

QCD Phase Transitions at finite temperature and densities within FRG approach

Wei-jie Fu

Dalian University of Technology

666. WE-Heraeus-Seminar on "From Correlation Functions to QCD Phenomenology" April 3-6, 2018, Bad Honnef, Germany

Collaborators:

fQCD collaboration (J. Braun, L. Corell, A. Cyrol, WF, M. Leonhardt, M. Mitter, <u>J.M. Pawlowski</u>, M. Pospiech, <u>F. Rennecke</u>, N. Strodthoff, N. Wink), <u>Bernd-Jochen Schaefer</u>, Rui Wen, Chuang Huang, Ke-Xin Sun et al.

Outline

- ***** Introduction
- Baryon number fluctuations, probability distribution in low energy effective models
- * Quantum fluctuations of gluons and QCD phase transition
- *** Summary and outlook**

Heavy-ion collision

What we see

QCD Phase Structure

The Hot QCD White Paper (2015)

RHIC:

X.Luo (STAR), PoS CPOD2014, 019 (2014)

FRG

Matter part, effective models

2 flavor

$$\Gamma_{k} = \int_{x} \left\{ Z_{q,k} \bar{q} (\gamma_{\mu} \partial_{\mu} - \gamma_{0} \mu) q + \frac{1}{2} Z_{\phi,k} (\partial_{\mu} \phi)^{2} \right. \\ \left. + h_{k} \bar{q} \left(T^{0} \sigma + i \gamma_{5} \vec{T} \cdot \vec{\pi} \right) q + V_{k}(\rho) - c \sigma \right\} + \cdots$$

2+1 flavor

$$\Gamma_{k} = \int_{x} \left\{ \bar{q} \left[\gamma_{\mu} \partial_{\mu} - \gamma_{0} (\mu + igA_{0}) \right] q + V_{\text{glue}}(L, \bar{L}) \right. \\ \left. + \operatorname{tr}(\partial_{\mu} \Sigma \cdot \partial_{\mu} \Sigma^{\dagger}) + i \bar{q} h_{k} \cdot \Sigma_{5} q + \tilde{U}_{k}(\Sigma, \Sigma^{\dagger}) \right\},$$

Baryon Number Fluctuations in 2+1 Flavor

$$\Gamma_k = \int_x \left\{ \bar{q} \left[\gamma_\mu \partial_\mu - \gamma_0 (\mu + igA_0) \right] q + V_{\text{glue}}(L, \bar{L}) \right\}$$

$$+\operatorname{tr}(\partial_{\mu}\Sigma\cdot\partial_{\mu}\Sigma^{\dagger})+i\bar{q}h_{k}\cdot\Sigma_{5}q+\tilde{U}_{k}(\Sigma,\Sigma^{\dagger})\Big\},$$

scalar and pseudoscalar mesons in the octet and singlet:

$$\Sigma = T_a(\sigma_a + i\pi_a), \quad a = 0, 1, \dots 8$$

 $\Sigma_5 = T_a(\sigma_a + i\gamma_5\pi_a)\,,$

the effective potential

Rui Wen, Chuang Huang, WF, in preparation

`t Hooft determinant

$$\xi = \det(\Sigma) + \det(\Sigma^{\dagger}),$$

$$\rho_1 = \operatorname{tr}(\Sigma \cdot \Sigma^{\dagger}),$$
$$\tilde{\rho}_2 = \operatorname{tr}\left(\Sigma \cdot \Sigma^{\dagger} - \frac{1}{2}\rho_1\right)^2,$$

 $\tilde{U}_k(\Sigma, \Sigma^{\dagger}) = U_k(\rho_1, \tilde{\rho}_2) - c_k \xi - j_L \sigma_L - j_S \sigma_S,$

also see talk by Fabian

The probability distribution:

canonical partition function

 $P(N;T,V,\mu) = \frac{Z(T,V,N)}{\mathcal{Z}(T,V,\mu)} \exp\left(\frac{\mu N}{T}\right),$

grand canonical partition function

The probability distribution:

canonical partition function

$$P(N;T,V,\mu) = \frac{Z(T,V,N)}{\mathcal{Z}(T,V,\mu)} \exp\left(\frac{\mu N}{T}\right),$$

grand canonical partition function

$$Z(T, V, N) = \frac{1}{2\pi} \int_0^{2\pi} d\theta e^{-i\theta N} \mathcal{Z}(T, V, \mu = iT\theta),$$

Why do we need to calculate the probability distribution?

Why do we need to calculate the probability distribution?

- Sensitive to different dynamics, especially the glue dynamics.
- Input to transport simulations in heavy ion collisions
- Non-critical effects are easily involved, such as the detector acceptability cut, volume fluctuations etc.
- Related investigations are in progress.

•

•

•

•

-1 Why do we need to calculate the probability distribution? **110MeV** V=50 fm^3 -2 **140MeV 170MeV** Sensitive to different dynamics, -3 especially the glue dynamics. $\log_{10}(P(N))$ -4 Input to transport simulations in -5 heavy ion collisions -6 Non-critical effects are easily -7 involved, such as the detector acceptability cut, volume -8 fluctuations etc. -9 Related investigations are in -200 -100 100 200 0 progress. N_B

Ke-xin Sun Rui Wen, WF, in preparation

Quantum Fluctuations beyond LPA

WF, J.M. Pawlowski, PRD 92 (2015) 116006

Baryon number fluctuations beyond LPA

WF, J.M. Pawlowski, PRD 92 (2015) 116006

Freeze-out line

Freeze-out temperature and chemical potential obtained from the Statistical Hadronization Model

A. Andronic, P. Braun-Munzinger, J. Stachel, Phys.Lett. B673 (2009) 142

Freeze-out chemical potential obtained from lattice simulations

S. Borsanyi et al., Phys.Rev.Lett. 113 (2014) 052301

Correlating the skewness and kurtosis of baryon number distributions

Comparison with experimental measurements

WF, J.M. Pawlowski, PRD 93 (2016) 091501(R)

Silver Blaze Property and the Frequency Dependence

Frequency-dependent quark anomalous dimension:

$$\eta_{q,k}(p) = \frac{1}{Z_{q,k}(p)} \frac{1}{4N_c N_f} \frac{\partial^2}{\partial |\vec{p}|^2} \operatorname{Tr}\left(i\vec{\gamma} \cdot \vec{p} \,\partial_t \tilde{\Gamma}^{(2)}_{q\bar{q},k}(p)\right)$$

Insert this into the flow of effective potential, and perform the two-loop summation

One obtains

$$\begin{aligned} \partial_t V_k(\rho) &= \frac{k^4}{360\pi^2} \bigg\{ 12(5 - \eta_{\phi,k}) \big[(N_f^2 - 1) \mathcal{B}_{(1)}(\bar{m}_{\pi,k}^2) \\ &+ \mathcal{B}_{(1)}(\bar{m}_{\sigma,k}^2) \big] - 5N_c \Big(48N_f \mathcal{F}_{(1)}(\bar{m}_{F,k}^2) \\ &+ \frac{1}{2\pi^2} (-4 + \eta_{\phi,k}) \bar{h}_k^2 \Big[\mathcal{FFB}_{(1,1,2)}(\bar{m}_{F,k}^2, \bar{m}_{\sigma,k}^2) \\ &+ (N_f^2 - 1) \mathcal{FFB}_{(1,1,2)}(\bar{m}_{F,k}^2, \bar{m}_{\pi,k}^2) \Big] \Big) \bigg\}, \end{aligned}$$

Two-loop Results

WF, J.M. Pawlowski, F. Rennecke, Bernd-Jochen Schaefer, PRD 94 (2016) 116020

- Quantitative agreement with lattice results below ~1.2 Tc
- No bump on the baryon number kurtosis
- Discrepancy observed at large temperature or density because of the UV cutoff effect
- UV cutoff should be pushed up higher, and glue quantum fluctuations should be included

- Quantitative agreement with lattice results below ~1.2 Tc
- No bump on the baryon number kurtosis
- Discrepancy observed at large temperature or density because of the UV cutoff effect
- UV cutoff should be pushed up higher, and glue quantum fluctuations should be included

- Quantitative agreement with lattice results below ~1.2 Tc
- No bump on the baryon number kurtosis
- Discrepancy observed at large temperature or density because of the UV cutoff effect
- UV cutoff should be pushed up higher, and glue quantum fluctuations should be included

- $\partial_t \Gamma_k = \frac{1}{2} \underbrace{\left[\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\$
- **Effective model:**

$$\Gamma_k = \int_x \left\{ Z_{q,k} \bar{q} (\gamma_\mu \partial_\mu - \gamma_0 \mu) q + \frac{1}{2} Z_{\phi,k} (\partial_\mu \phi)^2 \right\}$$

$$+ h_k \bar{q} \left(T^0 \sigma + i \gamma_5 \vec{T} \cdot \vec{\pi} \right) q + V_k(\rho) - c\sigma \Big\} + \cdots$$

- Quantitative agreement with lattice results below ~1.2 Tc
- No bump on the baryon number kurtosis
- Discrepancy observed at large temperature or density because of the UV cutoff effect
- UV cutoff should be pushed up higher, and glue quantum fluctuations should be included

Summary on effective model including mesonic fluctuations

- Quantitative agreement with lattice results below ~1.2 Tc
- No bump on the baryon number kurtosis
- Discrepancy observed at large temperature or density because of the UV cutoff effect
- UV cutoff should be pushed up higher, and glue quantum fluctuations should be included

$$\partial_{t}\Gamma_{k} = \frac{1}{2} \int_{x} \int_{y} \int$$

Flow Equations

Wetterich equation:

$$\partial_t \Gamma_k[\Phi] = \frac{1}{2} \operatorname{STr} \left\{ \partial_t R_k \left(\Gamma_k^{(2)}[\Phi] + R_k \right)^{-1} \right\}$$

$$= \frac{1}{2} \operatorname{STr} \left\{ \tilde{\partial}_t \ln \left(\Gamma_k^{(2)} [\Phi] + R_k \right) \right\}$$

with $t = \ln(k/\Lambda)$ and

$$\left(\Gamma_k^{(2)}[\Phi]\right)_{ij} := \frac{\overrightarrow{\delta}}{\delta \Phi_i} \Gamma_k[\Phi] \frac{\overleftarrow{\delta}}{\delta \Phi_j} \qquad \qquad \Gamma_k^{(2)} + R_k = \mathcal{P} + \mathcal{F}$$

Vertex expansion:

$$\partial_t \Gamma_k = \frac{1}{2} \operatorname{STr} \{ \tilde{\partial}_t \ln(\mathcal{P} + \mathcal{F}) \} = \frac{1}{2} \operatorname{STr} \tilde{\partial}_t \ln \mathcal{P}$$

$$+\frac{1}{2}\mathrm{STr}\tilde{\partial}_t\left(\frac{1}{\mathcal{P}}\mathcal{F}\right) - \frac{1}{4}\mathrm{STr}\tilde{\partial}_t\left(\frac{1}{\mathcal{P}}\mathcal{F}\right)^2 + \cdots$$

3*d* optimized regulator:

$$R_{\mathrm{F},k}(q) = Z_{q,k} i \vec{q} \cdot \vec{\gamma} r_F(\frac{\vec{q}^2}{k^2}), \quad \text{with} \quad r_F(x) = (\frac{1}{\sqrt{x}} - 1)\Theta(1 - x)$$
$$R_{\mathrm{B},k}(q) = Z_{\phi,k} \vec{q}^2 r_B(\frac{\vec{q}^2}{k^2}), \quad \text{with} \quad r_B(x) = (\frac{1}{x} - 1)\Theta(1 - x)$$

Feynman Diagrams

Feynman Diagrams

Yukawa coupling

Feynman Diagrams

Yukawa coupling

Feynman Diagrams

Feynman Diagrams

QCD Phase Transition with T

WF, J.M. Pawlowski, F. Rennecke, in preparation

Running of the Strong Coupling

Yukawa coupling and Masses

Summary and outlook

Summary and outlook

- ★ Baryon number fluctuations and baryon number probability distribution have been investigated in the 2 and 2+1 flavor effective models within the FRG approach.
- ★ Better agreement with lattice simulations and experiments is observed with the improvement of the truncations.
- ★ We have also performed FRG QCD calculations at finite temperature. The QCD phase transitions have been investigated.
- ★ Phase structure and thermodynamics investigated in the FRG QCD approach are in progress.

Summary and outlook

- ★ Baryon number fluctuations and baryon number probability distribution have been investigated in the 2 and 2+1 flavor effective models within the FRG approach.
- ★ Better agreement with lattice simulations and experiments is observed with the improvement of the truncations.
- ★ We have also performed FRG QCD calculations at finite temperature. The QCD phase transitions have been investigated.

 * Phase structure and thermodynamics investigated in the FRG QCD approach are in progress.
Thank you very much for your attentions!