Heavy quark QCD phase diagram at two-loop order in perturbation theory

Jan Maelger^{1,2}

In collaboration with: U.Reinosa¹ and J.Serreau² arXiv:1710.01930v1

1. Centre de Physique Theorique, Ecole Polytechnique

2. AstroParticule et Cosmologie, Univ. Paris 7 Diderot

April 4, 2018

Heavy Quark QCD

Jan Maelger

Motivation

Curci-Ferrari Model & Landau-DeWitt Gauge

Results Vanishing $\mu = 0$ Imaginary $\mu = i\mu_i$ Real μ

Motivation

Curci-Ferrari Model & Landau-DeWitt Gauge

Results

Vanishing $\mu = 0$ Imaginary $\mu = i\mu_i$ Real μ

Conclusion

Heavy Quark QCD

Jan Maelger

Motivation

Curci-Ferrari Model & Landau-DeWitt Gauge

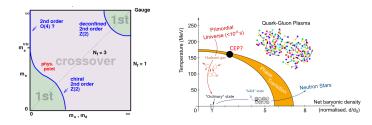
Results

Vanishing $\mu = 0$ Imaginary $\mu = i\mu_i$ Real μ

Conclusion

・ロト ・四ト ・ヨト ・ヨト ・ 日下

Motivation



Several approaches on the market:

- Lattice QCD [de Forcrand, Philipsen, Rodriguez-Quintero, Mendes, ...]
- Dyson Schwinger Equations [Alkofer, Fischer, Huber, ...]
- Functional Renormalization Group [Pawlowski, Mitter, Schaefer...]
- Variational Approach [Reinhardt, Quandt, ...]
- Gribov-Zwanziger Action [Dudal, Oliveira, Zwanziger...]
- Matrix-, QM-, NJL-Model,... [Pisarski, Dumitru, Schaffner-B., Stiele, ...]
- Curci-Ferrari Model [Reinosa, Serreau, Tissier, Wschebor, ...]

Heavy Quark QCD

Jan Maelger

Motivation

Curci-Ferrari Model & Landau-DeWitt Gauge

Results Vanishing $\mu = 0$ Imaginary $\mu = i\mu_i$ Real μ

Conclusion

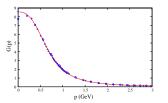
▲□▶ ▲圖▶ ▲目▶ ▲目▶ = 目 = のへで

Curci-Ferrari and gluon mass term

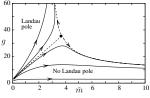
$$S = \int_{x} \left\{ \frac{1}{4} (F_{\mu\nu}^{a})^{2} + \bar{\psi} (\mathcal{P} + M + \mu\gamma_{0}) \psi \right\} + S_{FP} + \int_{x} \left\{ \frac{1}{2} m^{2} (A_{\mu}^{a})^{2} \right\}$$

This gluon mass term can be motivated in several ways

- phenomenologically from lattice data of the Landau gauge gluon propagator saturating in the IR
- Residual ambiguity after non-complete gauge-fixing in Fadeev-Popov procedure due to presence of Gribov copies, see talk by Mathieu Tissier!



one-loop gluon propagator against lattice data, from [Tissier, Wschebor (2011)] [Bogolubsky et al. (2009), Dudal, Oliveira, Vandersickel (2010)]



YM one-loop RG flow, from [Serreau, Tissier (2012)]

Heavy Quark QCD

Jan Maelger

Motivation

Curci-Ferrari Model & Landau-DeWitt Gauge

Results

Vanishing $\mu = 0$ Imaginary $\mu = i\mu_i$ Real μ

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Polyakov loops as order parameters

At the YM point, a relevant order parameter for the deconfinement transition is the (anti-)Polyakov loop. It is related to the free energy F_q necessary to bring a quark into a "bath" of gluons.

$$\ell \equiv \frac{1}{3} \mathrm{tr} \left\langle P \exp \left(ig \, \int_0^\beta d\tau A_0^a t^a \right) \right\rangle \sim e^{-\beta F_q} \qquad \bar{\ell} \sim e^{-\beta F_{\bar{q}}}$$

Hence

 $\ell = 0 \leftrightarrow F_q = \infty \leftrightarrow \text{confinement} \qquad \ell \neq 0 \leftrightarrow F_q < \infty \leftrightarrow \text{deconfinement}$

Introducing quarks, center symmetry is explicitly broken. For heavy quarks, this breaking is "soft", thus:

 $\ell \approx 0 \Leftrightarrow F_q \approx \infty \Leftrightarrow \text{confinement} \qquad \ell \approx 0 \Leftrightarrow F_q < \infty \Leftrightarrow \text{deconfinement}$

 \rightarrow It is thus very important to work in a choice of gauge which doesn't explicitly "strongly" break center symmetry (any more)!

Heavy Quark QCD

Jan Maelger

Motivation

Curci-Ferrari Model & Landau-DeWitt Gauge

Results Vanishing $\mu = 0$ Imaginary $\mu = i\mu_i$ Real μ

Landau-DeWitt gauge [Braun, Pawlowski, Gies (2010)]

$$A^a_\mu = \bar{A}^a_\mu + a^a_\mu$$

In practice, at each temperature, the background field \bar{A}^a_{μ} is chosen such that the expectation value $\langle a^a_{\mu} \rangle$ vanishes in the limit of vanishing sources.

This corresponds to finding the absolute minimum of $\tilde{\Gamma}[\bar{A}] \equiv \Gamma[\bar{A}, \langle a \rangle = 0]$, where $\Gamma[\bar{A}, \langle a \rangle]$ is the effective action for $\langle a \rangle$ in the presence of \bar{A} .

Seek the minima in the subspace of configurations \bar{A} that respect the symmetries of the system at finite temperature.

 \longrightarrow One restricts to temporal and homogenous backgrounds:

$$\bar{A}_{\mu}(\tau, \mathbf{x}) = \bar{A}_0 \delta_{\mu 0}$$

 \rightarrow functional $\tilde{\Gamma}[\bar{A}]$ reduces to an effective potential $V(\bar{A}_0)$ for the constant matrix field \bar{A}_0 .

One can always rotate this matrix \bar{A}_0 into the Cartan subalgebra:

$$\beta g \bar{A}_0 = r_3 \frac{\lambda_3}{2} + r_8 \frac{\lambda_8}{2}$$

Then $V(\bar{A}_0)$ reduces to a function of 2 components $V(r_3, r_8)$.

	r_3	r_8
$\mu = 0$	\mathbb{R}	0
$\mu \in i \mathbb{R}$	\mathbb{R}	\mathbb{R}
$\mu \in \mathbb{R}$	\mathbb{R}	$i\mathbb{R}$

Heavy Quark QCD

Jan Maelger

Motivation

Curci-Ferrari Model & Landau-DeWitt Gauge

Results

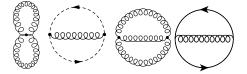
Vanishing $\mu = 0$ Imaginary $\mu = i\mu_i$ Real μ

Conclusion

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0</p>

Two-loop Expansion

$$V(r_3, r_8) = -\operatorname{Tr} \operatorname{Ln} \left(\partial \!\!\!/ + M + \mu \gamma_0 - ig \gamma_0 \bar{A}^k t^k \right) \\ + \frac{3}{2} \operatorname{Tr} \operatorname{Ln} \left(\bar{D}^2 + m^2 \right) - \frac{1}{2} \operatorname{Tr} \operatorname{Ln} \left(\bar{D}^2 \right) \\ +$$



Heavy Quark QCD

Jan Maelger

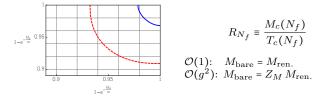
Motivation

Curci-Ferrari Model & Landau-DeWitt Gauge

Results

Vanishing $\mu = 0$ Imaginary $\mu = i\mu_i$ Real μ

Vanishing chemical potential



 \rightarrow hard to compare between different approaches! However, Z_M is independent of N_f at $\mathcal{O}(g^2)$, and observing

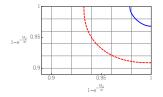
$$\frac{T_c(N_f=3) - T_c(N_f=1)}{T_c(N_f=1)} \approx 0.2\%$$

allows for:

$$R_{N_f'}/R_{N_f} \approx M_c(N_f')/M_c(N_f)$$

Heavy Quark QCD
Jan Maelger
Motivation
Curci-Ferrari Model & Landau-DeWitt Gauge
Results
Vanishing $\mu = 0$
Imaginary $\mu = i\mu_i$ Real μ
Conclusion

Vanishing chemical potential



$$\begin{split} R_{N_f} &\equiv \frac{M_c(N_f)}{T_c(N_f)} \\ R_{N_f'}/R_{N_f} \approx M_c(N_f')/M_c(N_f) \end{split}$$

R_{N_f}	$N_f = 1$	$N_f = 2$	$N_f = 3$	R_2/R_1	R_3/R_1
1-loop [1]	6.74	7.59	8.07	1.13	1.20
2-loop	7.53	8.40	8.90	1.12	1.18
Lattice [2]	7.23	7.92	8.33	1.10	1.15
DSE [3]	1.42	1.83	2.04	1.29	1.43
Matrix [4]	8.04	8.85	9.33	1.10	1.16

 \rightarrow The overall good agreement seems to suggest that the underlying dynamics is well-described within perturbation theory.

- [1] U. Reinosa, J. Serreau, M. Tissier (2015)
- [2] M. Fromm, J. Langelage, S. Lottini and O. Philipsen (2012)
- [3] C. S. Fischer, J. Luecker and J. M. Pawlowski (2015)
- [4] K. Kashiwa, R. D. Pisarski and V. V. Skokov (2012) アト・モート モート モー つくで

Heavy Quark QCD

Jan Maelger

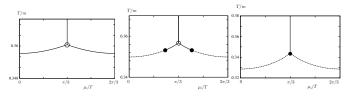
Motivation

Curci-Ferrari Model & Landau-DeWitt Gauge

Results

Vanishing $\mu = 0$ Imaginary $\mu = i\mu_i$ Real μ

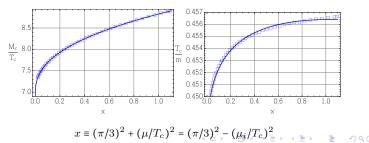
Imaginary chemical potential $\mu = i\mu_i$



The vicinity of the tricritical point is approximately described by the mean field scaling behavior

$$\frac{M_c(\mu_i)}{T_c(\mu_i)} = \frac{M_{\text{tric.}}}{T_{\text{tric.}}} + K \left[\left(\frac{\pi}{3}\right)^2 - \left(\frac{\mu_i}{T_c}\right)^2 \right]^{\frac{1}{4}}$$

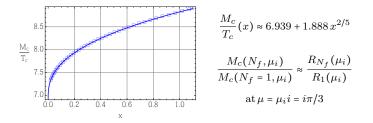
[de Forcrand, Philipsen (2010); Fischer, Luecker, Pawlowski (2015)]



Heavy Quark QCD Jan Maelger Motivation Curci-Ferrari Model & Landau-DeWitt Gauge Results Vanishing $\mu = 0$

Imaginary $\mu = i\mu_i$ Real μ

Imaginary chemical potential $\mu = i\mu_i$



$R_{N_f}(\pi/3)$	$N_f = 1$	N_f = 2	N_f = 3	R_2/R_1	R_3/R_1
1-loop [1]	4.74	5.63	6.15	1.19	1.30
2-loop	5.47	6.41	6.94	1.17	1.27
Lattice [2]	5.56	6.25	6.66	1.12	1.20
DSE [3]	0.41	0.85	1.11	2.07	2.70
Matrix [4]	5.00	5.90	6.40	1.18	1.28

[1] Reinosa et al. (2015), [2] Fromm et al. (2012), [3] Fischer et al. (2015), [4]

Kashiwa et al.(2012)

Heavy Quark QCD

Jan Maelger

Motivation

Curci-Ferrari Model & Landau-DeWitt Gauge

Results Vanishing $\mu = 0$ Imaginary $\mu = i\mu_i$ Real μ

Real chemical potential

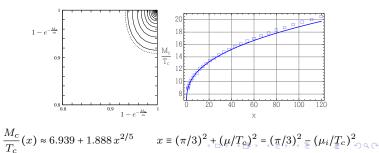
- ▶ $V(r_{3,}r_8) \in \mathbb{C}$
- $V(\ell, \bar{\ell}) \in \mathbb{C}$ \longrightarrow physical point $\hat{\neq}$ absolute minimum

Common fix: $V = \operatorname{Re} V + 2\operatorname{Im} V \rightarrow \operatorname{No}$ explicit breaking of charge conjugation, ie $r_8 \equiv 0$ or $q = \bar{q}$!

Instead, we can continue the r_8 -component via $r_8 \rightarrow ir_8$

 $\label{eq:linear} \triangleq \ell \& \bar{\ell} \in \mathbb{R} \text{ and indep. [Dumitru, Pisarski, Zschiesche (2005)]}$ Then

- $V(r_3, r_8) \in \mathbb{C} \longrightarrow V(r_3, ir_8) \in \mathbb{R}$
- min $V(r_3, r_8) \longrightarrow$ saddle point in $\mathbb{R} \times i\mathbb{R}$
- residual ambiguity: Wich saddle ^ˆ= physical point?
 → Choose convention to pick the lowest saddle! (well-motivated around μ ≈ 0)



Heavy Quark QCD

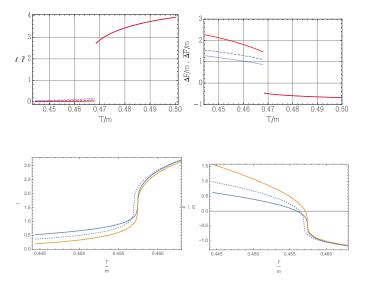
Jan Maelger

Motivation

Curci-Ferrari Model & Landau-DeWitt Gauge

Results Vanishing $\mu = 0$ Imaginary $\mu = i\mu_i$ Real μ

Explicit breaking of charge-conjugation in Polyakov loops



Heavy Quark QCD

Jan Maelger

Activation

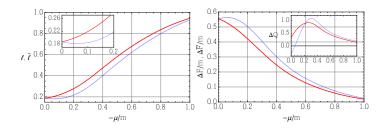
Curci-Ferrari Model & Landau-DeWitt Gauge

Results Vanishing $\mu = 0$ Imaginary $\mu = i\mu_i$ Real μ

Conclusion

▲□> ▲圖> ▲目> ▲目> 二目 - のへで

$\ell_{q,\bar{q}}(\hat{\mu})$ and $F_{q,\bar{q}}(\hat{\mu})$



• Trace $\ell_{q,\bar{q}}$ and $F_{q,\bar{q}}$ as functions of $\hat{\mu} = -\mu$

 $\longrightarrow \ell \text{ and } F_q \text{ change monotony, but } \bar{\ell} \text{ and } F_{\bar{q}} \text{ don't! Then } \ell, \bar{\ell} \text{ increase together towards 1 [Dumitru, Hatta, Lenaghan, Orginos, Pisarski (2004)]}$

- ▶ "Free energy must be strictly monotonically decreasing as a function of chemical potential" \longrightarrow contradicts $\ell = e^{-\beta F_q}$?
- Interpretation $\ell \sim e^{-\beta F_q}$ is saved by a simple thermodynamic argument if the charge of the bath at $\hat{\mu} = 0$ is not zero

Heavy Quark QCD

Jan Maelger

Aotivation

Curci-Ferrari Model & Landau-DeWitt Gauge

Results Vanishing $\mu = 0$ Imaginary $\mu = i\mu_i$ **Real** μ

Pure Thermal bath

One easily obtains that

$$\frac{\partial F}{\partial \hat{\mu}} = -\langle Q \rangle \quad \text{and} \quad \frac{\partial \langle Q \rangle}{\partial \hat{\mu}} = \beta \left(\left(Q - \langle Q \rangle \right)^2 \right) > 0 \,.$$

O

is and $\hat{\mu} = -\mu$

free energy of the bath: $F = -T \ln \operatorname{tr} \exp\{-\beta (H - \hat{\mu}Q)\}$

the baryonic

charge

Now, in absence of any external sources, the thermal bath is charge-conjugation invariant for $\hat{\mu} = 0$:

$$\langle Q \rangle_{\hat{\mu}=0} = 0$$

 \longrightarrow for any $\hat{\mu} > 0$: $\langle Q \rangle > 0$ and thus $\frac{\partial F}{\partial \hat{\mu}} < 0$, i.e. the free energy of the bath is a decreasing function of $\hat{\mu}$

Heavy Quark QCD

Jan Maelger

Real μ

Thermal bath with charged test source

from before:

$$\frac{\partial F}{\partial \hat{\mu}} = -\langle Q \rangle \quad \frac{\partial \langle Q \rangle}{\partial \hat{\mu}} = \beta \left((Q - \langle Q \rangle)^2 \right) > 0$$

In the presence of a static quark (q) or antiquark (\bar{q}) , charge-conjugation invariance is broken s.t.:

$$\langle Q \rangle_{q,\hat{\mu}=0} < 0 \qquad \langle Q \rangle_{\bar{q},\hat{\mu}=0} > 0$$

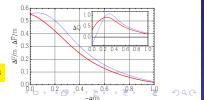
The equations above then imply that

$$\forall \, \hat{\mu} > 0 \,, \quad \langle Q \rangle_{\bar{q}} > 0 \,,$$

while there exists a certain $\hat{\mu}_0 > 0$ such that,

$$\forall \hat{\mu} \in [0, \hat{\mu}_0], \ \langle Q \rangle_q < 0 \quad \text{and} \quad \forall \hat{\mu} > \hat{\mu}_0, \ \langle Q \rangle_q > 0.$$

Therefore $F_{\bar{q}}$ is monotonously decreasing for $\hat{\mu} > 0$, while F_q first increases and then decreases



Heavy Quark QCD

Jan Maelger

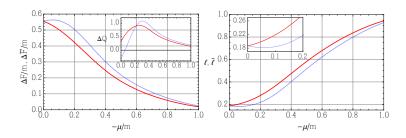
Motivation

Curci-Ferrari Model & Landau-DeWitt Gauge

tesults Vanishing μ: maginary

 $\begin{array}{l} \text{Imaginary} \\ \mu = i \mu_i \\ \text{Real } \mu \end{array}$

Thermal bath with charged test source



Then

 $\ell \sim e^{-\beta(F_q - F)}$ $\bar{\ell} \sim e^{-\beta(F_{\bar{q}} - F)}$

are found by the free energy differences wrt to the bath without any external source.

Since $\frac{\partial F}{\partial \hat{\mu}} = 0|_{\hat{\mu}=0}$, both are dominated for small $\hat{\mu}$ by either F_q or $F_{\bar{q}}$, which explains the different monotony.

 $\Delta \langle Q_q \rangle$ and $\Delta \langle Q_{\bar{q}} \rangle$ should approach 0 at large $\hat{\mu},$ which we also observe.

Heavy Quark QCD Jan Maelger Iotivation

Curci-Ferrari Model & Landau-DeWitt Gauge

Results Vanishing $\mu = 0$ Imaginary $\mu = i\mu_i$ **Real** μ

Conclusion

- Improved quantitative reproduction of the phase diagram and Columbia plot at two-loop order, eg critical masses to critical temperature ratios
- suggests that the perturbative description of the phase diagram within the CF model is robust
- Behavior of the Polyakov loops as functions of the chemical potential agrees with their interpretation in terms of quark and anti-quark free energies

OUTLOOK/QUESTIONS:

- Can we describe the chiral transition in the lower left part of the Columbia plot?
- ▶ Is there a better way to compare (critical) fermion masses between approaches? Eg give in units of pion masses?

Heavy Quark QCD

Jan Maelger

Motivation

Curci-Ferrari Model & Landau-DeWitt Gauge

Results Vanishing $\mu = 0$ Imaginary $\mu = i\mu_i$