Charting Hadronic *Interiors **Craig Roberts**

Collaborators: 2015-Present

Students, Postdocs, Profs.

- 1. Jing CHEN (Peking U.)
- 2. Ya LU (Nanjing U.)
- 3. Chen CHEN (UNESP São Paulo, USTC & IIT);
- 4. Zhu-Fang CUI (Nanjing U.);
- 5. J. Javier COBOS-MARTINEZ (U Michoácan);
- 6. Minghui DING (Nankai U.);
- 7. Fei GAO (Peking U.);
- 8. L. Xiomara GUTIÉRREZ-GUERRERO (MCTP)
- 9. Bo-Lin LI (Nanjing U.)
- 10. Cédric MEZRAG (INFN-Roma) ;
- 11. Si-xue QIN (Chongqing);
- 12. Khépani RAYA (U. Huelva, U Michoácan);
- 13. Eduardo ROJAS (Antioquia U.)
- 14. Jorge SEGOVIA (IFAE&BIST, Barcelona);
- 15. Chao SHI (ANL, Nanjing U.)
- 16. Shu-Sheng XU (Nanjing U.)

- 17. Adnan Bashir (U Michoácan);
- 18. Daniele Binosi (ECT*)
- 19. Stan Brodsky (SLAC);
- 20. Volker Burkert (Jlab)
- 21. Lei Chang (Nankai U.);
- 22. Bruno El-Bennich (São Paulo);
- 23. Tanja Horn (Catholic U. America)
- 24. Yu-Xin Liu (PKU);
- 25. Hervé Moutarde (CEA, Saclay) ;
- 26. Joannis Papavassiliou (U.Valencia)
- 27. M. Ali Paracha (NUST, Islamabad)
- 28. Jose Rodriguez Quintero (U. Huelva);
- 29. Franck Sabatié (CEA, Saclay);
- 30. Sebastian Schmidt (IAS-FZJ & JARA);
- 31. Peter Tandy (KSU);
- 32. Shaolong WAN (USTC);
- 33. Hong-Shi ZONG (Nanjing U)

Emergent Phenomena in the Standard Model

- Existence of the Universe as we know it depends critically on the following empirical facts:
- Proton is massive, *i.e.* the mass-scale for strong interactions is vastly different to that of electromagnetism
- Proton is absolutely stable, despite being a composite object constituted from three valence quarks
- Pion is unnaturally light (not massless, but lepton-like mass), despite being a strongly interacting composite object built from a valence-quark and valence antiquark

Emergence: low-level rules producing high-level phenomena, with enormous apparent complexity

- Strong-QCD is the first place we fully experience the collisions and collusions between relativity and quantum mechanics.
- In attempting to match QCD with Nature, we confront the diverse complexities of nonperturbative, nonlinear dynamics in relativistic quantum field theory, *e.g.*
 - loss of particle number conservation,
 - frame and scale dependence of the explanations and interpretations of observable processes,
 - and evolving character of the relevant degrees-of-freedom.

Model independent statement: There is quark orbital angular momentum in the pion Probable corollary: What is true in the pion, is true in the proton

- Strong-QCD is the first place we fully experience the collisions and collusions between relativity and quantum mechanics.
- In attempting to match QCD with Nature, we confront the diverse complexities of nonperturbative, nonlinear dynamics in relativistic quantum field theory, *e.g.*
 - loss of particle number conservation,
 - frame and scale dependence of the explanations and interpretations of observable processes,
 - and evolving character of the relevant degrees-of-freedom.
- Origin and distribution of <u>mass</u>, <u>momentum</u>, <u>spin</u>, etc. within hadrons? e.g. where is the proton's spin and how is the pion spinless?
 - Don't forget the latter!
 - How do all the spin-1/2 quarks and spin-1 gluons combine to make a massless, J=0 composite mode?

Model independent statement: There is quark orbital angular momentum in the pion Probable corollary: What is true in the pion, is true in the proton

- Strong-QCD is the first place we fully experience the collisions and collusions between relativity and quantum mechanics.
- In attempting to a log COD with Net to a function of the line o
 - loss of par
 - frame and So-called spin crisis is largely the consequence
 - and evolvi
- Origin and distribution of <u>mass</u>, <u>momentum</u>, <u>spin</u>, etc. within hadrons? e.g. where is the proton's spin and how is the pion spinless?
 - Don't forget the latter!
 - How do all the spin-1/2 quarks and spin-1 gluons combine to make a massless, J=0 composite mode?

Ideas: Old & New 10602: 010 & 1000

Particle Data Group

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

gluon REFERENCES

YNDURAIN	95	PL B345 524	F.J. Yndurain	(MADU)
ABREU	92E	PL B274 498	P. Abreu et al.	(DELPHI Collab.)
ALEXANDER	91H	ZPHY C52 543	G. Alexander et al.	(OPAL Collab.)
BEHREND	82D	PL B110 329	H.J. Behrend et al.	(CELLO Collab.)
BERGER	80D	PL B97 459	C. Berger et al.	(PLUTO Collab.)
BRANDELIK	80C	PL B97 453	R. Brandelik et al.	(TASSO Collab.)

Pinch Technique: Theory and Applications Daniele Binosi & Joannis Papavassiliou Phys. Rept. 479 (2009) 1-152

Gluon Gap Equation

Bridging a gap between continuum-QCD and ab initio predictions of hadron observables, D. Binosi et al., arXiv:1412.4782 [nucl-th], Phys. Lett. B742 (2015) 183-188

In QCD: Gluons

Massive Gauge Bosons!

Gauge boson cannibalism

- ... a new physics frontier ... within the Standard Model
- Asymptotic freedom means
 - ... ultraviolet behaviour of QCD is controllable
- Dynamically generated masses for gluons and quarks means that QCD dynamically generates its own infrared cutoffs
 - Gluons and quarks with
 - wavelength $\lambda > 1/\text{mass} \approx 0.5 \text{ fm}$
 - decouple from the dynamics ... Confinement?!
- How does that affect observables?
 - It will have an impact in any continuum study

Electron Ion Collider: The Next QCD Frontier

- Possibly (probably?) plays a role in gluon saturation ...
- In fact, could be a harbinger of gluon saturation?

Quark Fragmentation

- A quark begins to propagate
- But after each "step" of length σ ≈ 1/m_g, on average, an interaction occurs, so that the quark *loses* its identity, sharing it with other partons
- Finally, a cloud of partons is produced, which coalesces into colour-singlet final states

- A quark begins to meson propagate meson meson meson
- But Confinement in hadron physics is largely a len dynamical phenomenon, intimately connected with inte the fragmentation effect. on tha It is unlikely to be comprehended without simultaneously understanding dynamical chiral symmetry breaking, which is the origin of a nearlyide oth Fina par massless hadron (pion). col

QCP's Running Coupling

Process independent strong running coupling Binosi, Mezrag, Papavassiliou, Roberts, Rodriguez-Quintero arXiv:1612.04835 [nucl-th], Phys. Rev. D 96 (2017) 054026/1-7

Process-<u>independent</u> effective-charge in QCD

- Modern continuum & lattice methods for analysing gauge sector enable "Gell-Mann – Low" running charge to be defined in QCD
- Combined continuum and lattice analysis of QCD's gauge sector yields a parameter-free prediction
- N.B. Qualitative change in $\hat{\alpha}_{PI}(k) \text{ at } k ≈ ½ m_p$

Process independent strong running coupling Binosi, Mezrag, Papavassiliou, Roberts, Rodriguez-Quintero arXiv:1612.04835 [nucl-th], Phys. Rev. D 96 (2017) 054026/1-7

The QCD Running Coupling, A. Deur, S. J. Brodsky and G. F. de Teramond, Prog. Part. Nucl. Phys. **90** (2016) 1-74

- ➢ Near precise agreement between process-independent $\hat{\alpha}_{PI}$ and α_{g1} and $\hat{\alpha}_{PI} ≈ \alpha_{HM}$
- > Perturbative domain:

$$\begin{split} \alpha_{g_1}(k^2) &= \alpha_{\overline{\mathrm{MS}}}(k^2)(1+1.14\,\alpha_{\overline{\mathrm{MS}}}(k^2)+\ldots)\,,\\ \widehat{\alpha}_{\mathrm{PI}}(k^2) &= \alpha_{\overline{\mathrm{MS}}}(k^2)(1+1.09\,\alpha_{\overline{\mathrm{MS}}}(k^2)+\ldots)\,,\\ \text{difference} &= (1/20)\,\alpha_{\overline{\mathrm{MS}}}^2 \end{split}$$

- Parameter-free prediction:
 - curve completely determined by results obtained for gluon & ghost two-point functions using continuum and lattice-regularised QCD.

Data = process dependent effective charge: α_{g1} , defined via Bjorken Sum Rule

QCD Effective Charge

$\hat{\alpha}_{PI}$ is a new type of effective charge

- direct analogue of the Gell-Mann–Low effective coupling in QED, *i.e.* completely determined by the gauge-boson two-point function.
- $\succ \hat{\alpha}_{\scriptscriptstyle PI}$ is
 - process-independent
 - appears in every one of QCD's dynamical equations of motion
 - known to unify a vast array of observables
- $\succ \hat{\alpha}_{PI}$ possesses an infrared-stable fixed-point
 - Nonperturbative analysis demonstrating absence of a Landau pole in QCD
- QCD is IR finite, owing to dynamical generation of gluon mass-scale, which also serves to eliminate the Gribov ambiguity
- \succ Asymptotic freedom \Rightarrow QCD is well-defined at UV momenta
- QCD is therefore unique amongst known 4D quantum field theories

- Potentially, defined & internally consistent at all momenta Craig Roberts. Charting Hadronic Interiors (64p)

 $\frac{Z(p^2)}{i\gamma \cdot p + M(p^2)}$ S(p)

Quark Gap Equation

- Dynamical chiral symmetry breaking (DCSB) is a key emergent phenomenon in QCD
- > Expressed in hadron wave functions not in vacuum condensates
- Contemporary theory indicates that DCSB is responsible for more than 98% of the visible mass in the Universe; namely, given that classical massless-QCD is a conformally invariant theory, then DCSB is the origin of mass from nothing.
- > **Dynamical**, not spontaneous
 - Add nothing to QCD ,
 No Higgs field, nothing!
 Effect achieved purely
 through quark+gluon
 dynamics.

Trace anomaly: massless quarks

Maris, Roberts and Tandy <u>nucl-th/9707003</u>, Phys.Lett. B**420** (1998) 267-273

-Treiman relation Pion's Bethe-Salpeter amplitude Solution of the Bethe-Salpeter equation $\Gamma_{\pi^j}(k;P) = \tau^{\pi^j} \gamma_5 \left[iE_{\pi}(k;P) + \gamma \cdot PF_{\pi}(k;P) \right]$ $+ \gamma \cdot k \, k \cdot P \, G_{\pi}(k;P) + \sigma_{\mu\nu} \, k_{\mu} P_{\nu} \, H_{\pi}(k;P)$ > Dressed-quark propagator $S(p) = \frac{1}{i\gamma \cdot p A(p^2) + B(p^2)}$ > Axial-vector Ward-Takahashi identity entails $f_{\pi}E_{\pi}(k; P = 0) = B(k^2)$ *Miracle*: two body problem solved, Owing to DCSB almost completely, once solution of & Exact in Chiral QCD one body problem is known Craig Roberts. Charting Hadronic Interiors (64p) 03.04.2018: Correlation Functions to QCD 23

Pion's Goldberger

Rudimentary version of this relation is apparent in Nambu's Nobel Prize work

Model independent Gauge independent Scheme independent

$\pi E_{\pi}(p^2) =$ B(p²) e most fundamental of Goldsto Craig Roberts. Charting Hadronic Interiors (64p)

24

Rudimentary version of this relation is apparent in Nambu's Nobel Prize work

Model independent Gauge independent Scheme independent

$\frac{E_{\pi}(p^2)}{\Rightarrow}B(p^2)$ Pion exists if, and only if, mass is dynamically generated Craig Roberts. Charting Hadronic Interiors (64p)

25 03.04.2018: Correlation Functions to QCD

This algebraic identity is why QCD's pion is massless in the chiral limit

Enigma of mass

The quark level Goldberger-Treiman relation shows that DCSB has a very deep and far reaching impact on physics within the strong interaction sector of the Standard Model; viz.,

Goldstone's theorem is fundamentally an expression of equivalence between the one-body problem and the two-body problem in the pseudoscalar channel.

- This emphasises that Goldstone's theorem has a pointwise expression in QCD
- Hence, pion properties are an almost direct measure of the dressed-quark mass function.
- Thus, enigmatically, the properties of the massless pion are the cleanest expression of the mechanism that is responsible for almost all the visible mass in the universe.

Observing Mass

Pign's Waye Function

Imaging dynamical chiral symmetry breaking: pion wave function on the light front, Lei Chang, et al., <u>arXiv:1301.0324 [nucl-th]</u>, Phys. Rev. Lett. **110** (2013) 132001 (2013) [5 pages].

^{III} Pion's valence-quark Distribution Amplitude

- Methods have been developed that enable direct computation of the pion's light-front wave function
- > $\varphi_{\pi}(x)$ = twist-two parton distribution amplitude = projection of the pion's Poincaré-covariant wave-function onto the light-front

$$\varphi_{\pi}(x) = Z_2 \operatorname{tr}_{CD} \int \frac{d^4k}{(2\pi)^4} \,\delta(n \cdot k - xn \cdot P) \,\gamma_5 \gamma \cdot n \,S(k) \Gamma_{\pi}(k;P) S(k-P)$$

Results have been obtained with the DCSB-improved DSE kernel, which unifies matter & gauge sectors

$$\varphi_{\pi}(x) \propto x^{\alpha} (1-x)^{\alpha}$$
, with $\alpha \approx 0.5$

Imaging dynamical chiral symmetry breaking: pion wave function on the light front, Lei Chang, et al., <u>arXiv:1301.0324 [nucl-th]</u>, Phys. Rev. Lett. **110** (2013) 132001 (2013) [5 pages].

Pion's valence-quark Distribution Amplitude

> Continuum-QCD prediction: marked broadening of $\varphi_{\pi}(\mathbf{x})$, which owes to DCSB

Leading-twist PDAs of S-wave light-quark mesons

- End of a <u>long</u> story (longer than 30 years war)
- Continuum predictions that pion and kaon PDAs are broad, concave functions confirmed by simulations of lattice-regularised QCD
 - Pion Distribution Amplitude from Lattice QCD, Jian-Hui Zhang et al., Phys.Rev. D95 (2017) 094514; 1702.00008
 - Kaon Distribution Amplitude from Lattice QCD and the Flavor SU(3) Symmetry, Jiunn-Wei Chen et al., arXiv:1712.10025 [hep-ph]
 - Pion and kaon valence-quark parton quasidistributions, S.-S. Xu, L. Chang et al. arXiv:1802.09552 [nucl-th]
- Continuum analyses predict that these properties <u>characterise</u> the leading-twist PDAs of *all S*-wave light-quark mesons
- Numerous empirically verifiable predictions

Pion electromagnetic form factor at spacelike momenta L. Chang et al., arXiv:1307.0026 [nucl-th], Phys. Rev. Lett. 111, 141802 (2013)

Pion's electromagnetic form factor

➤ Example:

PDA Broadening has enormous impact on understanding $F_{\pi}(Q^2)$

Figure 2.2: Existing (dark blue) data and projected (red, orange) uncertainties for future data on the pion form factor. The solid curve (A) is the QCD-theory prediction bridging large and short distance scales. Curve B is set by the known long-distance scale—the pion radius. Curves C and D illustrate calculations based on a short-distance quark-gluon view. Pion electromagnetic form factor at spacelike momenta L. Chang et al., arXiv:1307.0026 [nucl-th], Phys. Rev. Lett. 111, 141802 (2013)

Pion's electromagnetic form factor

➤ Example:

PDA Broadening has enormous impact on understanding $F_{\pi}(Q^2)$

Appears that JLab12 is within reach of first verification of a QCD hard-scattering formula

Unified with kaon ... *Exposing* strangeness: projections for kaon electromagnetic form factors, Fei Gao, L. Chang et al. Phys. Rev. D **96** (2017) 034024

Figure 2.2: Existing (dark blue) data and projected (red, orange) uncertainties for future data on the pion form factor. The solid curve (A) is the QCD-theory prediction bridging large and short distance scales. Curve B is set by the known long-distance scale—the pion radius. Curves C and D illustrate calculations based on a short-distance quark-gluon view.

Parton distribution amplitudes of S-wave heavy-quarkonia Minghui Ding, Fei Gao, Lei Chang, Yu-Xin Liu and Craig D. Roberts arXiv:1511.04943 [nucl-th], Phys. Lett. B **753** (2016) pp. 330-335

- When does Higgs mechanism begin to influence mass generation?

- Transition boundary lies just above m_{strange}
- Comparison between distributions of light-quarks and those involving strange-quarks is good place to seek signals for strong-mass generation

Emergent Mass vs. Higgs Mechanism

Structure of Baryons

Baryon Waye Functions
Light-cone distribution amplitudes of the nucleon and negative parity nucleon resonances from lattice QCD V. M. Braun *et al.*, <u>Phys. Rev. D 89 (2014) 094511</u> Light-cone distribution amplitudes of the baryon octet G. S. Bali *et al.* JHEP 1602 (2016) 070

- First IQCD results for n=0, 1 moments of the leading twist PDA of the nucleon are available
- Used to constrain strength (a₁₁) of the leading-order term in a conformal expansion of the nucleon's PDA:

 $\Phi(x_1, x_2, x_3)$

- = $120 x_1 x_2 x_3 [1 + a_{11} P_{11}(x_1, x_2, x_3) + ...]$
- Shift in location of central peak is 0.8 consistent with existence of diquark correlations within the 1.0 nucleon

Nucleon PDAs & IQCD

Parton distribution amplitudes: revealing diquarks in the proton and Roper resonance, Cédric Mezrag, Jorge Segovia, Lei Chang and Craig D. Roberts arXiv:1711.09101 [nucl-th]

PDAs of Nucleon & its 1st Radial Excitation

Methods used for mesons can be extended to compute pointwise behaviour of baryon PDAs

Parton distribution amplitudes: revealing diquarks in the proton and Roper resonance, Cédric Mezrag, Jorge Segovia, Lei Chang and Craig D. Roberts arXiv:1711.09101 [nucl-th]

PDAs of Nucleon & its 1st Radial Excitation

0.4

0.2

0.4

0.6

 $u(x_1)$

0.8

 $u(x_2)$

0.6

0.8

Methods used for mesons can be extended to compute pointwise behaviour of baryon PDAs Just like OM & PDAs

conformal

nucleon

Diquark clustering skews the distribution toward the dressedquark bystander, which therefore carries more of the proton's light-front momentum

Roper's quark core Excitation's PDA is not positive definite ... there is a prominent locus of zeros in the lower-right corner of the barycentric plot

0.8

 $0.6 d(x_3)$

0.4

0.2

5

-3

Diquark correlations in the nucleon

- Agreement between continuum and lattice results
 - ONLY when nucleon contains scalar & axialvector diquark correlations
- Nucleon with only a scalar-diquark, omitting the axial-vector diquark, ruled-out by this confluence between continuum and lattice results

TABLE I. A - Eq.(13) interpolation parameters for the proton and Roper PDAs in Fig. 2. B – Computed values of the first four moments of the PDAs. Our error on f_N reflects a scalar diquark content of $65 \pm 5\%$; and values in rows marked with " $\not\supset$ av" were obtained assuming the baryon is constituted solely from a scalar diquark. (All results listed at $\zeta = 2 \text{ GeV.}$)

A	$n_{\hat{arphi}}$	lpha	eta	w_{01}	w	11	w_{02}	w_{12}	w_{22}
p	65.8	1.47	1.28	0.096	0.0)94	0.15	5 -0.053	3 0.11
R	14.4	1.42	0.78	-0.93	0.2	22	-0.21	1 - 0.05'	7 -1.24
В				$10^3 f_N/\text{GeV}^2$ $\langle x_1 \rangle_{\gamma}$		$x_1 \rangle_u$	$\langle x_2 \rangle_u$	$\langle x_3 \rangle_d$	
conformal PDA					0.333		33	0.333	0.333
lQCD [17]				2.84(33)		0.3	72(7)	0.314(3)	0.314(7)
lQCD [18]			3.60(6)		0.3	58(6)	0.319(4)	0.323(6)	
herein proton				3.78(14)	0.3	79(4)	0.302(1)	0.319(3)
herein proton ⊅ av				2.97		0.4	12	0.295	0.293
herein Roper			5.17(32)	0.2	45(13)	0.363(6)	0.392(6)	
herein Roper $\not\supset$ av			2.63	/	0.0	10	0.490	0.500	

Parton distribution amplitudes: revealing diquarks in the proton and Roper resonance, Cédric Mezrag, Jorge Segovia, Lei Chang and Craig D. Roberts arXiv:1711.09101 [nucl-th]

Nucleon and Roper PDAs

No humps or bumps in leading-twist PDAs of ground-state S-wave baryons

- The proton's PDA is a broad, concave function
 - maximum shifted relative to peak in QCD's conformal limit expression
 - Magnitude of shift signals presence of
 - both scalar & axial-vector diquark correlations in the nucleon
 - scalar generates around 60% of the proton's normalisation.
- > The radial-excitation (Roper) is constituted similarly
 - Pointwise form of its PDA
 - Negative on a material domain
 - Is result of marked interferences between the contributions from both scalar and axial-vector diquarks
 - particularly, the locus of zeros, which

highlights its character as a radial excitation.

These features originate with the emergent phenomenon of dynamical chiral symmetry breaking in the Standard Model.

Heavy Baryons

Heavy Baryons

- Unified study of an array of mesons and baryons constituted from light- and heavy-quarks
 - Symmetry-preserving rainbow-ladder truncation of all relevant boundstate equations:
 - Gap equations
 - Bethe-Salpeter equations
 - and Faddeev-equations \leftarrow pioneered by Gernot Eichmann
- Produced spectrum and decay constants of ground-state pseudoscalar- and vector-mesons:

- q' \overline{q} & and Q' \overline{Q} , with q',q=u,d,s, Q',Q = c,b

& masses of $J^P=3/2^+$ qqq, QQQ ground state baryons and their first positive-parity excitations.

Triply Heavy Baryons

IQCD = Z. S. Brown, W. Detmold, S. Meinel and K. Orginos, Phys. Rev. D 90, 094507 (2014).

Heavy Baryons

... QCD's interaction is flavour-independent

... need only survey DSE studies of these observables in kindred systems

- Analysed internal structure of the ground and first positive-parity excited states of qqq, QQQ
 - Each system has a complicated angular momentum structure, e.g.
 - Ground states
 - primarily S-wave
 - but each possesses P-, D- and Fwave components
 - P-wave fraction is large in the *u* and *s*-quark states;
 - First positive-parity excitation
 - large D-wave component,
 - grows with increasing currentquark mass
 - but state also exhibits features consistent with a radial excitation.

Heavy Baryons

Hybrids & Exotics

S.-S. Xu, L. Chang, J. Papavassiliou, C. D. Roberts, H.-S Zong

New Window on Hybrids/Exotics

C = 1PI gluon-quark scattering amplitude

Foundation:

Observation that one can represent the gluon-quark vertex in terms of a gluon-quark scattering amplitude

 Described in Symmetry preserving truncations of the gap and Bethe-Salpeter equations, Binosi, Chang, Papavassiliou, Qin, Roberts, arXiv:1601.05441 [nucl-th], Phys. Rev. D 93 (2016) 096010/1-7

Exploiting this, one arrives at Faddeev equation for colour-singlet gluon+quark+antiquark bound-states

S.-S. Xu, L. Chang, J. Papavassiliou, C. D. Roberts, H.-S Zong

Hybrids/Exotics - Preliminary Results

Calc ⁿ /GeV	0-+	1-+	1	0+-	0
SS Xu et al. Rainbow Ladder	1.23	1.78	1.61	1.69	1.73
SS Xu <i>et al.</i> Faddeev	1.67	1.72	1.86	1.87	1.93
[1]	2.13	2.17	2.25	2.43	
[2]	2.1	1.9	2.3	2.3	

1. IQCD, $m_{\pi} > 0.4 \text{ GeV}$... Dudek *et al*. e-Print: <u>arXiv:1004.4930</u> [hep-ph]

2. Meyer and Swanson, e-Print: arXiv:1502.07276 [hep-ph]

Remarks:

✓ Xu et al. is a beyond-rainbow-ladder (BRL) Faddeev equation calculation

- ✓ BRL structure is essential to reproducing IQCD ordering of states
- \checkmark Xu *et al*. masses are lower than IQCD.

Perhaps IQCD results too high because use inflated pion masses? This is being studied.

Hybrids/Exotics Preliminary Results

S.-S. Xu, L. Chang, J. Papavassiliou, C. D. Roberts, H.-S Zong

Dudek, et al., IQCD

 ✓ Only Faddeev (Xu *et al.*) produces spectrum with same ordering as IQCD

π & K Yalence-guark Distribution Functions

π & K PDFs

- Experimental data on π & *K* PDFs obtained in mesonic Drell-Yan scattering from nucleons in heavy nuclei; but it's old: 1980-1989
- > Newer data would be welcome:
 - persistent doubts about the Bjorken- $x \simeq 1$ behaviour of the pion's valence-quark PDF
 - single modest-quality measurement of $u^{\kappa}(x)/u^{\pi}(x)$ cannot be considered definitive.
- Approved experiment, using tagged DIS at JLab 12, should contribute to a resolution of pion question; and a similar technique might also serve for the kaon.

> Future:

- new mesonic Drell-Yan measurements at modern facilities could yield valuable information on π and K PDFs,
- as could two-jet experiments at the large hadron collider;
- EIC would be capable of providing access to π and K PDFs through measurements of forward nucleon structure functions.
- Solution Gribov-Lipatov reciprocity (crossing symmetry) entails connection between PDFs and fragmentation functions on $z \simeq 1$ ($z \ge 0.75$)

 $D_{H/q}(z)\approx z \ q^H(z)$

Reliable information on meson fragmentation functions is critical if the worldwide programme aimed at determining TMDs is to be successful

Kaon's gluon content

- $(x)_{g}^{\kappa}(\zeta_{H}) = 0.05 \pm 0.05$ $\Rightarrow \text{Valence quarks carry}$ 95% of kaon's momentum at ζ_{H}
- > DGLAP-evolved to ζ_2

q	$\langle x \rangle_q^K$	$\langle x^2 \rangle_q^K$	$\langle x^3 \rangle_q^K$	_
u	0.28	0.11	0.048	
\overline{s}	0.36	0.17	0.092	

Valence-quarks carry ²/₃ of kaon's light-front momentum

Cf. Only ½ for the pion

Valence-quark distribution functions in the kaon and pion, Chen Chen, Lei Chang *et al*. arXiv:1602.01502 [nucl-th], Phys. Rev. D**93** (2016) 074021/1-11

π & K PDFs

- > Marked differences between $\pi \& K$ gluon content
 - $-\zeta_{H}$:
 - Whilst $\frac{1}{3}$ of pion's light-front momentum carried by glue
 - Only $\frac{1}{20}$ of the kaon's light-front momentum lies with glue
 - $-\zeta_2^2 = 4 \text{ GeV}^2$
 - Glue carries $\frac{1}{2}$ of pion's momentum and $\frac{1}{3}$ of kaon's momentum
 - Evident in differences between large-x behaviour of valencequark distributions in these two mesons

> Signal of Nambu-Goldstone boson character of π

 Nearly complete cancellation between one-particle dressing and binding attraction in this almost massless pseudoscalar system

2 Mass_Q + U_g \approx 0

Valence-quark distribution functions in the kaon and pion, Chen Chen, Lei Chang et al. arXiv:1602.01502 [nucl-th], Phys. Rev. D93 (2016) 074021/1-11

$\pi \& K PDFs$

Existing textbook description of Goldstone's theorem via pointlike modes is *outdated* and *simplistic*

Valence-quark distribution functions in the kaon and pion, Chen Chen, Lei Chang *et al*. arXiv:1602.01502 [nucl-th], Phys. Rev. D**93** (2016) 074021/1-11

π & K PDFs

The appearance of Nambu-Goldstone modes in the Standard Model is far more interesting

- Nambu-Goldstone modes are nonpointlike!
- Intimately connected with origin of mass!

- Possibly/Probably(?) inseparable from expression of confinement!
- > Difference between gluon content of $\pi \& K$ is measurable ... using well-designed EIC
- Write a definitive new chapter in future textbooks on the Standard Model

Electron Ion Collider: The Next QCD Frontier

Proton Valence-guark Distribution Functions

Proton valencequark PDFs

- Methods used for mesons can be generalised to baryons
- ✓ Yield pointwise form for u(x) & d(x) in proton ✓ x ≃ 1: $q_V(x) \propto (1-x)^3$
- ✓ Relative strength 0⁺:1⁺ determines
 - ✓ shift in location and size of peaks: d_V(x) compared with u_V(x)
 - $\checkmark d_V(x)/u_V(x)$ on $x \simeq 1$

F. Gao, L. Chang, Y.-X. Liu, J. Papavasssiliou C. D. Roberts, in progress

 $\langle x u_V(x;\zeta_4^2) + x d_V(x;\zeta_4^2) \rangle = 0.45$

Ratio of proton valence-quark PDFs

✓ Value of

 $d_V(\mathbf{x})/u_V(\mathbf{x})|_{\mathbf{x}=1}$ is fixed under DGLAP evolution

 ✓ Without axial-vector diquarks,

 $d_V(\mathbf{x})/u_V(\mathbf{x})|_{\mathbf{x}=1}\approx 0$

Prediction derived from
 Faddeev amplitude that
 produces nucleon PDA

 $\checkmark d_V(x)/u_V(x)|_{x=1} = 0.28$

Ratio of proton valence-quark PDFs

✓ Value of

 $d_V(\mathbf{x})/u_V(\mathbf{x})|_{\mathbf{x}=1}$ is fixed under DGLAP evolution

 ✓ Without axial-vector diquarks,

 $d_V(\mathbf{x})/u_V(\mathbf{x})|_{\mathbf{x}=1}\approx 0$

Prediction derived from
 Faddeev amplitude that
 produces nucleon PDA

 $\checkmark d_V(x)/u_V(x)|_{x=1} = 0.28$

- ✓ Comparison with "modern" →
 PDF parametrisations
- As learnt from pion PDF, parametrisations can be misleading Craig Roberts. Charting Hadronic Interiors (64p)

Craig Roberts. Charting Hadronic Interiors (64p)

03.04.2018: Correlation Functions to QCD

- Challenge: Explain and Understand the Origin and Distribution of the Vast Bulk of Visible Mass
- Current Paradigm: Quantum Chromodynamics
- QCD is plausibly a mathematically well-defined quantum field theory, The only one we've ever produced
 - Consequently, it is a worthwhile paradigm for developing Beyond-SM theories
- Challenge is to reveal the content of strong-QCD
- Continuum strong-QCD
 - Past 20 years have seen vast improvement in understanding and spread in diversity of applications
 - Exist now an array of predictions; ripe for validation
 - Raft of existing and future applications includes parton distributions of all types spectrum of hadrons, including hybrids/exotics elastic and transition form factors of mesons and baryons

Challenge: Explain and Understand the Origin and Distribution of the Vast Bulk of Visible Mass

Current Paradigm: Quantum Chromodynamics

Electron Ion Collider: The Next QCD Frontier

- Exist now an array of predictions; ripe for validation
- Raft of existing and future applications includes parton distributions of all types spectrum of hadrons, including hybrids/exotics elastic and transition form factors of mesons and baryons

Strong Interactions in the Standard Model

$$\mathcal{L}_{\text{QCD}} = \bar{\psi}_i \left(i(\gamma^\mu D_\mu)_{ij} - m \,\delta_{ij} \right) \psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a$$

- Only apparent scale in chromodynamics is mass of the quark field
- Quark mass is said to be generated by Higgs boson.
- In connection with everyday matter, that mass is 1/250th of the natural (empirical) scale for strong interactions, viz. more-than two orders-of-magnitude smaller
- Plainly, the Higgs-generated mass is very far removed from the natural scale for strongly-interacting matter
- Nuclear physics mass-scale 1 GeV is an emergent feature of the Standard Model
 - No amount of staring at L_{QCD} can reveal that scale
- Contrast with quantum electrodynamics, *e.g.* spectrum of hydrogen levels measured in units of m_e , which appears in L_{QED}

$\mathcal{L}_{\text{QCD}} = \bar{\psi}_i (i(\gamma^{\mu} D_{\mu})_{ij}) \qquad) \psi_j - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu}_a Whence Mass?$

- Classical chromodynamics ... non-Abelian local gauge theory
- Remove the current mass ... there's no energy scale left
- No dynamics in a scale-invariant theory; only kinematics ... the theory looks the same at all length-scales ... there can be no clumps of anything ... hence bound-states are impossible.
- Our Universe can't exist
- Higgs boson doesn't solve this problem ...
 - normal matter is constituted from light-quarks &
 - the mass of protons and neutrons, the kernels of all visible matter, are 100-times larger than anything the Higgs can produce
- Where did it all begin?
 - ... becomes ... Where did it all come from?

Classically, in a scale invariant theory

the energy-momentum tensor must be traceless: $T_{\mu\mu} \equiv 0$

- Classical chromodynamics is meaningless ... must be quantised
- Regularisation and renormalisation of (ultraviolet) divergences introduces a mass-scale

... dimensional transmutation: mass-dimensionless quantities become dependent on a mass-scale, ζ

 $\begin{aligned} & \alpha \to \alpha(\zeta) \text{ in QCD's (massless) Lagrangian density, } \mathcal{L}(m=0) & \mathcal{QCD \beta function} \\ & \text{Under a scale transformation } \zeta \to e^{\sigma}\zeta, \text{ then } \alpha \to \sigma \alpha\beta(\alpha) & \text{Trace} \\ & \mathcal{L} \to \sigma \alpha\beta(\alpha) \, d\mathcal{L}/d\alpha & \text{anomaly} \\ & \Rightarrow \partial_{\mu}\mathcal{D}_{\mu} = \delta\mathcal{L}/\delta\sigma = \alpha\beta(\alpha) \, d\mathcal{L}/d\alpha = \beta(\alpha) \, \mathcal{U}_{A}G_{\mu\nu}G_{\mu\nu} = T_{\rho\rho} =: \Theta_{0} \end{aligned}$

Straightforward, nonperturbative derivation, without need for diagrammatic analysis ...

Quantisation of renormalisable four-dimensional theory forces nonzero value for trace of energy-momentum tensor

Trace Anomaly

 $\mathcal{L}_{\text{QCD}} = \bar{\psi}_i \left(i (\gamma^\mu D_\mu)_{ij} \right)$

Classical chromodynamics ... non-Abelian local gauge theory

 $\psi_j - \frac{1}{4}G^a_{\mu\nu}G^{\mu\nu}_a$

- Local gauge invariance; but there is no confinement without a mass-scale
 - Three quarks can still be colour-singlet
 - Colour rotations will keep them colour singlets
 - But they need have no proximity to one another
 ... proximity is meaningless in a scale-invariant theory
- Whence mass ... equivalent to whence a mass-scale ... equivalent to whence a confinement scale
- Understanding the origin of mass in QCD is quite likely inseparable from the task of understanding confinement. Existence alone of a scale anomaly answers neither question

Where is the mass?

$$T_{\mu\mu} = \frac{1}{4}\beta(\alpha(\zeta))G^a_{\mu\nu}G^a_{\mu\nu}$$

- Knowing that a trace anomaly exists does not deliver a great deal ... indicates only that a mass-scale exists
- Can one compute and/or understand the magnitude of that scale?
- One can certainly *measure* the magnitude ... consider proton:

$$\begin{aligned} \langle p(P) | T_{\mu\nu} | p(P) \rangle &= -P_{\mu} P_{\nu} \\ \langle p(P) | T_{\mu\mu} | p(P) \rangle &= -P^2 = m_p^2 \\ &= \langle p(P) | \Theta_0 | p(P) \rangle \end{aligned}$$

> In the chiral limit the entirety of the proton's mass is produced by the trace anomaly, Θ_0

... In QCD, Θ_0 measures the strength of gluon self-interactions ... so, from one perspective, m_p is completely generated by glue.

On the other hand ...
$T_{\mu\mu} = \frac{1}{4}\beta(\alpha(\zeta))G^a_{\mu\nu}G^a_{\mu\nu}$

In the chiral limit

$$\langle \pi(q)|T_{\mu\nu}|\pi(q)\rangle = -q_{\mu}q_{\nu} \Rightarrow \langle \pi(q)|\Theta_0|\pi(q)\rangle = 0$$

- Does this mean that the scale anomaly vanishes trivially in the pion state, *i.e.* gluons contribute nothing to the pion mass?
- Difficult way to obtain "zero"!
- Easier to imagine that "zero" owes to cancellations between different operator contributions to the expectation value of Θ₀.
- Of course, such precise cancellation should not be an accident. It could only arise naturally because of some symmetry and/or symmetry-breaking pattern.

Craig Roberts. Charting Hadronic Interiors (64p)

Whence "1" and yet "0"?

$$\langle p(P)|\Theta_0|p(P)\rangle = m_p^2, \quad \langle \pi(q)|\Theta_0|\pi(q)\rangle = 0$$

No statement of the question "Whence the proton's mass?" is complete without the additional clause "Whence the absence of a pion mass?"

- Natural visible-matter mass-scale must emerge simultaneously with apparent preservation of scale invariance in related systems
 - Expectation value of Θ_0 in pion is always zero, irrespective of the size of the natural mass-scale for strong interactions = m_p