperturbative elements. Our
present calculation lies marginally closer to the Drell-Yan
data in Ref. [3] at high-x. However, this is not significant
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Expt NLO analysis 27 GeV2

DSE (Hecht et al.) 27 GeV2

Aicher et al. 27 GeV2

FIG. 2. (Color online) Pion valence quark distribution func-
tion evolved to (5.2 GeV)2. Solid curve – full DSE calculation
[30]; dot-dashed curve – semi-phenomenological DSE-based
calculation in Ref. [18]; filled circles – experimental data from
Ref. [3], at scale (4.05GeV)2; dashed curve – NLO re-analysis
of the experimental data [31]; and dot-dot-dashed curve –
NLO reanalysis of experimental data with inclusion of soft-
gluon resummation [32].

because both DSE results agree with pQCD; viz., u(x) ⇠
(1� x)↵ with ↵ & 2 and growing with increasing scale,
which is not true of the reported Drell-Yan data.
Motivated by this, a NLO reanalysis of the data was

performed [31]; and we also show that result at Q
2 =

(5.2 GeV)2 in Fig. 2. It does clearly reduce the extracted
PDF at high-x but not enough to resolve the data’s ap-
parent discrepency with pQCD behavior, which is dis-
cussed at length in Ref. [5]. The DSE exponents are 2.4
at model scaleQ0 = 0.54GeV in Ref. [18], and 2.1 at scale
Q0 = 0.57GeV for the present study. DSE analyses do
not allow much room for a larger PDF at high-x. A res-
olution of the conflict between data and well-constrained
theory has recently been proposed: a reanalysis of the
original data at NLO with a resummation of soft gluon
processes [32] produces a PDF whose behavior for x > 0.4
is essentially identical to that of the earlier DSE calcula-
tion [18], as is apparent in Fig. 2.
In Fig. 3 we display the first nine moments of our re-

sult for u⇡(x) at scale Q
2 = (5.2 GeV)2 in comparison

with the earlier DSE result from Ref. [18] and the NLO
reanalysis [31] of the original E615 data, all plotted as a
%-deviation from the moments of the most recent anal-
ysis of Ref. [32]. Considering that the high moments are
small, e.g., hx9i ⇠ 0.003, the two DSE results are both
equally well in accord with the recent analysis.

The ratio uK/u⇡ measures the e↵ect of the local
hadronic environment. In the kaon, the u-quark is part-
nered with a heavier partner than in the pion and this
should cause u(x) to peak at lower-x in the kaon. Our
DSE calculation [30] is shown in Fig. 4 along with avail-
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Figure 1: Amplitude-(1) for virtual-photon–pion Compton scattering in RL
truncation is obtained from the sum (A) + (B) − (C). The “dots” in (A) and
(B) indicate summation of infinitely many ladder-like rungs. The other two
amplitudes are obtained as follows: (2) – switch vertices to which q and q′ are
attached; and (3) – switch vertex insertions associated with q′ and P′. The lines
and vertices mean the following: dashed line – pion; undulating line – photon;
spring – interaction-gluon in the RL kernels; solid line – dressed-quark; open-
cross circle – dressed–quark-photon vertex; filled circle – pion Bethe-Salpeter
amplitude. Each of the last three is computed in RL truncation.

Following Ref. [14], it is evident that the virtual Compton
amplitude in RL truncation should be built from permutations
of the three diagrams illustrated in Fig. 1 [15]. This collection
is necessary and sufficient to ensure preservation of the relevant
WGT identities so long as the dressed-quark propagators, pion
Bethe-Salpeter amplitudes and dressed–quark-photon vertices,
appearing in the diagrams, are all computed in RL truncation.
Consider the virtual forward Compton amplitude in the

Bjorken limit. The Amplitude-(3) permutation of the diagrams
in Fig. 1 corresponds to a collection of so-called cat’s ears con-
tributions. They are greatly suppressed compared to the other
two permutations in the Bjorken limit and hence may be ne-
glected. The Amplitude-(2) permutation corresponds simply to
symmetrising the incoming and outgoing photons and so need
not explicitly be considered further. Consequently, one may fo-
cus solely on those diagrams drawn explicitly in Fig. 1.
In the forward and Bjorken limits, Diagram-(A) in Fig. 1 is

the textbook handbag contribution to virtual Compton scatter-
ing, which yields the following piece of the structure function:

qπA(x) = Nctr
∫

dk
δxn(kη) n · γHπ(P, k) , (3)

where Nc = 3 and the trace is over spinor indices;
∫

dk :=
∫

d4k
(2π)4 is a translationally invariant regularisation of the inte-

gral; δxn(kη) := δ(n · kη − xn · P); n is a light-like four-vector,
n2 = 0; P is the pion’s four-momentum, P2 = −m2π and
n · P = −mπ, with mπ being the pion’s mass; and kη = k + ηP,
kη̄ = k − (1 − η)P, η ∈ [0, 1]. Owing to Poincaré covariance,
no observable can legitimately depend on η; i.e., the definition
of the relative momentum. Diagram-(A) is typically the only
contribution retained in computations of the pion’s quark distri-

k−P k−P k−P

k

k

k
k

Figure 2: Left panel – Forward limit of the combination (B) − (C) in Fig. 1.
The figure also exposes the internal structure of the pion’s Bethe-Salpeter am-
plitude obtained in RL-truncation. In the Bjorken limit, the initial/final-state
interactions involve very soft gluons and hence, in combination with the ladder
resummation, produce a contribution that is of the same order as Diagram-(A)
in Fig. 1. Right panel – Imaginary part of the left panel in the Bjorken limit: the
vertex insertion can appear between any two interaction lines. The compound
vertex on the right is readily simplified using the RL Bethe-Salpeter equation.

bution function; e.g., Refs. [16–21].
In RL truncation, Hπ(P, k) is an infinite sum of ladder-like

rungs, as illustrated in Fig. 1, so that one may write [21]

qπA(x) = Nctr
∫

dk
iΓπ(kη,−P)

× S (kη) Γn(k; x) S (kη) iΓπ(kη̄, P) S (kη̄) , (4)
wherein S (k) = Z(k2)/[iγ · k + M(k2)] (5)

is the dressed-quark propagator, Γπ(k, P) is the pion’s Bethe-
Salpeter amplitude, and Γn(k; x) is a generalisation of the quark-
photon vertex, describing a dressed-quark scattering from a
zero momentum photon. It satisfies a RL Bethe-Salpeter equa-
tion with inhomogeneity in · γ δxn(kη) [21].
This treatment of Diagram-(A) is precisely analogous to

the symmetry preserving analysis of the pion’s electromag-
netic form factor (at Q2 = 0) [22]. Equation (4) ensures
∫ 1
0 dx q

π
A(x) = 1 because

∫

dx Γn(ℓ; x) gives the Ward-identity
vertex and the Bethe-Salpeter amplitude is canonically nor-
malised. The minimal Ansatz sufficient to preserve these quali-
ties is Γn(k; x) = δxn(kη) ∂kηS −1(kη), in which case one has

qπA(x) = Nctr
∫

dk
δxn(kη)Γπ(kη,−P)∂kηS (kη)Γπ(kη̄, P) S (kη̄) . (6)

The other two diagrams in Fig. 1 have hitherto been over-
looked. Given that the combination (B) − (C) is crucial if the
WGT identities are to be satisfied in a RL analysis of Compton
scattering, it would seem a mistake to ignore these terms. Let
us therefore consider their content. A first observation is that
(B)0 − (C) = 0; i.e., if one omits all terms from the ladder-
like sum in Diagram-(B), then it is completely cancelled by
Diagram-(C). So, (B) − (C) is a sum of infinitely many ladder-
like rungs, beginning with one rung. This is illustrated in Fig. 2
(left panel), which also exposes the internal structure of the
pion’s RL-truncation Bethe-Salpeter amplitude. Studying this
figure, the nature of the combination (B) − (C) becomes plain;
viz., it expresses a photon being absorbed by a dressed-quark,
which then proceeds to become part of the pion bound-state
before re-emitting the photon. Thinking perturbatively, one
might imagine these processes to represent effects associated
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with initial/final-state interaction corrections to the handbag di-
agram and thus to be suppressed. However, so long as the gluon
exchanges are soft, which is the limit depicted in the left-panel
of Fig. 2, that is not the case because the resummation of ladder-
like rungs is resonant. This contribution is thus of precisely the
same order as that from Diagram-(A) in Fig. 1. In fact, akin to
the final state interactions that produce single spin asymmetries
[23], the contribution we have identified is leading-twist and its
appearance signals failure of the impulse approximation.
To elucidate further, consider the imaginary part of Fig. 2–

left-panel in the Bjorken limit, which produces the leading con-
tribution illustrated in the right panel: the vertex insertion can
appear between any pair of interaction lines. Using the recur-
sive structure of the ladder Bethe-Salpeter kernel and the Ward
identity, which entails that inserting a zero-momentum vector-
probe into a propagator line is equivalent to differentiation of
the propagator, then the compound vertex on the right side of
Fig. 2–right-panel is readily seen to correspond to differentia-
tion of the Bethe-Salpeter amplitude itself with respect to kη.
One thus arrives at the following contribution from (B)− (C) to
the pion’s quark distribution function:

qπBC(x) = Nctr
∫

dk
δxn(kη)∂kηΓπ(kη,−P)S (kη)Γπ(kη̄, P) S (kη̄) . (7)

This expression is nonzero in general. It only vanishes when the
pion’s Bethe-Salpeter amplitude is independent of relative mo-
mentum; i.e., in the class of theories that employ a momentum-
independent interaction, which includes models of the Nambu–
Jona-Lasinio type [24] and DSE-formulated analogues [25].
Adding Eqs. (6) and (7), we have our amended result for the

quark distribution function in RL truncation:

qπL(x) = q
π
A(x) + q

π
BC(x) (8a)

= Nctr
∫

dk
δxn(kη) ∂kη

[

Γπ(kη,−P)S (kη)
]

Γπ(kη̄, P) S (kη̄) , (8b)

where the derivative acts only on the bracketed terms. Equa-
tion (8b) is the minimal expression that retains the contribution
to the quark distribution function from the gluons which bind
dressed-quarks into the pion. It produces results that are inde-
pendent of η; i.e., the definition of the relative momentum.
4. Sketching the dressed-quark PDF. A range of novel in-
sights into the dressed-quark structure of the pion can be ob-
tained by using [26], with ∆M(s) = 1/[s + M2],

S (k) = [−iγ · k + M]∆M(k2) , (9a)

ρν(z) =
1
√
π

Γ(v + 3/2)
Γ(ν + 1)

(1 − z2)ν , (9b)

nπΓπ(k; P) = iγ5
∫ 1

−1
dz ρν(z) ∆̂νM(k

2
+z) , (9c)

where M is a dressed-quark mass-scale; ∆̂M(s) = M2∆M(s);
k+z = k + zP/2 and we work in the chiral limit (P2 = 0); and nπ
is the Bethe-Salpeter amplitude’s normalisation constant.
To frame the analysis, one may begin by considering the

pion’s valence-quark parton distribution amplitude (PDA):

fπ ϕπ(x) = Nctr
∫

dk
δxn(kη) γ5γ · n χπ(k; P) , (10)

where χπ(k; P) = S (kη)Γπ(k; P)S (qη̄) is the pion’s Bethe-
Salpeter wave function and fπ is its leptonic decay constant.
A QCD-like theory corresponds to ν = 1 in Eq. (9c), in which
case Eq. (10) yields [26]: fπnπ = NcM/(8π2); and

ϕπ(x) = 6x(1 − x) =: ϕasy(x) , (11)

i.e., the PDA appropriate to QCD’s conformal limit [27–29].
Now consider qπA(x) in Eq. (6), which was hitherto the only

contribution retained in evaluating the pion’s dressed-quark dis-
tribution function. There are numerous ways to evaluate the in-
tegrals that arise after inserting Eqs. (9). The simplest, perhaps,
is to work with η = 0, and use light-front coordinates and the
residue theorem, thereby obtaining

qπA(x) = nq
[

x3(x[−2(x − 4)x − 15] + 30) ln(x) + (2x2 + 3)

×(x − 1)4 ln(1 − x) + x[x(x[2x − 5] − 15) − 3](x − 1)
]

, (12)

where nq = 9/(20π2n2π ). The result is independent of η, as one
may establish by direct computation, and the x-dependence is
independent of M, the defining mass-scale in Eqs. (9). [Eq. (12)
has also been obtained via analysis of the pion’s generalised
parton distribution beginning with Eqs. (9) [30].]
Computation of qπBC(x) in Eq. (7) can similarly be completed:

qπBC(x) = nq
[

x3(2x([x − 3]x + 5) − 15) ln(x) − (2x3 + 4x + 9)

×(x − 1)3 ln(1 − x) − x(2x − 1)([x − 1]x − 9)(x − 1)
]

. (13)

The result is plainly nonzero; and it is also independent of η
and M. Given that this term was previously omitted, one must
enquire into its importance. The first thing to observe is

∫ 1
0 dx q

π
BC(x) = 0 , (14)

so qπBC(x) doesn’t contribute net baryon number to the PDF. One
might have anticipated this from Fig. 2 (right panel), which de-
scribes qπBC(x) as adding momentum from the binding gluons.
In connection with baryon number then, only qπA(x) can con-

tribute; and, as noted above, in a symmetry preserving analy-
sis the normalisation of the Bethe-Salpeter amplitude ensures
that the pion charge form factor is unity at Q2 = 0 [31]. This
condition is algebraically equivalent to

∫ 1
0 dx q

π
A(x) = 1, so that

Eqs. (9) are completedwith n2π = 5/(32π2). [A notion of scale is
provided by the observation that r2π = 162/(125M2) and hence
M = 0.33GeV yields the empirical value [32] rπ = 0.67 fm.]
One is now in a position to consider the momentum sum rule;

namely, to compute the light-front momentum fraction carried
by the pion’s dressed-quark in RL truncation:

⟨x⟩πq =
∫ 1

0
dx
[

x qπA(x) + x q
π
BC(x)

]

=
117
250
+

8
250
=
1
2
; (15)

viz., the dressed-quark and -antiquark each carry half the pion’s
momentum but that is only true after the leading contributions
from all diagrams in Fig. 1 are summed.
Another important feature is hidden in Eq. (15); namely, as

illustrated in Fig. 3, including qπBC(x) produces a symmetric

3

The	hadronic	tensor	relevant	to	inclusive	deep	inelastic	lepton-pion	scattering	may	be	
expressed	in	terms	of	two	invariant	structure	functions.	In	the	deep-inelastic	Bjorken	limit	
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Abstract Preprint no. ADP-14-20/T878
The impulse-approximation expression used hitherto to define the pion’s valence-quark distribution function is flawed because it
omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-
independent result that quarks dressed via the rainbow-ladder truncation, or any practical analogue, carry all the pion’s light-front
momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible
for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic
model to express the principal impact of both classes of corrections. This enables a realistic comparison with experiment that allows
us to highlight the basic features of the pion’s measurable valence-quark distribution, qπ(x); namely, at a characteristic hadronic
scale, qπ(x) ∼ (1 − x)2 for x ! 0.85; and the valence-quarks carry approximately two-thirds of the pion’s light-front momentum.
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1. Introduction. With the advent of the constituent-quark
model, the pion came to be considered as a two-body problem.
This perception continued into the era of quantum chromody-
namics (QCD), with the pion being viewed as the simplest ac-
cessible manifestation of QCD dynamics and therefore the nat-
ural testing ground for theoretical methods that aim to elucidate
a wide range of QCD phenomena. Growing in parallel was an
appreciation that the pion occupies a special place in nuclear
and particle physics; viz., as the archetype for meson-exchange
forces, and hence plays a critical role as an elementary field
in the nuclear structure Hamiltonian [1, 2]. These conflicting
views are reconciled in the modern paradigm [3], which simul-
taneously describes the pion as a conventional bound-state in
quantum field theory and the Goldstone mode associated with
dynamical chiral symmetry breaking (DCSB). This dichotomy
entails that fine tuning cannot play any role in a veracious expla-
nation of pion properties and ensures that elucidating the nature
of its parton content is critical to any understanding of QCD.

One of the earliest predictions of the QCD parton model was
the behaviour of the pion’s valence-quark distribution function
at large Bjorken-x [4, 5]: qπ(x) ∼ (1 − x)2. Owing to the va-
lidity of factorisation in QCD, qπ(x) is directly measurable in
πN Drell-Yan experiments. However, as described elsewhere
[6], conclusions drawn from a leading-order analysis of these
experiments proved controversial, producing [7] qπ(x) ∼ (1− x)
and thus an apparent disagreement with QCD. We address this
issue herein by first correcting a commonly used expression for
the valence-quark distribution function and then illustrating its
consequences with an algebraic model that incorporates salient
features of QCD.

2. Quark distribution function in the pion. The hadronic
tensor relevant to inclusive deep inelastic lepton-pion scattering
may be expressed in terms of two invariant structure functions
[8]. In the deep-inelastic Bjorken limit [9]: q2 → ∞, P · q →
−∞ but x := −q2/[2P ·q] fixed, that tensor can be written (tµν =
δµν − qµqν/q2, P t

µ = tµνPν)

Wµν(q; P) = F1(x) tµν −
F2(x)
P · q

P t
µP

t
ν , F2(x) = 2xF1(x) . (1)

F1(x) is the pion structure function, which provides access to
the pion’s quark distribution functions:

F1(x) =
∑

q∈π
e2
q qπ(x) , (2)

where eq is the quark’s electric charge. The sum in Eq. (2) runs
over all quark flavours; but in the π+ it is naturally dominated
by u(x), d̄(x). Moreover, in the G -parity symmetric limit, which
we employ throughout, u(x) = d̄(x). [Importantly, Bjorken-x is
equivalent to the light-front momentum fraction of the struck
parton.] The structure function may be computed from the
imaginary part of the virtual-photon–pion forward Compton
scattering amplitude: γ(q) + π(P)→ γ(q) + π(P).
3. Rainbow-ladder truncation. Herein we analyse qπ(x) in
Eq. (2) within the context of the rainbow-ladder (RL) trunca-
tion of QCD’s Dyson-Schwinger equations [10]. That trunca-
tion is the leading-order term in a symmetry-preserving scheme
[11–13] which is accurate for, amongst other systems, isospin-
nonzero-pseudoscalar-mesons because corrections in this chan-
nel largely cancel owing to parameter-free preservation of the
Ward-Green-Takahashi (WGT) identities.
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1. Introduction. With the advent of the constituent-quark
model, the pion came to be considered as a two-body problem.
This perception continued into the era of quantum chromody-
namics (QCD), with the pion being viewed as the simplest ac-
cessible manifestation of QCD dynamics and therefore the nat-
ural testing ground for theoretical methods that aim to elucidate
a wide range of QCD phenomena. Growing in parallel was an
appreciation that the pion occupies a special place in nuclear
and particle physics; viz., as the archetype for meson-exchange
forces, and hence plays a critical role as an elementary field
in the nuclear structure Hamiltonian [1, 2]. These conflicting
views are reconciled in the modern paradigm [3], which simul-
taneously describes the pion as a conventional bound-state in
quantum field theory and the Goldstone mode associated with
dynamical chiral symmetry breaking (DCSB). This dichotomy
entails that fine tuning cannot play any role in a veracious expla-
nation of pion properties and ensures that elucidating the nature
of its parton content is critical to any understanding of QCD.

One of the earliest predictions of the QCD parton model was
the behaviour of the pion’s valence-quark distribution function
at large Bjorken-x [4, 5]: qπ(x) ∼ (1 − x)2. Owing to the va-
lidity of factorisation in QCD, qπ(x) is directly measurable in
πN Drell-Yan experiments. However, as described elsewhere
[6], conclusions drawn from a leading-order analysis of these
experiments proved controversial, producing [7] qπ(x) ∼ (1− x)
and thus an apparent disagreement with QCD. We address this
issue herein by first correcting a commonly used expression for
the valence-quark distribution function and then illustrating its
consequences with an algebraic model that incorporates salient
features of QCD.

2. Quark distribution function in the pion. The hadronic
tensor relevant to inclusive deep inelastic lepton-pion scattering
may be expressed in terms of two invariant structure functions
[8]. In the deep-inelastic Bjorken limit [9]: q2 → ∞, P · q →
−∞ but x := −q2/[2P ·q] fixed, that tensor can be written (tµν =
δµν − qµqν/q2, P t

µ = tµνPν)

Wµν(q; P) = F1(x) tµν −
F2(x)
P · q

P t
µP

t
ν , F2(x) = 2xF1(x) . (1)

F1(x) is the pion structure function, which provides access to
the pion’s quark distribution functions:

F1(x) =
∑

q∈π
e2
q qπ(x) , (2)

where eq is the quark’s electric charge. The sum in Eq. (2) runs
over all quark flavours; but in the π+ it is naturally dominated
by u(x), d̄(x). Moreover, in the G -parity symmetric limit, which
we employ throughout, u(x) = d̄(x). [Importantly, Bjorken-x is
equivalent to the light-front momentum fraction of the struck
parton.] The structure function may be computed from the
imaginary part of the virtual-photon–pion forward Compton
scattering amplitude: γ(q) + π(P)→ γ(q) + π(P).
3. Rainbow-ladder truncation. Herein we analyse qπ(x) in
Eq. (2) within the context of the rainbow-ladder (RL) trunca-
tion of QCD’s Dyson-Schwinger equations [10]. That trunca-
tion is the leading-order term in a symmetry-preserving scheme
[11–13] which is accurate for, amongst other systems, isospin-
nonzero-pseudoscalar-mesons because corrections in this chan-
nel largely cancel owing to parameter-free preservation of the
Ward-Green-Takahashi (WGT) identities.

Preprint submitted to Physics Letters B 18 June 2014Figure 1: Amplitude-(1) for virtual-photon–pion Compton scattering in RL
truncation is obtained from the sum (A) + (B) − (C). The “dots” in (A) and
(B) indicate summation of infinitely many ladder-like rungs. The other two
amplitudes are obtained as follows: (2) – switch vertices to which q and q′ are
attached; and (3) – switch vertex insertions associated with q′ and P′. The lines
and vertices mean the following: dashed line – pion; undulating line – photon;
spring – interaction-gluon in the RL kernels; solid line – dressed-quark; open-
cross circle – dressed–quark-photon vertex; filled circle – pion Bethe-Salpeter
amplitude. Each of the last three is computed in RL truncation.

Following Ref. [14], it is evident that the virtual Compton
amplitude in RL truncation should be built from permutations
of the three diagrams illustrated in Fig. 1 [15]. This collection
is necessary and sufficient to ensure preservation of the relevant
WGT identities so long as the dressed-quark propagators, pion
Bethe-Salpeter amplitudes and dressed–quark-photon vertices,
appearing in the diagrams, are all computed in RL truncation.
Consider the virtual forward Compton amplitude in the

Bjorken limit. The Amplitude-(3) permutation of the diagrams
in Fig. 1 corresponds to a collection of so-called cat’s ears con-
tributions. They are greatly suppressed compared to the other
two permutations in the Bjorken limit and hence may be ne-
glected. The Amplitude-(2) permutation corresponds simply to
symmetrising the incoming and outgoing photons and so need
not explicitly be considered further. Consequently, one may fo-
cus solely on those diagrams drawn explicitly in Fig. 1.
In the forward and Bjorken limits, Diagram-(A) in Fig. 1 is

the textbook handbag contribution to virtual Compton scatter-
ing, which yields the following piece of the structure function:

qπA(x) = Nctr
∫

dk
δxn(kη) n · γHπ(P, k) , (3)

where Nc = 3 and the trace is over spinor indices;
∫

dk :=
∫

d4k
(2π)4 is a translationally invariant regularisation of the inte-

gral; δxn(kη) := δ(n · kη − xn · P); n is a light-like four-vector,
n2 = 0; P is the pion’s four-momentum, P2 = −m2π and
n · P = −mπ, with mπ being the pion’s mass; and kη = k + ηP,
kη̄ = k − (1 − η)P, η ∈ [0, 1]. Owing to Poincaré covariance,
no observable can legitimately depend on η; i.e., the definition
of the relative momentum. Diagram-(A) is typically the only
contribution retained in computations of the pion’s quark distri-
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Figure 2: Left panel – Forward limit of the combination (B) − (C) in Fig. 1.
The figure also exposes the internal structure of the pion’s Bethe-Salpeter am-
plitude obtained in RL-truncation. In the Bjorken limit, the initial/final-state
interactions involve very soft gluons and hence, in combination with the ladder
resummation, produce a contribution that is of the same order as Diagram-(A)
in Fig. 1. Right panel – Imaginary part of the left panel in the Bjorken limit: the
vertex insertion can appear between any two interaction lines. The compound
vertex on the right is readily simplified using the RL Bethe-Salpeter equation.

bution function; e.g., Refs. [16–21].
In RL truncation, Hπ(P, k) is an infinite sum of ladder-like

rungs, as illustrated in Fig. 1, so that one may write [21]

qπA(x) = Nctr
∫

dk
iΓπ(kη,−P)

× S (kη) Γn(k; x) S (kη) iΓπ(kη̄, P) S (kη̄) , (4)
wherein S (k) = Z(k2)/[iγ · k + M(k2)] (5)

is the dressed-quark propagator, Γπ(k, P) is the pion’s Bethe-
Salpeter amplitude, and Γn(k; x) is a generalisation of the quark-
photon vertex, describing a dressed-quark scattering from a
zero momentum photon. It satisfies a RL Bethe-Salpeter equa-
tion with inhomogeneity in · γ δxn(kη) [21].
This treatment of Diagram-(A) is precisely analogous to

the symmetry preserving analysis of the pion’s electromag-
netic form factor (at Q2 = 0) [22]. Equation (4) ensures
∫ 1
0 dx q

π
A(x) = 1 because

∫

dx Γn(ℓ; x) gives the Ward-identity
vertex and the Bethe-Salpeter amplitude is canonically nor-
malised. The minimal Ansatz sufficient to preserve these quali-
ties is Γn(k; x) = δxn(kη) ∂kηS −1(kη), in which case one has

qπA(x) = Nctr
∫

dk
δxn(kη)Γπ(kη,−P)∂kηS (kη)Γπ(kη̄, P) S (kη̄) . (6)

The other two diagrams in Fig. 1 have hitherto been over-
looked. Given that the combination (B) − (C) is crucial if the
WGT identities are to be satisfied in a RL analysis of Compton
scattering, it would seem a mistake to ignore these terms. Let
us therefore consider their content. A first observation is that
(B)0 − (C) = 0; i.e., if one omits all terms from the ladder-
like sum in Diagram-(B), then it is completely cancelled by
Diagram-(C). So, (B) − (C) is a sum of infinitely many ladder-
like rungs, beginning with one rung. This is illustrated in Fig. 2
(left panel), which also exposes the internal structure of the
pion’s RL-truncation Bethe-Salpeter amplitude. Studying this
figure, the nature of the combination (B) − (C) becomes plain;
viz., it expresses a photon being absorbed by a dressed-quark,
which then proceeds to become part of the pion bound-state
before re-emitting the photon. Thinking perturbatively, one
might imagine these processes to represent effects associated
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Following Ref. [14], it is evident that the virtual Compton
amplitude in RL truncation should be built from permutations
of the three diagrams illustrated in Fig. 1 [15]. This collection
is necessary and sufficient to ensure preservation of the relevant
WGT identities so long as the dressed-quark propagators, pion
Bethe-Salpeter amplitudes and dressed–quark-photon vertices,
appearing in the diagrams, are all computed in RL truncation.
Consider the virtual forward Compton amplitude in the

Bjorken limit. The Amplitude-(3) permutation of the diagrams
in Fig. 1 corresponds to a collection of so-called cat’s ears con-
tributions. They are greatly suppressed compared to the other
two permutations in the Bjorken limit and hence may be ne-
glected. The Amplitude-(2) permutation corresponds simply to
symmetrising the incoming and outgoing photons and so need
not explicitly be considered further. Consequently, one may fo-
cus solely on those diagrams drawn explicitly in Fig. 1.
In the forward and Bjorken limits, Diagram-(A) in Fig. 1 is

the textbook handbag contribution to virtual Compton scatter-
ing, which yields the following piece of the structure function:

qπA(x) = Nctr
∫

dk
δxn(kη) n · γHπ(P, k) , (3)

where Nc = 3 and the trace is over spinor indices;
∫

dk :=
∫

d4k
(2π)4 is a translationally invariant regularisation of the inte-

gral; δxn(kη) := δ(n · kη − xn · P); n is a light-like four-vector,
n2 = 0; P is the pion’s four-momentum, P2 = −m2π and
n · P = −mπ, with mπ being the pion’s mass; and kη = k + ηP,
kη̄ = k − (1 − η)P, η ∈ [0, 1]. Owing to Poincaré covariance,
no observable can legitimately depend on η; i.e., the definition
of the relative momentum. Diagram-(A) is typically the only
contribution retained in computations of the pion’s quark distri-

k−P k−P k−P

k

k

k
k

Figure 2: Left panel – Forward limit of the combination (B) − (C) in Fig. 1.
The figure also exposes the internal structure of the pion’s Bethe-Salpeter am-
plitude obtained in RL-truncation. In the Bjorken limit, the initial/final-state
interactions involve very soft gluons and hence, in combination with the ladder
resummation, produce a contribution that is of the same order as Diagram-(A)
in Fig. 1. Right panel – Imaginary part of the left panel in the Bjorken limit: the
vertex insertion can appear between any two interaction lines. The compound
vertex on the right is readily simplified using the RL Bethe-Salpeter equation.

bution function; e.g., Refs. [16–21].
In RL truncation, Hπ(P, k) is an infinite sum of ladder-like

rungs, as illustrated in Fig. 1, so that one may write [21]

qπA(x) = Nctr
∫

dk
iΓπ(kη,−P)

× S (kη) Γn(k; x) S (kη) iΓπ(kη̄, P) S (kη̄) , (4)
wherein S (k) = Z(k2)/[iγ · k + M(k2)] (5)

is the dressed-quark propagator, Γπ(k, P) is the pion’s Bethe-
Salpeter amplitude, and Γn(k; x) is a generalisation of the quark-
photon vertex, describing a dressed-quark scattering from a
zero momentum photon. It satisfies a RL Bethe-Salpeter equa-
tion with inhomogeneity in · γ δxn(kη) [21].
This treatment of Diagram-(A) is precisely analogous to

the symmetry preserving analysis of the pion’s electromag-
netic form factor (at Q2 = 0) [22]. Equation (4) ensures
∫ 1
0 dx q

π
A(x) = 1 because

∫

dx Γn(ℓ; x) gives the Ward-identity
vertex and the Bethe-Salpeter amplitude is canonically nor-
malised. The minimal Ansatz sufficient to preserve these quali-
ties is Γn(k; x) = δxn(kη) ∂kηS −1(kη), in which case one has

qπA(x) = Nctr
∫

dk
δxn(kη)Γπ(kη,−P)∂kηS (kη)Γπ(kη̄, P) S (kη̄) . (6)

The other two diagrams in Fig. 1 have hitherto been over-
looked. Given that the combination (B) − (C) is crucial if the
WGT identities are to be satisfied in a RL analysis of Compton
scattering, it would seem a mistake to ignore these terms. Let
us therefore consider their content. A first observation is that
(B)0 − (C) = 0; i.e., if one omits all terms from the ladder-
like sum in Diagram-(B), then it is completely cancelled by
Diagram-(C). So, (B) − (C) is a sum of infinitely many ladder-
like rungs, beginning with one rung. This is illustrated in Fig. 2
(left panel), which also exposes the internal structure of the
pion’s RL-truncation Bethe-Salpeter amplitude. Studying this
figure, the nature of the combination (B) − (C) becomes plain;
viz., it expresses a photon being absorbed by a dressed-quark,
which then proceeds to become part of the pion bound-state
before re-emitting the photon. Thinking perturbatively, one
might imagine these processes to represent effects associated
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Abstract Preprint no. ADP-14-20/T878
The impulse-approximation expression used hitherto to define the pion’s valence-quark distribution function is flawed because it
omits contributions from the gluons which bind quarks into the pion. A corrected leading-order expression produces the model-
independent result that quarks dressed via the rainbow-ladder truncation, or any practical analogue, carry all the pion’s light-front
momentum at a characteristic hadronic scale. Corrections to the leading contribution may be divided into two classes, responsible
for shifting dressed-quark momentum into glue and sea-quarks. Working with available empirical information, we use an algebraic
model to express the principal impact of both classes of corrections. This enables a realistic comparison with experiment that allows
us to highlight the basic features of the pion’s measurable valence-quark distribution, qπ(x); namely, at a characteristic hadronic
scale, qπ(x) ∼ (1 − x)2 for x ! 0.85; and the valence-quarks carry approximately two-thirds of the pion’s light-front momentum.
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π-meson, parton distribution functions

1. Introduction. With the advent of the constituent-quark
model, the pion came to be considered as a two-body problem.
This perception continued into the era of quantum chromody-
namics (QCD), with the pion being viewed as the simplest ac-
cessible manifestation of QCD dynamics and therefore the nat-
ural testing ground for theoretical methods that aim to elucidate
a wide range of QCD phenomena. Growing in parallel was an
appreciation that the pion occupies a special place in nuclear
and particle physics; viz., as the archetype for meson-exchange
forces, and hence plays a critical role as an elementary field
in the nuclear structure Hamiltonian [1, 2]. These conflicting
views are reconciled in the modern paradigm [3], which simul-
taneously describes the pion as a conventional bound-state in
quantum field theory and the Goldstone mode associated with
dynamical chiral symmetry breaking (DCSB). This dichotomy
entails that fine tuning cannot play any role in a veracious expla-
nation of pion properties and ensures that elucidating the nature
of its parton content is critical to any understanding of QCD.

One of the earliest predictions of the QCD parton model was
the behaviour of the pion’s valence-quark distribution function
at large Bjorken-x [4, 5]: qπ(x) ∼ (1 − x)2. Owing to the va-
lidity of factorisation in QCD, qπ(x) is directly measurable in
πN Drell-Yan experiments. However, as described elsewhere
[6], conclusions drawn from a leading-order analysis of these
experiments proved controversial, producing [7] qπ(x) ∼ (1− x)
and thus an apparent disagreement with QCD. We address this
issue herein by first correcting a commonly used expression for
the valence-quark distribution function and then illustrating its
consequences with an algebraic model that incorporates salient
features of QCD.

2. Quark distribution function in the pion. The hadronic
tensor relevant to inclusive deep inelastic lepton-pion scattering
may be expressed in terms of two invariant structure functions
[8]. In the deep-inelastic Bjorken limit [9]: q2 → ∞, P · q →
−∞ but x := −q2/[2P ·q] fixed, that tensor can be written (tµν =
δµν − qµqν/q2, P t

µ = tµνPν)

Wµν(q; P) = F1(x) tµν −
F2(x)
P · q

P t
µP

t
ν , F2(x) = 2xF1(x) . (1)

F1(x) is the pion structure function, which provides access to
the pion’s quark distribution functions:

F1(x) =
∑

q∈π
e2
q qπ(x) , (2)

where eq is the quark’s electric charge. The sum in Eq. (2) runs
over all quark flavours; but in the π+ it is naturally dominated
by u(x), d̄(x). Moreover, in the G -parity symmetric limit, which
we employ throughout, u(x) = d̄(x). [Importantly, Bjorken-x is
equivalent to the light-front momentum fraction of the struck
parton.] The structure function may be computed from the
imaginary part of the virtual-photon–pion forward Compton
scattering amplitude: γ(q) + π(P)→ γ(q) + π(P).
3. Rainbow-ladder truncation. Herein we analyse qπ(x) in
Eq. (2) within the context of the rainbow-ladder (RL) trunca-
tion of QCD’s Dyson-Schwinger equations [10]. That trunca-
tion is the leading-order term in a symmetry-preserving scheme
[11–13] which is accurate for, amongst other systems, isospin-
nonzero-pseudoscalar-mesons because corrections in this chan-
nel largely cancel owing to parameter-free preservation of the
Ward-Green-Takahashi (WGT) identities.
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1. Introduction. With the advent of the constituent-quark
model, the pion came to be considered as a two-body problem.
This perception continued into the era of quantum chromody-
namics (QCD), with the pion being viewed as the simplest ac-
cessible manifestation of QCD dynamics and therefore the nat-
ural testing ground for theoretical methods that aim to elucidate
a wide range of QCD phenomena. Growing in parallel was an
appreciation that the pion occupies a special place in nuclear
and particle physics; viz., as the archetype for meson-exchange
forces, and hence plays a critical role as an elementary field
in the nuclear structure Hamiltonian [1, 2]. These conflicting
views are reconciled in the modern paradigm [3], which simul-
taneously describes the pion as a conventional bound-state in
quantum field theory and the Goldstone mode associated with
dynamical chiral symmetry breaking (DCSB). This dichotomy
entails that fine tuning cannot play any role in a veracious expla-
nation of pion properties and ensures that elucidating the nature
of its parton content is critical to any understanding of QCD.

One of the earliest predictions of the QCD parton model was
the behaviour of the pion’s valence-quark distribution function
at large Bjorken-x [4, 5]: qπ(x) ∼ (1 − x)2. Owing to the va-
lidity of factorisation in QCD, qπ(x) is directly measurable in
πN Drell-Yan experiments. However, as described elsewhere
[6], conclusions drawn from a leading-order analysis of these
experiments proved controversial, producing [7] qπ(x) ∼ (1− x)
and thus an apparent disagreement with QCD. We address this
issue herein by first correcting a commonly used expression for
the valence-quark distribution function and then illustrating its
consequences with an algebraic model that incorporates salient
features of QCD.

2. Quark distribution function in the pion. The hadronic
tensor relevant to inclusive deep inelastic lepton-pion scattering
may be expressed in terms of two invariant structure functions
[8]. In the deep-inelastic Bjorken limit [9]: q2 → ∞, P · q →
−∞ but x := −q2/[2P ·q] fixed, that tensor can be written (tµν =
δµν − qµqν/q2, P t

µ = tµνPν)

Wµν(q; P) = F1(x) tµν −
F2(x)
P · q

P t
µP

t
ν , F2(x) = 2xF1(x) . (1)

F1(x) is the pion structure function, which provides access to
the pion’s quark distribution functions:

F1(x) =
∑

q∈π
e2
q qπ(x) , (2)

where eq is the quark’s electric charge. The sum in Eq. (2) runs
over all quark flavours; but in the π+ it is naturally dominated
by u(x), d̄(x). Moreover, in the G -parity symmetric limit, which
we employ throughout, u(x) = d̄(x). [Importantly, Bjorken-x is
equivalent to the light-front momentum fraction of the struck
parton.] The structure function may be computed from the
imaginary part of the virtual-photon–pion forward Compton
scattering amplitude: γ(q) + π(P)→ γ(q) + π(P).
3. Rainbow-ladder truncation. Herein we analyse qπ(x) in
Eq. (2) within the context of the rainbow-ladder (RL) trunca-
tion of QCD’s Dyson-Schwinger equations [10]. That trunca-
tion is the leading-order term in a symmetry-preserving scheme
[11–13] which is accurate for, amongst other systems, isospin-
nonzero-pseudoscalar-mesons because corrections in this chan-
nel largely cancel owing to parameter-free preservation of the
Ward-Green-Takahashi (WGT) identities.
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n ! ñ (18)

2

�
(2)(x) = 6x(1� x) (11)

!
(3)(x) = 1 (12)

v
(3)(x) = 6x(1� x) (13)

⇢(z) =
d!(z)

dz
(14)

!I(z) =
1

2

✓
1

1 + e
�z+z0

t

�
1

1 + e
z+z0

t

◆
(15)

!II(z) =
1

⇡
ArcSin[z] (16)

q(x) = Nctr

Z

dk

�
x
n(k⌘)n · @k⌘ [�⇡(k⌘,�P )S(k⌘)]�⇡(k⌘̄, P )S(k⌘̄) (17)

n ! ñ (18)
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ñ(k⌘)ñ · @k⌘ [�⇡(k⌘,�P )S(k⌘)]�⇡(k⌘̄, P )S(k⌘̄) (19)

2

6

FIG. 5. '̃K�(x) � '̃K+(x), computed with Pz/GeV = 1
(short-dashed, red), 1.75 (dashed, purple), 2.4 (dot-dashed,
blue), 3.0 (solid, green). The dotted (black) curve is the result
obtained with the objectiveK± PDAs; the long-dashed (slate-
blue) curve is the function �M (x) in Eqs. (20); and the thin
vertical lines at x = 0, 1 highlight the boundaries of support
for a physical PDA.

The comparison of �M (x) with ['̃K�(x)� '̃K+(x)] high-
lights that the scale of flavour-symmetry breaking in
the kaon distribution amplitudes measures di↵erences
between the emergent masses of s- and u-quarks in
the Standard Model. The analogue of Eq. (20a) pro-
duced using Higgs-generated current-masses is an order-
of-magnitude too large at the qPDAs’ extrema.

IV. QUASI PARTON DISTRIBUTION
FUNCTIONS

A. Algebraic Analysis: qPDFs

In describing valence-dressed-quark parton distribu-
tion functions at an hadronic scale, ⇣H , the impulse-
approximation (handbag diagram) is inadequate be-
cause it omits contributions from the gluons which bind
valence-quarks into a hadron. A remedy for this flaw is
described and used to compute pion and kaon valence-
quark distribution functions in Refs. [21, 25]. Using the
kaon as an illustration:

u
K

V
(x) = trCD

Z

dk

�
x

n
(PK)

⇥ [n · @kHu(k;PK)]Hs(k;PK) , (21a)

s
K

V
(x) = u

K

V
(1� x) , (21b)

where n · @k = nµ(@/@kµ),

Hu(k;PK) = �̄K(kK� ;�PK)Su(k) , (22a)

Hs(k;PK) = �K(kK� ;PK)Ss(k � PK) , (22b)

with �̄(kK� , PK) = C
†�̄(�k

K

� , PK)TC, where C is the
charge conjugation matrix and (·)T denotes a transposed

matrix. Expressions for analogous distributions in the ⇡

are obtained by changing s ! d.
Canonical normalisation of the kaon’s Bethe-Salpeter

amplitudes ensures
Z 1

0
dxu

K

V
(x) = 1 =

Z 1

0
dx s

K

V
(x) . (23)

Consequently, using Eq. (21b), one finds immediately:

1 =

Z 1

0
dx x[uK

V
(x) + s

K

V
(x)] . (24)

In obtaining these results, one must use mathemati-
cal features of the matrix trace, properties of propaga-
tors and Bethe-Salpeter amplitudes under charge conju-
gation, and the following identity: for n2 = 0,

0 = trCD

Z

dk

�
x

n
(PK)n · @k[Hu(k;PK)Hs(k;PK)] . (25)

Arriving at a quasi-PDF extension of Eqs. (21) is al-
most as straightforward as making the transition from
PDAs to qPDAs, described in Sec. (III A): one has

ũ
K

V
(x) = trCD

Z

dk

�
x

ñ
(PK)

⇥ [ñ · @kHu(k;PK)]Hs(k;PK)� S(x) , (26a)

s̃
K

V
(x) = ũ

K

V
(1� x) , (26b)

S(x) = 1
2 trCD

Z

dk

�
x

ñ
(PK)

⇥ ñ · @k[Hu(k;PK)Hs(k;PK)] . (26c)

Analogous to the procedure in Sec. (III A), the primary
step is simply n ! ñ in the PDF formulae. However,
the correction term, S(x), is also needed. Its presence
is suggested by the role of Eq. (25) in ensuring momen-
tum conservation; and it guarantees, inter alia, Eq. (26b).
Once again, analogous distributions in the ⇡ are obtained
by replacing s ! d.
Using Eqs. (26), one may readily establish

Z 1

�1
dx̃ ũ

K

V
(x̃) =

Z 1

0
dxu

K

V
(x) = 1 , (27a)

Z 1

�1
dx̃ s̃

K

V
(x̃) =

Z 1

0
dx s

K

V
(x) = 1 , (27b)

Z 1
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dx̃ x̃[ũK

V
(x̃) + s̃

K

V
(x̃)]

=

Z 1

0
dx x[uK

V
(x) + s

K

V
(x)] = 1 . (27c)

Evidently, Eqs. (26) define purely valence quark quasidis-
tributions.

B. Numerical Illustrations: qPDFs

We now use Eqs. (1), (14), (17), (21) to compute the
pion and kaon qPDFs. The calculation is straightfor-
ward, following the pattern in Sec. 1: one uses Feynman
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FIG. 6. Upper panel – Pion’s dressed-valence u-quark quasi-
PDF at the hadronic scale, computed with Pz/GeV = 1
(short-dashed, red), 1.75 (dashed, purple), 2.4 (dot-dashed,
blue), 3.0 (solid, green). Lower panel – Same for kaon. The
dotted (black) curve in both panels is the associated objective
PDF, computed using Eqs. (1), (14), (17), (21); and the thin
vertical lines at x = 0, 1 highlight the boundaries of support
for a physical valence-quark PDF.

parametrisation to combine denominator products into a
single quadratic form, Cauchy’s theorem to evaluate the
k4 integral, direct evaluation for

R
d
2
k?, and finally nu-

merical integration over the Feynman parameters. The
results are depicted in Fig. 6. (The objective PDFs were
obtained using the approach described in Ref. [25] and
checked using the overlap representation [51].)

A cursory comparison between Figs. 4 and 6 reveals
that a valence-quark qPDF is typically a better approxi-
mation to the objective result than a qPDA at any given
value of Pz. Looking closer at the pion (Fig. 6, upper
panel), the L1-di↵erences are 19% (Pz = 1GeV), 9%
(Pz = 1.75GeV), 5% (Pz = 2.4GeV), 4% (Pz = 3GeV).
This series indicates that even with Pz = 1GeV, the
pion’s valence-quark qPDF delivers a qualitatively sound
approximation to the true result; and the step to Pz =
1.75GeV brings noticeable improvement; but, as with
the qPDAs, improvement is slow on Pz > 1.75GeV.

Similar, too, is the pointwise behaviour of the valence-

FIG. 7. Pion qPDFs on x > 0.7, i.e. a valence-quark domain:
Pz/GeV = 1.75 (dashed, purple), 3.0 (solid, green). Dotted
(black) curve, objective PDF, u⇡

V (x), whose large-x behaviour
is given in Eq. (29); dot-dash-dashed (brown) curve, rhs of
Eq. (29); and dot-dot-dashed (orange) curve, a PDF that is
pointwise near-equivalent to u⇡

V (x), but which is / (1 � x)1

at large x. (The thin vertical line at x = 1 marks the upper
bound on the domain of support for a physical valence-quark
PDF.)

quark qPDFs in the neighbourhood of the endpoints: as
with the qPDAs, the qPDFs leak significantly from the
domain 0 < x < 1. This is important because one of
the earliest predictions of the QCD parton model, aug-
mented by features of perturbative QCD (pQCD), is that
the valence-quark distribution function in a pseudoscalar
meson behaves as follows [52–57]:

q
G

V
(x; ⇣H)

large x⇠ (1� x)2+�
, (28)

where � & 0 is an anomalous dimension. Verification of
Eq. (28) is an important milestone on the path toward
confirmation of QCD as the theory of strong interac-
tions [5]. In this connection we recall that Ref. [58] (the
E615 experiment) reported a pion valence-quark PDF ob-
tained via a leading-order pQCD analysis of their data,
viz. u

⇡

V
(x) ⇠ (1 � x), seemingly a marked contradic-

tion of Eq. (28). Subsequent computations using con-
tinuum methods appropriate to QCD bound-states [59]
confirmed Eq. (28) and eventually prompted reconsider-
ation of the E615 analysis, with the result that at next-
to-leading order and including soft-gluon resummation
[60, 61], the E615 data can be viewed as being consis-
tent with Eq. (28). New data are essential in order to
check this reappraisal of the E615 data and settle the
controversy. This goal is a focus of an approved tagged
DIS experiment at the Thomas Je↵erson National Ac-
celerator Facility (JLab) [62–64]. Such data could also
be obtained with the common muon proton apparatus
for structure and spectroscopy (COMPASS) detector at
CERN [65, 66] and at a future electron ion collider (EIC)
[67, 68].

These observations emphasise that quantitatively reli-
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FIG. 6. Upper panel – Pion’s dressed-valence u-quark quasi-
PDF at the hadronic scale, computed with Pz/GeV = 1
(short-dashed, red), 1.75 (dashed, purple), 2.4 (dot-dashed,
blue), 3.0 (solid, green). Lower panel – Same for kaon. The
dotted (black) curve in both panels is the associated objective
PDF, computed using Eqs. (1), (14), (17), (21); and the thin
vertical lines at x = 0, 1 highlight the boundaries of support
for a physical valence-quark PDF.
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FIG. 8. x-dependence of the qPDF ratio ũK/ũ⇡ at the
hadronic scale, ⇣H , computed with Pz/GeV = 1 (short-
dashed, red), 1.75 (dashed, purple), 2.4 (dot-dashed, blue),
3.0 (solid, green). The dotted (black) curve is the associ-
ated objective ratio, uK/u⇡, obtained using the dotted (black)
curves in Fig. 6. (The dotted (red) line is drawn at unity; and
the thin vertical lines at x = 0, 1 highlight the boundaries of
support for a physical valence-quark PDF.)

able lQCD results bearing upon Eq.(28) would be very
valuable. However, the challenge to delivering such out-
comes using qPDFs is highlighted by Fig. 7. On a domain
of valence-quark x, this figure compares the pion qPDFs
in the upper panel of Fig. 6 with the objective-PDF:

u
⇡

V
(x)

x>0.95⇡ 113 (1� x)2, (29)

and another curve, whose x 2 [0, 1] L1-di↵erence from
the objective valence-quark PDF is just 2%, but which
is / (1� x)1 at large-x. Evidently, even the Pz = 3GeV
qPDF is unable to distinguish between these two distinc-
tively di↵erent results. (That x > 0.9 is required before
(1 � x)2 behaviour is visible in the pion’s valence-quark
distribution was remarked upon earlier [5].)

We now redirect our attention to kaon valence-quark
qPDFs. As with kaon qPDAs, there are similarities
with the pion. For instance, L1-di↵erences are 25%
(Pz = 1GeV), 12% (Pz = 1.75GeV), 8% (Pz = 2.4GeV),
6% (Pz = 3GeV), indicating, again, that even with Pz =
1GeV, the kaon’s qPDF delivers a qualitatively sound ap-
proximation to u

K

V
(x); the step to Pz = 1.75GeV brings

noticeable improvement, but changes are slow thereafter.
The remarks made in connection with the pion qPDFs’
large-x behaviour hold with equal force for the kaon.

It has been argued that the ratio u
K

V
(x)/u⇡

V
(x) serves

as a sensitive probe of the di↵erence between the gluon
distributions in the pion and kaon [25], and that this dif-
ference can reveal much about the emergence of mass in
the Standard Model [69]. Experimental data on the ratio
is available [70], but one measurement is insu�cient for
complete confidence. Newer data would be welcome, in
which connection tagged DIS at JLab might also be use-
ful [7, 71], as could the COMPASS detector at the CERN

[65, 66] and a future EIC [67, 68]. With these things in
mind, in Fig. 8 we depict the ratio ũ

K

V
(x)/ũ⇡

V
(x). Evi-

dently, for Pz � 1.75GeV, much as was the case with the
qPDA asymmetry depicted in Fig. 5, the ratio of qPDFs
is quantitatively a good approximation to the objective
ratio on a material domain, viz. 0.3 . x . 0.8. This
domain almost covers that upon which empirical data
is available. We therefore anticipate that contemporary
lQCD simulations could provide a sound prediction for
this ratio before next generation experiments are com-
pleted.

V. SUMMARY AND PERSPECTIVE

Employing a continuum approach to bound-states in
quantum field theory and practical algebraic Ansätze
for the Poincaré-covariant Bethe-Salpeter wave functions
of the pion and kaon, we computed the leading-twist
two-dressed-parton light-front wave functions (LFWFs),
 (x, k2?); parton distribution amplitudes (PDAs), '(x);
quasi-PDAs (qPDAs), '̃(x); valence parton distribu-
tion functions (PDFs), uV (x); and quasi-PDFs (qPDFs),
ũV (x), for these systems.
The LFWFs are broad, concave functions, with power-

law k
2
?-decay. Whilst the pion’s LFWF is symmetric

about x = 1/2,  K(x, k2?) peaks at (x = 0.44, k2? =
0), expressing SU(3)-flavour-symmetry violation with a
magnitude determined by di↵erences between dynami-
cal (not explicit) mass generation in the s- and u-quark
sectors. Looking closely at the LFWFs, we found that
a carefully constructed product Ansatz, viz.  (x, k2?) ⇠
 1(x) 2(k2?), although flawed in principle, can provide
fair estimates of integrated ⇡, K properties.
The LFWFs provide direct access to ⇡ and K PDAs

and qPDAs; and for each system the qPDF provides a
semiquantitatively reliable representation of the associ-
ated PDA when computed using a longitudinal momen-
tum Pz = 1.75GeV. However, improvements thereafter
are slow; and, notably, even with Pz = 3GeV, the qPDA
cannot provide information about the true PDAs end-
point behaviour.
Regarding pion and kaon valence-quark PDFs and

qPDFs, we found that at any given Pz, a qPDF delivers
a better representation of the associated PDF than does
a qPDA of the objective PDA. In fact, even with Pz =
1GeV the qPDF provides a qualitatively clear picture of
the PDF. However, as with qPDAs, di↵erences between
qPDFs and PDFs diminish slowly on Pz > 1.75GeV;
and, similarly, even with Pz = 3GeV, qPDFs cannot be
used to determine the objective PDF’s large-x behaviour.
On the other hand, the ratio ũ

K

V
(x)/ũ⇡

V
(x) does provide

a good approximation to u
K

V
(x)/u⇡

V
(x) on 0.3 . x . 0.8,

in consequence of which we expect that contemporary
simulations of lattice-regularised QCD can deliver a rea-
sonable prediction for this ratio before next generation
experiments are completed.
It is natural to extend this analysis to the neutron and

•  For	Pz>1.75GeV	the	ratio	of	qPDFs	is	quantitatively	a	good	approximation	to	
the	objective	ratio	on	a	material	domain,	viz.	0.3<x<0.8.	This	domain	almost	
covers	that	upon	which	empirical	data	is	available.	

•  We	anticipate	that	contemporary	lQCD	simulations	could	provide	a	sound	
prediction	for	this	ratio	before	next	generation	experiments	are	completed.	
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–  Employing	a	continuum	approach	to	bound-states	we	computed	
the	leading	twist	LFWFs,	PDAs,	PDFs,	qPDAs	and	qPDFs	of	pion	
and	Kaon.	

–  qPDAs	and	qPDFs	cannot	be	used	to	determine	the	objective’s	
large-x	behavior.	

– We	expect	that	contemporary	simulations	of	lQCD	can	deliver	a	
reasonable	prediction	for	the	Kaon/Pion	ratio	before	next	
generation	experiments	are	completed.	

–  Extend	this	approach	to	neutron	and	proton	system.		
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Pion PDF----lQCD Progress 

Hadron Structure Martha Constantinou

In a recent study with TMF the momentum fraction ⟨x⟩, in the pion is computed using the
operator O44

O44(x) =
1
2
ū(x)[γ4

↔
D 4 −

1
3

3

∑
k=1

γk
↔
D k]u(x), ⟨x⟩bare

π+ =
1

2m2
π
⟨π ,⃗0|O44|π ,⃗0⟩. (4.1)

The matrix element of this operator is non-zero at Q2 = 0 and thus ⟨x⟩ can be easily extracted
without requiring extrapolating the results to zero momentum transfer. A stochastic time source is
utilized allowing high statistical accuracy at small computational cost. In the left panel of Fig. 19
the momentum fraction is plotted against m2

π for Wilson TMF and Clover fermions. There is quite
a spread in the results obtained using the different discretizations that may point to large lattice
artifacts that need to be investigated. Lattice results close to the physical point underestimate the
phenomenological value of ⟨x⟩π+ = 0.0217(11) [63]. A comprehensive study of lattice artifacts is
called for in order to understand the observed discrepancies in the lattice data.
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Figure 19: Left: ⟨x⟩π+ as a function of m2
π for: Nf=2 Clover (QCDSF/UKQCD [64], RQCD [65]), Nf=2

TMF (ETMC [66]), Nf=2+1+1 TMF (ETMC [67]), Nf=2 TMF with Clover (ETMC [67]). Right: Plateau
for GM of the ρ-meson [68] for the standard (red points) and variational (blue points) methods.

4.2 ρ-meson Electromagnetic Form Factor
The EM of the ρ-meson are computed by the CSSM collaboration using Nf=2+1 Clover

fermions [68]. Since the ρ is a resonance its form factors are not known. The ρ-meson matrix
element of the EM current can be decomposed into a charge, magnetic and quadrupole form factor,
denoted byGC, GM andGQ, respectively. A variational approach has been utilized and was found to
separate excited states effectively. The technique is applied on a set of operators built from various
source and sink smearings, applied to the ρ interpolating field χ iρ(x) = d̄(x)γ i u(x). Four levels
of Gaussian smearing were employed, thus, a 4× 4 correlation matrix was analyzed. The authors
find substantial improvement in the determination of GM and GQ using the variational approach. In
the right plot of Fig. 19 we show the results for GM using the standard method and the variational
method. As can be seen, the plateau using the variational method begin only one time slice afte the
current insertion, as compared to the standard method where no clear plateaus were observed.

5. Conclusions and Perspectives

Several major improvements in algorithm and techniques coupled with increase in the compu-
tational power have allowed lattice QCD simulations with light quark masses fixed to their physical
value. Although this is a big achievement, many challenges lie ahead: development of appropriate
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A	comprehensive	study	of	lattice	artifacts	is	called	for	in	order	to	understand	the	
observed	discrepancies	in	the	lattice	data…	


