

Critical fluctuations in heavy-ion collisions

Marlene Nahrgang

From correlation functions to QCD phenomenology, Bad Honnef 05-04-2018

SUBATECH, IMT Atlantique, Nantes, France

Ideas about the QCD phase diagram

- Properties of strongly interacting many-body systems.
- Phases of hot and dense nuclear matter.
- Phase transition from the quark-gluon plasma (QGP) to a hadron gas.
- Is there a critical point in the phase diagram of QCD?

B. Jacak and B. Müller Science 337 (2012)

QCD phase diagram: the theory perspective

Lattice QCD calculations

- Crossover at $\mu_B = 0$ and T = [145, 165] MeV WB JHEP1009 (2010), HotQCD PoS LATTICE2010 (2010)
- Fermionic sign problem at $\mu_B \neq 0 \Rightarrow$ usual importance sampling fails.
- Methods to extend to finite μ_B, e.g. Taylor expansion, etc.

 \Rightarrow no critical point for small $\mu_B/T < 1$.

 $T_{c}^{x}(\mu)$

Functional methods (DSE/FRG)

• \Rightarrow a critical point exists for large μ_B/T .

T. Herbst, J. Pawlowski, BJ. Schaefer PRD88 (2013)

QCD phase diagram: the experimental perspective

- Highest energies at LHC, CERN: PbPb at √s_{NN} = 2.76, 5 TeV
 ⇒ Energy deposition at the highest beam energies → temperature.
- Beam energy scan at RHIC, BNL: AuAu at √s_{NN} = 200 7.7 GeV
 ⇒ Baryon stopping at lower beam energies → baryochemical potential.
- Measure particle species at chemical freeze-out (instance where inelastic collisions become rare) → success of statistical hadronization models
- Measure particle spectra at kinetic freeze-out (instance where elastic collisions become rare) → success of fluid dynamics

Fluid dynamical description of heavy-ion collisions

- The discovery of RHIC: The QGP is an almost ideal strongly coupled fluid.
- Early fluid dynamical calculations reproduce spectra and elliptic flow. P. Kolb, U. Heinz, QGP (2003)
- Long road of improvements during the last decade:
 - (3 + 1d), viscosity, initial conditions, initial state fluctuations, hybrid models

elliptic flow at LHC

Spatial eccentricity \Rightarrow momentum anisotropy via fluid dynamical pressure

MUSIC by B. Schenke, S. Jeon, C. Gale PLB702 (2011)

Equation of state and phase transitions

- Thermodynamic quantities change characteristically at the phase transition.
- Speed of sound $c_s^2 = (\partial p / \partial e)_S \rightarrow \text{minimum}$ at the phase transition/crossover.
- Compressibility $\kappa_S = -1/V(\partial V/\partial p)_S \rightarrow \text{maximum}$ at the phase transition/crossover.

"softest point" anomaly in the pressure

Phase transitions in fluid dynamics

- Describing a phase transition fluid dynamically is simple!
- Need to know the equation of state and transport coefficients!

H. Stöcker, NPA780 (2005)

• A pronounced minimum in the slope of the directed flow v₁ is observed in a first-order phase transition.

Phase transitions in fluid dynamics

- Describing a phase transition fluid dynamically is simple!
- Need to know the equation of state and transport coefficients!

J. Steinheimer, J. Auvinen, H. Petersen, M. Bleicher, H. Stöcker, PRC89 (2014)

- A pronounced minimum in the slope of the directed flow v₁ is not observed in a first-order phase transition?
- In dynamical simulations: no clear sensitivity on a phase transition in the equation of state yet...

Critical point in fluid dynamics

- construct an eos with CP from the universality class of the 3d Ising model
- map the temperature and the external magnetic field (r, h) onto the (T, µ)-plane ⇒ critical part of the entropy density S_c
- match with nonsingular entropy density from QGP and the hadron phase:

$$s = 1/2(1 - \tanh S_{
m c})s_{
m H}$$

 $+ 1/2(1 + \tanh S_{
m c})s_{
m QGP}$

• focussing of trajectories ... or not? Strongly depends on mapping & matching!

C. Nonaka, M. Asakawa PRC71 (2005); M. Asakawa et al. PRL101 (2008); M. Bluhm, B. Kampfer PoS CPOD2006 (2006)

Critical point in fluid dynamics

- construct an eos with CP from the universality class of the 3d Ising model
- map the temperature and the external magnetic field (r, h) onto the (T, µ)-plane ⇒ critical part of the entropy density S_c
- match with nonsingular entropy density from QGP and the hadron phase:

$$s = 1/2(1 - \tanh S_{
m c})s_{
m H}$$

 $+ 1/2(1 + \tanh S_{
m c})s_{
m QGP}$

6/30

• focussing of trajectories ... or not? Strongly depends on mapping & matching!

C. Nonaka, M. Asakawa PRC71 (2005); M. Asakawa et al. PRL101

Fluctuations matter at the phase transition!

• An order parameter changes characteristically at the phase transition - discontinuously or continuously.

• An order parameter changes characteristically at the phase transition - discontinuously or continuously.

• An order parameter changes characteristically at the phase transition - discontinuously or continuously.

 An order parameter changes characteristically at the phase transition discontinuously or continuously.

 An order parameter changes characteristically at the phase transition – discontinuously or continuously.

- Derivatives reveal more details!
- Derivatives of thermodynamic quantities are related to fluctuations!

What are fluctuation observables?

• Susceptibilities $\chi_n = \left. \frac{\partial^n (P/T^4)}{\partial (\mu/T)^n} \right|_T$ relate to fluctuations in multiplicity

$$\begin{split} \chi_1 &= \frac{1}{VT^3} \langle N \rangle \,, \quad \chi_2 = \frac{1}{VT^3} \langle (\Delta N)^2 \rangle \,, \quad \chi_3 = \frac{1}{VT^3} \langle (\Delta N)^3 \rangle \,, \\ \chi_4 &= \frac{1}{VT^3} \langle (\Delta N)^4 \rangle_c \equiv \frac{1}{VT^3} \left(\langle (\Delta N)^4 \rangle - 3 \langle (\Delta N)^2 \rangle^2 \right) \,. \end{split}$$

• To zeroth-order in volume fluctuations:

$$\frac{\chi_2}{\chi_1} = \frac{\sigma^2}{M} \qquad \qquad \frac{\chi_3}{\chi_2} = S\sigma \qquad \qquad \frac{\chi_4}{\chi_2} = \kappa\sigma^2$$
variance Skewness Kurtosis

• M, σ^2 , S and κ are obtained from measured event-by-event multiplicity distributions. STAR Coll. PRL112 (2014), PRL113 (2014); PHENIX Coll. arxiv:1506.07834

at a critical point:

- Correlation length diverges $\xi \to \infty \Rightarrow$ Fluctuations of the critical mode σ diverge.
- Higher-order cumulants more sensitive to *ξ*:

 $\langle \Delta \sigma^2 \rangle \propto \xi^2 \,, \quad \langle \Delta \sigma^3 \rangle \propto \xi^{9/2} \,, \quad \langle \Delta \sigma^4 \rangle_c \propto \xi^7 \,.$

- Relaxation time $\tau_{\rm rel} \propto \xi^z$ diverges \Rightarrow critical slowing down!
- at a first-order phase transition:
 - Coexistence of two stable thermodynamic phases at $T = T_c$.
 - Metastable states above and below $T_c \Rightarrow$ supercooling and -heating.
 - Nucleation & spinodal decomposition.
 - $\Rightarrow\,$ Domain formation and large inhomogeneities.

P. Hohenberg, B. Halperin, RMP49 (1977); T. Hatsuda, T. Kunihiro, PRL55 (1985); L Csernai, I Mishustin, PRL74 (1995); M. Stephanov, K. Rajagopal, E. Shuryak, PRL81 (1998), PRD60 (1999); S. Jeon, V. Koch, PRL83 (1999); B. Berdnikov and K. Rajagopal, PRD61 (2000); Y. Hatta, T. Ikeda, PRD67 (2003); M. Stephanov, PRL102 (2009); J. Randrup, PRC79 (2009), PRC82 (2010); M. Stephanov, PRL107 (2011)

at a critical point:

- Correlation length diverges $\xi \to \infty \Rightarrow$ Fluctuations of the critical mode σ diverge.
- Highe Large ensemble fluctuations in equilibrated systems! $\langle \Delta \sigma^2 \rangle \propto \xi^2$, $\langle \Delta \sigma^3 \rangle \propto \xi^{9/2}$, $\langle \Delta \sigma^4 \rangle_c \propto \xi^7$.
- Relaxation time $\tau_{\rm rel} \propto \xi^z$ diverges \Rightarrow critical slowing down!
- at a first-order phase transition:
 - Coexistence of two stable thermodynamic phases at $T = T_c$.
 - Metastable states above and below $T_c \Rightarrow$ supercooling and -heating.
 - Nucleation & spinodal decomposition.
 - $\Rightarrow\,$ Domain formation and large inhomogeneities.

P. Hohenberg, B. Halperin, RMP49 (1977); T. Hatsuda, T. Kunihiro, PRL55 (1985); L Csernai, I Mishustin, PRL74 (1995); M. Stephanov, K. Rajagopal, E. Shuryak, PRL81 (1998), PRD60 (1999); S. Jeon, V. Koch, PRL83 (1999); B. Berdnikov and K. Rajagopal, PRD61 (2000); Y. Hatta, T. Ikeda, PRD67 (2003); M. Stephanov, PRL102 (2009); J. Randrup, PRC79 (2009), PRC82 (2010); M. Stephanov, PRL107 (2011)

at a critical point:

- Correlation length diverges $\xi \to \infty \Rightarrow$ Fluctuations of the critical mode σ diverge.
- Highe Large ensemble fluctuations in equilibrated systems! $\langle \Delta \sigma^2 \rangle \propto \xi^2$, $\langle \Delta \sigma^3 \rangle \propto \xi^{9/2}$, $\langle \Delta \sigma^4 \rangle_c \propto \xi^7$.
- Relaxation time $\tau_{\rm rel} \propto \xi^z$ diverges \Rightarrow critical slowing down!

at a first-order phase transition:

- Coexistence of two stable thermodynamic phases at T = T_c
- Large inhomogeneities/fluctuations in nonequilibrium systems! ting.
- Nucleation & spinodal decomposition.
- ⇒ Domain formation and large inhomogeneities.

P. Hohenberg, B. Halperin, RMP49 (1977); T. Hatsuda, T. Kunihiro, PRL55 (1985); L Csernai, I Mishustin, PRL74 (1995); M. Stephanov, K. Rajagopal, E. Shuryak, PRL81 (1998), PRD60 (1999); S. Jeon, V. Koch, PRL83 (1999); B. Berdnikov and K. Rajagopal, PRD61 (2000); Y. Hatta, T. Ikeda, PRD67 (2003); M. Stephanov, PRL102 (2009); J. Randrup, PRC79 (2009), PRC82 (2010); M. Stephanov, PRL107 (2011)

Critical Point: What has been seen in HIC?

HADES collab. QM 2017 talk

- first fluctuation measurements at the CERN-SPS did not see signals of the critical point
- confirmed by BES phase I: no criticality seen in σ^2/M
- interesting deviations from the "baseline" observed in Skewness and Kurtosis measurements during BES → is it related to the critical point?

Why is dynamical modeling important?

In a grand-canonical ensemble, the system is

- in thermal equilibrium (= long-lived),
- in equilibrium with a particle heat bath,
- spatially infinite
- and static.

Systems created in heavy-ion collisions are

- short-lived,
- spatially small,
- inhomogeneous,
- and highly dynamical!

plot by H. Petersen, madai.us

Critical slowing down

long relaxation times near a critical point \Rightarrow critical slowing down \Rightarrow the system is driven out of equilibrium

$$rac{\mathsf{d}}{\mathsf{d}t}m_{\sigma}(t) = - \mathsf{\Gamma}[m_{\sigma}(t)]\left(m_{\sigma}(t) - rac{1}{\xi_{\mathsf{eq}}(t)}
ight)$$

 $\Rightarrow \xi \sim 1.5 - 2 \text{ fm}$

B. Berdnikov and K. Rajagopal, PRD 61 (2000)); D.T.Son, M.Stephanov, PRD 70 (2004); M.Asakawa, C.Nonaka, Nucl. Phys. A774 (2006))

Real-time evolution of cumulants

real-time evolution of non-Gaussian cumulants in the scaling regime:

$$L_{
m micro} \ll \xi \ll L_{
m sys}$$

- leading-order expansion in $\xi/L_{\rm sys}$ of dynamics
- memory effects are important
- magnitude and sign can be different in non-equilibrium compared to equilibrium expectations
- different trajectories, chemical freeze-out conditions and $\tau_{\rm rel}$ can give similar results
- Kibble-Zurek scaling of the nonequilibrium dynamics of (non)-Gaussian correlation functions
- needs full dynamical space-time evolution!

S. Mukherjee, R. Venugopalan, Y. Yin, PRC92 (2015), PRL117 (2016)

Nonequilibrium chiral fluid dynamics (N χ FD)

Propagate the critical mode σ coupled to a fluid dynamical expansion

• Relaxational equation for the critical mode: damping and noise from the interaction with the fermions/fast modes

$$\partial_{\mu}\partial^{\mu}\sigma + rac{\delta V_{\text{eff}}(\sigma)}{\delta\sigma} + \eta \partial_{t}\sigma = \xi$$

Phenomenological dynamics for the Polyakov-loop

$$\eta_{\ell}\partial_{t}\ell T^{2} + \frac{\partial V_{\text{eff}}(\ell)}{\partial \ell} = \xi_{\ell}$$

• Fluid dynamical expansion = heat bath, including energy-momentum exchange

$$\partial_{\mu} T^{\mu\nu}_{\rm fluid} = S^{\nu} = -\partial_{\mu} T^{\mu\nu}_{\sigma} , \quad \partial_{\mu} N^{\mu}_{\rm q} = 0$$

 \Rightarrow includes a stochastic source term!

MN, S. Leupold, I. Mishustin, C. Herold, M. Bleicher, PRC 84 (2011); PLB 711 (2012); JPG 40 (2013); C. Herold, MN, I. Mishustin, M. Bleicher PRC 87 (2013); NPA925 (2014), C. Herold, MN, Y. Yan, C. Kobdaj, JPG 41 (2014); MN and C. Herold, 1602.07223; C. Herold, MN, Y. Yan and C. Kobdaj, PRC93 (2016) no.2 Calculate the equation of motion for the sigma field via the 2PI effective action on the Keldysh contour:

$$\begin{split} \mathsf{\Gamma}[\sigma,S] = & S_{\mathrm{cl}}[\sigma] - i\mathrm{Tr} \ln S^{-1} - i\mathrm{Tr} S_0^{-1}S + \mathsf{\Gamma}_2[\sigma,S] \\ = & g\mathrm{tr} S_{\mathrm{th}}^{++}(x,x) \Delta \sigma(x) - \frac{T}{V} \ln Z_{\mathrm{th}} \\ & + \int \mathrm{d}^4 x D[\bar{\sigma}](x) \Delta \sigma(x) + \frac{i}{2} \int \mathrm{d}^4 x \int \mathrm{d}^4 y \Delta \sigma(x) \mathcal{N}[\bar{\sigma}](x,y) \Delta \sigma(y) \end{split}$$

$$\mathsf{EoM:} - \frac{\delta S_{\mathrm{cl}}[\sigma]}{\delta \Delta \sigma} = \frac{\delta \mathsf{\Gamma}_2[\sigma,S]}{\delta \Delta \sigma} \end{split}$$

lowest order in the eq. of motion for the σ field: $g \operatorname{tr} S_{\operatorname{th}}^{++}(x, x) \Delta \sigma(x)$

equilibrium properties, equation of state: $-\frac{T}{V} \ln Z_{\rm th}$

dissipative processes: $\int d^4x D[\bar{\sigma}](x) \Delta \sigma(x)$

origin of fluctuations: $\frac{i}{2} \int d^4x \int d^4y \Delta \sigma(x) \mathcal{N}[\bar{\sigma}](x,y) \Delta \sigma(y)$

$N\chi$ FD - damping and noise

imaginary part of Γ is interpreted as stochastic fluctuations

$$\exp\left[-\frac{1}{2}\int \mathrm{d}^{4}x\int \mathrm{d}^{4}y\Delta\sigma(x)\mathcal{N}(x,y)\Delta\sigma(y)\right] = \int \mathcal{D}\xi P[\xi]\exp\left[i\int \mathrm{d}^{4}x\xi(x)\Delta\sigma(x)\right]$$

with $P[\xi]$ Gaussian measure: $\langle \xi \rangle = 0$ and $\langle \xi(x)\xi(x') \rangle = \mathcal{N}(x,x')$

damping term η and noise ξ in the Markovian limit for ${\bf k}={\bf 0}$

generalized dissipation-fluctuation relation holds

see also: M. Morikawa, PRD33 (1986); D. Boedecker et al, PRD52 (1995); C. Greiner et al, PRD55 (1997); D. Rischke PRC58 (1998); C. Greiner et al, Annals Phys. 270 (1998); F. Gautier et al. PRD86 (2012);...

T/MeV

Trajectories and isentropes at finite μ_B

 Solve coupled system of fluctuating sigma field and fluid dynamics + stochastic source term, for various initial conditions.

Isentropes in the PQM model

Fluid dynamical trajectories

- Fluid dynamical trajectories similar to the isentropes in the crossover region.
- No significant features in the trajectories left of the critical point.
- Right of the critical point: trajectories differ from isentropes and the system spends significant time in the spinodal region! ⇒ possibility of spinodal decomposition!

Domain formation & decay at the QH phase transition

• use a chiral effective model with correct low-temperature degrees of freedom in $N\chi$ FD! v. Dexheimer, S. Schramm, PRC81 (2010); M. Hempel, V. Dexheimer, S. Schramm, I. Iosilevskiy PRC88 (2013)

- droplets of quark density decay in the hadronic phase due to non-vanishing large pressure (cf. also J. Steinheimer, J. Randrup, V. Koch PRC89 (2014))
- future: combine initial and dynamical fluctuations, include particlization and late hadronic interactions

- static, finite-size medium, periodic boundary conditions
- fixed temperature (no back-coupling) at $\mu_q=100~{
 m MeV}$

 Shape is well reproduced, some discrepancy for higher-order cumulants (longer equilibration times needed)!

QM 2017 talk by C. Herold

Sigma field fluctuations - broadening of critical region

- evolution of temperature according to fluid dynamics ($T_{\rm ini} \sim$ 160 MeV, $\mu_{\rm ini} =$ 160 MeV)
- inhomogeneous medium evolution
- average fluctuations over a hypersurface of constant energydensity e/e_0

 critical region is broadened by the dynamical evolution of fluctuations and medium ⇒ enhances chances to be seen experimentally!

C. Herold et al, EPJA54 (2018)

Net-Proton fluctuations near the critical point

• From densities to particle via Cooper-Frye particlization:

$$\Xi \frac{\mathrm{d}N_i}{\mathrm{d}^3 p} = \int \mathrm{d}\sigma^\mu p_\mu(f_i^{\mathrm{eq}}(p) + \delta f)$$

• Here: couple the densities of the order parameter field with the fluid dynamical densities

C. Herold, MN, Y. Yan and C. Kobdaj, PRC93 (2016) no.2

• Future: include δf in the particlization and perform calculations for BES!

Net-Proton fluctuations near the critical point

• From densities to particle via Cooper-Frye particlization:

$$\Xi \frac{\mathrm{d}N_i}{\mathrm{d}^3 p} = \int \mathrm{d}\sigma^\mu p_\mu(f_i^{\mathrm{eq}}(p) + \delta f)$$

• Here: couple the densities of the order parameter field with the fluid dynamical densities

C. Herold, MN, Y. Yan and C. Kobdaj, PRC93 (2016) no.2

• Future: include δf in the particlization and perform calculations for BES!

Conventional fluid dynamics propagates thermal averages of the energy density, pressure, velocities, charge densities, etc.

However, ...

- ... already in equilibrium there are thermal fluctuations
- ... the fast processes, which lead to local equilibration also lead to noise!

Conventional ideal fluid dynamics:

$$T^{\mu
u} = T^{\mu
u}_{
m eq}$$

 $N^{\mu} = N^{\mu}_{
m eq}$

Y. Minami, T. Kunihiro, PTP122 (2010); P. Kovtun, G. Moore, P. Romatschke, PRD84 (2011); J. Kapusta, B. Miller, M. Stephanov PRC85 (2012); C. Chafin, T. Schäfer, PRA87 (2013); J. Kapusta, C. Young, PRC90 (2014); P. Romatschke, R. Young, PRA87 (2013); P. Kovtun, G. Moore, P. Romatschke, JHEP1407 (2014); C. Young, J. Kapusta, C. Gale, S. Jeon, B. Schenke, PRC91 (2015)

Conventional fluid dynamics propagates thermal averages of the energy density, pressure, velocities, charge densities, etc.

However, ...

- ... already in equilibrium there are thermal fluctuations
- ... the fast processes, which lead to local equilibration also lead to noise!

Conventional viscous fluid dynamics:

$$\begin{split} T^{\mu\nu} &= T^{\mu\nu}_{\rm eq} + \Delta T^{\mu\nu}_{\rm visc} \\ N^{\mu} &= N^{\mu}_{\rm eq} + \Delta N^{\mu}_{\rm visc} \end{split}$$

Y. Minami, T. Kunihiro, PTP122 (2010); P. Kovtun, G. Moore, P. Romatschke, PRD84 (2011); J. Kapusta, B. Müller, M. Stephanov PRC85 (2012); C. Chafin, T. Schäfer, PRA87 (2013); J. Kapusta, C. Young, PRC90 (2014); P. Romatschke, R. Young, PRA87 (2013); P. Kovtun, G. Moore, P. Romatschke, JHEP1407 (2014); C. Young, J. Kapusta, C. Gale, S. Jeon, B. Schenke, PRC91 (2015)

Conventional fluid dynamics propagates thermal averages of the energy density, pressure, velocities, charge densities, etc.

However, ...

- ... already in equilibrium there are thermal fluctuations
- ... the fast processes, which lead to local equilibration also lead to noise!

Fluctuating viscous fluid dynamics:

$$\begin{split} T^{\mu\nu} &= T^{\mu\nu}_{\rm eq} + \Delta T^{\mu\nu}_{\rm visc} + \Xi^{\mu\nu} \\ N^{\mu} &= N^{\mu}_{\rm eq} + \Delta N^{\mu}_{\rm visc} + I^{\mu} \end{split}$$

Y. Minami, T. Kunihiro, PTP122 (2010); P. Kovtun, G. Moore, P. Romatschke, PRD84 (2011); J. Kapusta, B. Miiller, M. Stephanov PRC85 (2012); C. Chafin, T. Schäfer, PRA87 (2013); J. Kapusta, C. Young, PRC90 (2014); P. Romatschke, R. Young, PRA87 (2013); P. Kovtun, G. Moore, P. Romatschke, JHEP1407 (2014); C. Young, J. Kapusta, C. Gale, S. Jeon, B. Schenke, PRC91 (2015)

Conventional fluid dynamics propagates thermal averages of the energy density, pressure, velocities, charge densities, etc.

However, ...

- ... already in equilibrium there are thermal fluctuations
- ... the fast processes, which lead to local equilibration also lead to noise!

Fluctuating viscous fluid dynamics:

$$\begin{split} T^{\mu\nu} &= T^{\mu\nu}_{\rm eq} + \Delta T^{\mu\nu}_{\rm visc} + \Xi^{\mu\nu} \\ N^{\mu} &= N^{\mu}_{\rm eq} + \Delta N^{\mu}_{\rm visc} + I^{\mu} \end{split}$$

- (*T^{μν} T^{μν}*) give viscosities (Kubo-formula), consistently with dissipation-fluctuation theorem fluctuations need to be included as well!
- This is especially important at the critical point, because the true critical mode is the net-baryon density!

Y. Minami, T. Kunihiro, PTP122 (2010); P. Kovtun, G. Moore, P. Romatschke, PRD84 (2011); J. Kapusta, B. Miiller, M. Stephanov PRC85 (2012); C. Chafin, T. Schäfer, PRA87 (2013); J. Kapusta, C. Young, PRC90 (2014); P. Romatschke, R. Young, PRA87 (2013); P. Kovtun, G. Moore, P. Romatschke, JHEP1407 (2014); C. Young, J. Kapusta, C. Gale, S. Jeon, B. Schenke, PRC91 (2015)

- · correlation functions from linearized fluctuations describe noninteracting modes
- if nonlinearities are included \rightarrow interaction of modes
 - \rightarrow modification of correlations
 - \rightarrow contributions to transport coefficients
- symmetrized correlator:

$$G_{\mathcal{S}}^{xyxy}(\omega,\mathbf{0}) = \int \mathrm{d}^{3}x \mathrm{d}t \, e^{i(\omega t - \mathbf{k} \cdot \mathbf{x})} \left\langle \frac{1}{2} \{ \mathcal{T}^{xy}(t,\mathbf{x}), \mathcal{T}^{xy}(0,\mathbf{0}) \} \right\rangle$$

• for the shear-shear contribution \Rightarrow

$$G_{R,\text{shear-shear}}^{xyxy}(\omega,\mathbf{0}) = -\frac{7T}{90\pi^2}\Lambda^3 - i\omega\frac{7T}{60\pi^2}\frac{\Lambda}{\gamma_{\eta}} + (i+1)\omega^{3/2}\frac{7T}{90\pi^2}\frac{1}{\gamma_{\eta}^{3/2}}$$

P. Kovtun, G. Moore, P. Romatschke, PRD84 (2011); C. Chafin, T. Schfer, PRA87 (2013); P. Romatschke, R. Young, PRA87 (2013)

- · correlation functions from linearized fluctuations describe noninteracting modes
- if nonlinearities are included \rightarrow interaction of modes
 - \rightarrow modification of correlations
 - \rightarrow contributions to transport coefficients
- symmetrized correlator:

$$G_{S}^{xyxy}(\omega,\mathbf{0}) = \int \mathrm{d}^{3}x \mathrm{d}t \, e^{i(\omega t - \mathbf{k} \cdot \mathbf{x})} \left\langle \frac{1}{2} \{ \mathcal{T}^{xy}(t,\mathbf{x}), \mathcal{T}^{xy}(0,\mathbf{0}) \} \right\rangle$$

• for the shear-shear contribution \Rightarrow

$$G_{R, \mathrm{shear-shear}}^{xyxy}(\omega, \mathbf{0}) = -rac{7T}{90\pi^2}\Lambda^3 - i\omegarac{7T}{60\pi^2}rac{\Lambda}{\gamma\eta} + (i+1)\omega^{3/2}rac{7T}{90\pi^2}rac{1}{\gamma\eta^{3/2}}$$

cutoff-dependent fluctuation contribution to the pressure

P. Kovtun, G. Moore, P. Romatschke, PRD84 (2011); C. Chafin, T. Schfer, PRA87 (2013); P. Romatschke, R. Young, PRA87 (2013)

- · correlation functions from linearized fluctuations describe noninteracting modes
- if nonlinearities are included \rightarrow interaction of modes
 - \rightarrow modification of correlations
 - \rightarrow contributions to transport coefficients
- symmetrized correlator:

$$G_{S}^{xyxy}(\omega,\mathbf{0}) = \int \mathrm{d}^{3}x \mathrm{d}t \, e^{i(\omega t - \mathbf{k} \cdot \mathbf{x})} \left\langle \frac{1}{2} \{ \mathcal{T}^{xy}(t,\mathbf{x}), \mathcal{T}^{xy}(0,\mathbf{0}) \} \right\rangle$$

• for the shear-shear contribution \Rightarrow

$$G_{R, {
m shear-shear}}^{xyxy}(\omega, \mathbf{0}) = -rac{7T}{90\pi^2}\Lambda^3 - i\omegarac{7T}{60\pi^2}rac{\Lambda}{\gamma\eta} + (i+1)\omega^{3/2}rac{7T}{90\pi^2}rac{1}{\gamma_\eta^{3/2}}$$

cutoff-dependent fluctuation contribution to the pressure

cutoff-dependent correction to η

P. Kovtun, G. Moore, P. Romatschke, PRD84 (2011); C. Chafin, T. Schfer, PRA87 (2013); P. Romatschke, R. Young, PRA87 (2013)

- · correlation functions from linearized fluctuations describe noninteracting modes
- if nonlinearities are included \rightarrow interaction of modes
 - \rightarrow modification of correlations
 - \rightarrow contributions to transport coefficients
- symmetrized correlator:

$$G_{\mathcal{S}}^{xyxy}(\omega,\mathbf{0}) = \int \mathrm{d}^{3}x \mathrm{d}t \, e^{i(\omega t - \mathbf{k} \cdot \mathbf{x})} \left\langle \frac{1}{2} \{T^{xy}(t,\mathbf{x}), T^{xy}(\mathbf{0},\mathbf{0})\} \right\rangle$$

• for the shear-shear contribution \Rightarrow

$$G_{R,\text{shear-shear}}^{xyxy}(\omega, \mathbf{0}) = -\frac{7T}{90\pi^2} \Lambda^3 - i\omega \frac{7T}{60\pi^2} \frac{\Lambda}{\gamma_{\eta}} + (i+1)\omega^{3/2} \frac{7T}{90\pi^2} \frac{1}{\gamma_{\eta}^{3/2}}$$

cutoff-dependent fluctuation contribution to the pressure

cutoff-dependent correction to η

frequency-dependent contribution to η and τ_{π}

P. Kovtun, G. Moore, P. Romatschke, PRD84 (2011); C. Chafin, T. Schfer, PRA87 (2013); P. Romatschke, R. Young, PRA87 (2013)

 $\partial_{\mu}N^{\mu}_{B} = 0$ net-baryon number conservation

The diffusive dynamics occurs such as to minimize the free energy \mathcal{F} :

$$\partial_t n_B = \kappa \nabla^2 \left(\frac{\delta \mathcal{F}}{\Delta n_B} [\Delta n_B] \right)$$

 $\partial_{\mu}N^{\mu}_{B} = 0$ net-baryon number conservation

The diffusive dynamics occurs such as to minimize the free energy \mathcal{F} :

$$\partial_t n_B = \kappa \nabla^2 \left(\frac{\delta \mathcal{F}}{\Delta n_B} [\Delta n_B] \right) + \nabla \mathbf{J}$$

For the study of intrinsic fluctuations include a stochastic current:

$$J(t,x) = \sqrt{2T\kappa}\zeta(t,x)$$

 $\partial_{\mu}N^{\mu}_{B} = 0$ net-baryon number conservation

The diffusive dynamics occurs such as to minimize the free energy \mathcal{F} :

$$\partial_t n_B = \kappa \nabla^2 \left(\frac{\delta \mathcal{F}}{\Delta n_B} [\Delta n_B] \right) + \nabla \mathbf{J}$$

For the study of intrinsic fluctuations include a stochastic current:

$$J(t,x) = \sqrt{2T\kappa}\zeta(t,x)$$

 $\zeta(t,x)$ is Gaussian: $\langle \zeta^{(2n+1)} \rangle = 0$ and $\langle \zeta^{(2n)} \rangle = \sum_{i \neq j=0}^{2n} \langle \zeta_i \zeta_j \rangle^n$ $\zeta(t,x)$ is uncorrelated (white noise): $\langle \zeta(x,t)\zeta(0,0) \rangle = \delta(x)\delta(t)$

MN, M. Bluhm, T. Schaefer, S. Bass, work in progress

 $\partial_{\mu}N^{\mu}_{B} = 0$ net-baryon number conservation

The diffusive dynamics occurs such as to minimize the free energy \mathcal{F} :

$$\partial_t n_B = \kappa \nabla^2 \left(\frac{\delta \mathcal{F}}{\Delta n_B} [\Delta n_B] \right) + \nabla \mathbf{J}$$

For the study of intrinsic fluctuations include a stochastic current:

$$J(t,x) = \sqrt{2T\kappa}\zeta(t,x)$$

$$\begin{split} \zeta(t,x) \text{ is Gaussian: } \langle \zeta^{(2n+1)} \rangle &= 0 \text{ and } \langle \zeta^{(2n)} \rangle = \sum_{i \neq j=0}^{2n} \langle \zeta_i \zeta_j \rangle^n \\ \zeta(t,x) \text{ is uncorrelated (white noise): } \langle \zeta(x,t)\zeta(0,0) \rangle &= \delta(x)\delta(t) \\ \text{Fluctuation-dissipation theorem} \Rightarrow P_{\text{eq}}[\Delta n_B] = \frac{1}{Z} \exp\left(\frac{-\mathcal{F}[\delta n_B]}{T}\right) \end{split}$$

MN, M. Bluhm, T. Schaefer, S. Bass, work in progress

The diffusion equation:

$$\partial_t n_B = \frac{D}{n_c} \left(m^2 - K \nabla^2 \right) \nabla^2 n_B + D \nabla^2 \left(\frac{\lambda_3}{n_c^2} \Delta n_B^2 + \frac{\lambda_4}{n_c^3} \Delta n_B^3 + \frac{\lambda_6}{n_c^5} \Delta n_B^5 \right) + \sqrt{2Dn_c} \nabla \zeta$$

The couplings depend on temperature via the correlation length $\xi(T)$:

M. Tsypin PRL73 (1994); PRB55 (1997)

parameter choice: $\xi_0 \sim 0.5 \text{ fm}, n_c = 1/3 \text{ fm}^{-3}$ K = 1 (surface tension) $\tilde{\lambda}_3, \tilde{\lambda}_4, \tilde{\lambda}_6 \text{ (universal but mapping to QCD)}$

Scaling of equilibrium cumulants

Expected scaling in an infinite system ($\xi \ll V$): M. Stephanov, PRL102 (2009)

$$\sigma_V^2 \propto \xi^2$$

 $(S\sigma)_V \propto \xi^{2.5}$
 $(\kappa\sigma^2)_V \propto \xi^5$

Here, a finite system with exact baryon conservation $(\xi \lesssim V)$! Can be systematically studied in $\xi/V \Rightarrow$ affects equilibrium scaling! E.g. for the skewness terms $\propto \lambda_3 \lambda_4$ and $\propto \lambda_3 \lambda_6$ contribute with opposite sign.

$$\begin{split} & \sigma_V^2 \propto \xi^{1.3 \pm 0.05} \\ & (S\sigma)_V \propto -\#\xi^{1.47 \pm 0.05} + \#\xi^{2.4 \pm 0.05} \\ & (\kappa \sigma^2)_V \propto \xi^{2.5 \pm 0.1} \end{split}$$

26/30

Dynamics: time-dependent couplings

time-dependent temperature: $T(\tau) = T_0 \left(\frac{\tau_0}{\tau}\right)^{dc_s^2}$ 10 8 6 4 2 0 2 3 4 5 1 $\tau - \tau_0$ [fm]

- choose $c_s^2 = 1/3$ (should be $c_s^2 = c_s^2(\mathcal{T}))$
- initialize system at $T_0 = 0.5$ GeV, $D(T_0) = 1$ fm
- T_c reached at $\tau \tau_0 = 2.33$ fm

27 / 30

Dynamics: time evolution of critical fluctuations

- shift of extrema for variance and kurtosis (retardation effects) to later times corresponding to T(τ) < T_c
- |extremal values| in dynamical simulations below equilibrium values (nonequilibrium effects):

$$\begin{split} (\sigma_V^2)_{\rm dyn}^{\rm max} &\approx 0.75 \, (\sigma_V^2)_{\rm eq}^{\rm max} \\ ((\kappa \sigma^2)_V)_{\rm dyn}^{\rm min} &\approx 0.5 \, (\sigma_V^2)_{\rm eq}^{\rm min} \end{split}$$

• expected behavior with varying D and c_s^2 (expansion rate)

MN, M. Bluhm, T. Schaefer, S. Bass, work in progress

What's next?

1.)

critical net-baryon diffusion

FRG input

collaboration with M. Bluhm, Y. Jiang, M. Mitter, J. Pawlowski, F. Rennecke, N. Wink and

3+1d fluctuating fluid dynamics

2.)

29/30

collaboration with M. Bluhm and supported by "Etoiles Montantes" from

= quantitative signatures of the critical point in HIC

Toward the discovery of the critical point

more interesting stuff

Numerical realization

$$\partial_{\mu}T^{\mu\nu} = \partial_{\mu}\left(T^{\mu\nu}_{\rm eq} + \Delta T^{\mu\nu}_{\rm visc} + \Xi^{\mu\nu}\right) = 0$$

- Proportionality to 1/V reproduced for the correction to the average and the variance of energy density in the local rest frame.
- Implementing fluid dynamical fluctuations is important,

but requires a sustained and systematic effort!

MN, M. Bluhm, T. Schaefer, S. Bass, CPOD 2016, arXiv:1704.03553

Non-critical effects on fluctuation observables

- Limited acceptance & detector efficiency. (A. Bzdak, V. Koch, PRC86 (2012); PRC91 (2015)
- Isospin randomization. (M. Kitazawa, M. Asakawa, PRC85, PRC86 (2012))
- Volume fluctuations (V. Skokov, B. Friman, K. Redlich, PRC88 (2013)

 $(\rightarrow \text{ strongly intensive measures}).$

E. Sangaline, arxiv:1505.00261; M. Gorenstein, M. Gazdzicki, PRC84 (2011)

Global net-baryon number conservation.

MN, T. Schuster, M. Mitrovski, R. Stock, M. Bleicher, EPJC72 (2012); A. Bzdak, V. Koch, V. Skokov, PRC87 (2013)

- ⇒ These effects are or can be included in microscopic transport models, e.g. UrQMD, (P)HSD, or hybrid models = valuable baseline studies!
 - Initial fluctuations due to baryon stopping.

\Rightarrow Need to be well understood!

Non-critical effects on fluctuation observables

• Global net-baryon number conservation.

(MN, T. Schuster, M. Mitrovski, R. Stock, M. Bleicher, EPJC72 (2012); A. Bzdak, V. Koch, V. Skokov, PRC87 (2013)

- In a microscopic transport model the microcanonical nature of individual scatterings is preserved.
- Strongly negative kurtosis of net-baryon number due to global conservation and volume fluctuations.
- Net-proton fluctuations follow this trend slightly.

Couple order parameter to measurable particles: $g_p \bar{p} \sigma p$

M. Stephanov, K. Rajagopal, E. Shuryak, PRL81 (1998), PRD60 (1999); C. Athanasiou, K. Rajagopal, M. Stephanov, PRD82 (2010)

- Finite expectation value of σ in the chirally broken phase contributes to the mass of the proton
- Fluctuations $\Delta\sigma$ lead to fluctuations in the proton mass $m_p \rightarrow m_p + g\Delta\sigma$,
- Modification of flucs (statistical + critical) in the distrib. function:

$$\delta f = \delta f^0 + g \frac{\partial f^0}{\partial m_p} \Delta \sigma$$

4/12

Critical net-proton fluctuations - phenomenology

MN, QM2015 proceedings, 1601.07437

- Equilibrium 3d Ising model assumptions for $\Delta\sigma$
- Fluctuations in net-protons at chemical freeze-out
- Critical fluctuations are reduced but survive when resonance decays are included M. Bluhm, MN, S. Bass, T. Schaefer work in progress
- Particle emission during Cooper-Frye freeze-out over a hypersurface from fluid dynamical evolution

L. Jiang, P. Li and H. Song, arXiv:1512.06164

Still no dynamical fluctuations...

Correlation function and - length

For K = 0 fluctuations are delta-correlated, finite surface tension leads to a finite correlation length with $\xi > \Delta x$.

Thermodynamic correlation function: $\langle \delta n_B(r) \delta n_B(0) \rangle = \frac{n_c^2}{2m^2\xi} \exp\left(-\frac{|r|}{\xi}\right)$

Broader spatial correlations for temperatures near $T_c = 0.15$ GeV!

Local fluctuations need to be balanced within L in order to conserve net-baryon density exactly.

net-B conservation: $\int_L dr \langle \delta n_B(r) \delta n_B(0) \rangle = 0$: \rightarrow correction term < 0! \Rightarrow perfectly reproduced by the numerical result!

note: very large equilibration times needed for $L \to \infty$

Ginzburg-Landau model in equilibrium

- nonlinear interactions reduce S_k for long-wavelength fluctuations!
- spatial correlations are significantly smaller!
- \Rightarrow at the level of 2-point correlations, results of Ginzburg-Landau model can be described by a **renormalized** Gauss+surface model (with m^2 modified, K essentially unaffected)!

*T***-dependence of non-Gaussian fluctuations**

Kurtosis vanishes in the absence of nonlinear interactions!

 negative kurtosis observed for Ginzburg-Landau model with a pronounced signal near T_c!

Note: we choose L = 20 fm ($N_x = 256$) for the following studies!

Integrated variance

- in this talk: study of local variance, taken over $V = \Delta x$, where $\sigma^2 \propto \xi!$
- integrated variance: $\sigma_V^2 = \frac{1}{V^2} \int dx \int dy \langle \Delta n_B(x) \Delta n_B(y) \rangle \propto \xi^2$

M. Stephanov et al. PRL81 (1998); PRD60 (1999); PRL102 (2009)

• including finite-size and $\langle N_B \rangle$ -conservation we find:

$$\sigma_V^2 \propto \xi^n$$
 with $n \sim 1.80 \pm 0.05$!

Dynamics: temperature quench and equilibration

- temperature quench: at τ_0 temperature drops from $T_0 = 0.5$ GeV to T^*
- fast initial relaxation
- variance approaches equilibrium value faster than kurtosis
- long relaxation times near T_c
 B. Berdnikov, K. Rajagopal PRD61 (2000)

11 / 12

About the critical mode

- At $\mu_B \neq 0 \sigma$ mixes with the net-baryon density *n* (and *e* and \vec{m})
- In a Ginzburg-Landau formalism:

$$V(\sigma, n) = \int \mathrm{d}^3 x \left(\sum_m (a_m \sigma^m + b_m n^m) + \sum_{m,l} c_{m,l} \sigma^m n^l \right) - h\sigma - jn$$

- $V(\sigma, n)$ has a flat direction: $(a\sigma, bn)$ with vanishing curvature $D \rightarrow 0$ at the CP
- Equations of motion (including symmetries in V(σ, n)):

$$\partial_t \sigma = -\Gamma \delta V / \delta \sigma + \dots \qquad \partial_t n = \gamma \vec{\nabla}^2 \delta V / \delta n + \dots$$

• eigenfrequencies

 $\omega_1 \propto -i\Gamma a \longrightarrow$ short time scale $\omega_2 \propto -i\gamma D/a \, \vec{q}^2 \longrightarrow$ long time scale

• The diffusive mode becomes the critical mode in the long-time dynamics. These fluctuations need to be included at the critical point!

H. Fuji, M. Ohtani PRD70 (2004); M. Stephanov, D. Son PRD70 (2004)