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Motivation

Several approaches on the market:

▸ Lattice QCD [de Forcrand, Philipsen, Rodriguez-Quintero, Mendes, ...]

▸ Dyson Schwinger Equations [Alkofer, Fischer, Huber, ...]

▸ Functional Renormalization Group [Pawlowski, Mitter, Schaefer...]

▸ Variational Approach [Reinhardt, Quandt, ...]

▸ Gribov-Zwanziger Action [Dudal, Oliveira, Zwanziger...]

▸ Matrix-, QM-, NJL-Model,... [Pisarski, Dumitru, Schaffner-B., Stiele, ...]

▸ Curci-Ferrari Model [Reinosa, Serreau, Tissier, Wschebor, ...]
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Curci-Ferrari and gluon mass term

S = ∫
x
{

1

4
(Faµν)

2
+ ψ̄(D/ +M + µγ0)ψ} + SFP + ∫

x
{

1

2
m2

(Aaµ)
2
}

This gluon mass term can be motivated in several ways

▸ phenomenologically from lattice data of the Landau gauge gluon
propagator saturating in the IR

▸ Residual ambiguity after non-complete gauge-fixing in Fadeev-Popov
procedure due to presence of Gribov copies, see talk by Mathieu Tissier!

G
(p

)

p (GeV)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  0.5  1  1.5  2  2.5  3

one-loop gluon propagator against lattice
data,

from [Tissier, Wschebor (2011)]
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Polyakov loops as order parameters

At the YM point, a relevant order parameter for the deconfinement
transition is the (anti-)Polyakov loop. It is related to the free energy Fq
necessary to bring a quark into a ”bath” of gluons.

` ≡
1

3
tr ⟨P exp(ig∫

β

0
dτAa0t

a
)⟩ ∼ e−βFq ¯̀∼ e−βFq̄

Hence

` = 0↔ Fq = ∞↔ confinement ` ≠ 0↔ Fq < ∞↔ deconfinement

Introducing quarks, center symmetry is explicitly broken. For heavy
quarks, this breaking is ”soft”, thus:

` ≈ 0↔ Fq ≈ ∞↔ confinement ` ≉ 0↔ Fq < ∞↔ deconfinement

→ It is thus very important to work in a choice of gauge which doesn’t

explicitly ”strongly” break center symmetry (any more)!
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Landau-DeWitt gauge [Braun, Pawlowski, Gies (2010)]

Aaµ = Āaµ + a
a
µ

In practice, at each temperature, the background field Āaµ is chosen such
that the expectation value ⟨aaµ⟩ vanishes in the limit of vanishing sources.

This corresponds to finding the absolute minimum of Γ̃[Ā] ≡ Γ[Ā, ⟨a⟩ = 0],

where Γ[Ā, ⟨a⟩] is the effective action for ⟨a⟩ in the presence of Ā.

Seek the minima in the subspace of configurations Ā that respect the
symmetries of the system at finite temperature.
Ð→ One restricts to temporal and homogenous backgrounds:

Āµ(τ,x) = Ā0δµ0

Ð→ functional Γ̃[Ā] reduces to an effective potential V (Ā0) for the
constant matrix field Ā0.

One can always rotate this matrix Ā0 into
the Cartan subalgebra:

βgĀ0 = r3
λ3

2
+ r8

λ8

2

Then V (Ā0) reduces to a function of 2

components V (r3, r8).

r3 r8

µ = 0 R 0
µ ∈ iR R R

µ ∈ R R iR
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Two-loop Expansion

V (r3, r8) = −Tr Ln (∂/ +M + µγ0 − igγ0Ā
ktk)

+
3

2
Tr Ln (D̄2

+m2) −
1

2
Tr Ln (D̄2)

+
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Vanishing chemical potential
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m

RNf ≡
Mc(Nf )

Tc(Nf )

O(1): Mbare =Mren.

O(g2): Mbare = ZMMren.

Ð→ hard to compare between different approaches!

However, ZM is independent of Nf at O(g2) , and observing

Tc(Nf = 3) − Tc(Nf = 1)

Tc(Nf = 1)
≈ 0.2%

allows for:

RN ′
f
/RNf ≈Mc(N

′

f )/Mc(Nf )

is scheme indep. & comparable to other approaches up to higher order

corrections.
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Vanishing chemical potential
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RN ′
f
/RNf ≈Mc(N

′

f )/Mc(Nf )

RNf Nf = 1 Nf = 2 Nf = 3 R2/R1 R3/R1

1-loop [1] 6.74 7.59 8.07 1.13 1.20

2-loop 7.53 8.40 8.90 1.12 1.18

Lattice [2] 7.23 7.92 8.33 1.10 1.15
DSE [3] 1.42 1.83 2.04 1.29 1.43

Matrix [4] 8.04 8.85 9.33 1.10 1.16

Ð→ The overall good agreement seems to suggest that the underlying

dynamics is well-described within perturbation theory.

[1] U. Reinosa, J. Serreau, M. Tissier (2015)

[2] M. Fromm, J. Langelage, S. Lottini and O. Philipsen (2012)

[3] C. S. Fischer, J. Luecker and J. M. Pawlowski (2015)

[4] K. Kashiwa, R. D. Pisarski and V. V. Skokov (2012)



Heavy Quark
QCD

Jan Maelger

Motivation

Curci-Ferrari
Model &
Landau-DeWitt
Gauge

Results

Vanishing µ = 0

Imaginary
µ = iµi
Real µ

Conclusion

Imaginary chemical potential µ = iµi
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The vicinity of the tricritical point is approximately described by the mean
field scaling behavior

Mc(µi)

Tc(µi)
=
Mtric.

Ttric.
+K [(

π

3
)

2

− (
µi

Tc
)

2

]

2
5

[de Forcrand, Philipsen (2010); Fischer, Luecker, Pawlowski (2015)]
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(x) ≈ 6.939 + 1.888x2/5

Mc(Nf , µi)

Mc(Nf = 1, µi)
≈
RNf (µi)

R1(µi)

atµ = µii = iπ/3

RNf (π/3) Nf = 1 Nf = 2 Nf = 3 R2/R1 R3/R1

1-loop [1] 4.74 5.63 6.15 1.19 1.30

2-loop 5.47 6.41 6.94 1.17 1.27

Lattice [2] 5.56 6.25 6.66 1.12 1.20
DSE [3] 0.41 0.85 1.11 2.07 2.70

Matrix [4] 5.00 5.90 6.40 1.18 1.28

[1] Reinosa et al. (2015), [2] Fromm et al. (2012), [3] Fischer et al. (2015), [4]

Kashiwa et al.(2012)
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Real chemical potential
▸ V (r3, r8) ∈ C
▸ V (`, ¯̀) ∈ C Ð→ physical point ≠̂ absolute minimum

Common fix: V = ReV +i ImV → No explicit breaking of charge
conjugation, ie r8 ≡ 0 or q=̂q̄ !

Instead, we can continue the r8-component via r8 → ir8

≡̂ `&¯̀ ∈ R and indep. [Dumitru, Pisarski, Zschiesche (2005)]

Then
▸ V (r3, r8) ∈ CÐ→ V (r3, ir8) ∈ R
▸ min V (r3, r8) Ð→ saddle point in R × iR
▸ residual ambiguity: Wich saddle =̂ physical point?
Ð→ Choose convention to pick the lowest saddle! (well-motivated
around µ ≈ 0)
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Explicit breaking of charge-conjugation in
Polyakov loops
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`q,q̄(µ̂) and Fq,q̄(µ̂)
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▸ Trace `q,q̄ and Fq,q̄ as functions of µ̂ = −µ

Ð→ ` and Fq change monotony, but ¯̀ and Fq̄ don’t! Then `, ¯̀

increase together towards 1 [Dumitru, Hatta, Lenaghan, Orginos,

Pisarski (2004)]

▸ ”Free energy must be strictly monotonically decreasing as a function
of chemical potential” Ð→ contradicts ` = e−βFq ?

▸ Interpretation ` ∼ e−βFq is saved by a simple thermodynamic
argument if the charge of the bath at µ̂ = 0 is not zero
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Pure Thermal bath

free energy of the bath:

F = −T ln tr exp{−β(H − µ̂Q)}

Q is the baryonic charge

and µ̂ = −µ

One easily obtains that

∂F

∂µ̂
= −⟨Q⟩ and

∂⟨Q⟩

∂µ̂
= β ⟨(Q − ⟨Q⟩)

2⟩ > 0 .

Now, in absence of any external sources , the thermal bath is

charge-conjugation invariant for µ̂ = 0:

⟨Q⟩µ̂=0 = 0

Ð→ for any µ̂ > 0: ⟨Q⟩ > 0 and thus ∂F
∂µ̂

< 0, i.e. the free energy of the bath

is a decreasing function of µ̂
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Thermal bath with charged test source

from before:

∂F

∂µ̂
= −⟨Q⟩

∂⟨Q⟩

∂µ̂
= β ⟨(Q − ⟨Q⟩)

2⟩ > 0

In the presence of a static quark (q) or antiquark (q̄) , charge-conjugation

invariance is broken s.t.:

⟨Q⟩q,µ̂=0 < 0 ⟨Q⟩q̄,µ̂=0 > 0

The equations above then imply that

∀µ̂ > 0 , ⟨Q⟩q̄ > 0 ,

while there exists a certain µ̂0 > 0 such that,

∀µ̂ ∈ [0, µ̂0] , ⟨Q⟩q < 0 and ∀µ̂ > µ̂0 , ⟨Q⟩q > 0 .

Therefore
Fq̄ is monotonously decreasing

for µ̂ > 0, while

Fq first increases and then decreases
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Thermal bath with charged test source
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Then
` ∼ e−β(Fq−F ) ¯̀∼ e−β(Fq̄−F )

are found by the free energy differences wrt to the bath without any

external source.

Since ∂F
∂µ̂

= 0∣
µ̂=0

, both are dominated for small µ̂ by either Fq or Fq̄ ,

which explains the different monotony.

∆⟨Qq⟩ and ∆⟨Qq̄⟩ should approach 0 at large µ̂, which we also observe.
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Conclusion

▸ Improved quantitative reproduction of the phase diagram and

Columbia plot at two-loop order, eg critical masses to critical
temperature ratios

▸ suggests that the perturbative description of the phase diagram
within the CF model is robust

▸ Behavior of the Polyakov loops as functions of the chemical potential
agrees with their interpretation in terms of quark and anti-quark free
energies

OUTLOOK/QUESTIONS:

▸ Can we describe the chiral transition in the lower left part of the
Columbia plot?

▸ Is there a better way to compare (critical) fermion masses between
approaches? Eg give in units of pion masses?
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