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@ Gribov copies are known to exists in Yang-Mills theory but
their influence on physical observables is still debated.

@ Strong similarities with the field Stat. Mech. in presence of
quenched disorder.

@ Recent progresses in this field indicate new paths to attack
the problem of Gribov copies.



e For a given gauge configuration A, consider
fa[U] = [ Tr(AVAY), where AY is the gauge transform of A.
@ The extrema U; of f4 fulfill 8HA5" =0 (ie are in the Landau
gauge).
e Typically, there are many extrema. What/how do we choose?
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@ 1975: Imry and Ma introduce the Random Field Ising Model

(RFIM)
H= —JZS,’SJ' —Zh,’S,‘
(i) i

with s; Ising variables, h; a set of independent, quenched,
random variables P(h) o exp(—h?/h3).
@ 1976: dimensional reduction (to all orders!) [Aharony, Imry,
Ma,Young]:
VRFIM(d) = Vising(d — 2)

@ 1979, Parisi and Sourlas reinterpret the model by using
Faddeev-Popov construction. Dimensional reduction is a
consequence of a BRST (super)symmetry!



@ 1980-87, the property of dimensinal reduction is not valid in
lower dimensions (vrrim(3) # Vising(1)) [Bray, Moore, Imbrie,
Bricmond, Kupiainen].

e 1982, Parisi argues that the RFIM has many local minima in
the action. In principle, this invalidates Parisi-Sourlas

construction.
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@ 1986, Fisher realizes that the many minima can lead to
singularities in the renormalization-group flow.



Avalan

@ 2007-10, we reformulate the problem to take into account the
many minima. Dimensional reduction is realized in high
dimensions (d 2 5.1) and broken in low dimensions [MT,
Tarjus].

@ What counts for dimensional reduction the size of avalanches,
not the existence of many minima.

@ Compare the ground states for two slightly different external
fields (say 0J and —dJ). A large fraction of the spins may
have flipped, with a fractal structure.

@ What counts for dimensional reduction is the fractal
dimension of these spanning avalanches.



Avalan

@ Objective: test the influence of Gribov copies by using the
same methodology.

@ Gauge fixing obtained by extremizing
fanlU] = /Tr (AYAY + U + U'n)

where A, = Afo?/2 [for SU(2)] and 7 is a quenched random
variable:

Pln] o exp [—i‘j /X Tr (77*77)}

@ If we omit the Gribov ambiguity (ie if we build the naive
Faddeev-Popov action), this leads to the
Curci-Ferrari-Delbourgo-Jarvis action [Serreau, Tresmontant,
Tissier].

@ & = 0 gives back the Landau gauge.



To take into account the Gribov ambiguity, we fix the gauge
by summing over all extrema (all Gribov copies) [Serreau,
Tissier] of fa . For some operator O:

Zi s(i)O[AUf]e*POfA,U[U,-]

(O[A]) = Zi s(i)e_pOfAm[Uf]

s(i) is a sign which depends on the number of unstable
direction of the extremum U;. pg is a dimension-2 gauge
parameter.

The denominator ensures that we have a benevolent gauge
fixing.
<OinV[A]> = OinV[A]

Once we fixed the gauge, we can integrate over A and 7.



@ The denominator can be computed via the replica trick
1/x = limp_ox"" L.

@ Both numerator and denominator can be written in terms of a
SU(2) nonlinear sigma model (super)field V = n°1 + in%o,
(with n a unit 4-vector) which depend x and on 2 grassman
variables, # and 6.

@ We can factorize the gauge group and obtain a continuous
theory fgr: A, ¢,C, h and n— 1 copies of the superfield
Vi(x,0,0) (i=2---n).



(Skipping technical details) the microscopic action reads:
S =5+ So+ 51+ Sy with
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Last term permits to test the presence of avalanches.
Both gluons and ghosts are massless.



 Renormalization-group flow I

e A standard (but lengthy!) calculation leads to the 1-loop
calculation for the theory.

@ the 2-replica potential evolves form R(x) = x to some
nontrivial function:




Renor

@ In the first part of the flow, the theory is identical to the naive
Curci-Ferrari-Delbourgo-Jarvis theory: coupling constant and
gauge parameter £ have the same flows, ghosts and gluons are
massless. Can be traced back to the fact that R'(1) =1 is a
fixed point. BRST is realized.

@ At the Larkin scale, R”(1) diverges. The function generates a
cusp R'(x) ~ cte — ay/1 — x.

e Below the Larkin scale, R'(1) < 1. Both gluons and ghosts
are massive. BRST is broken.
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@ Interplay between the Larkin length and Aqcp (which one is
bigger?). At 1-loop, for 26/3 > &y > £, ~ 4.35, the Larkin
scale is more ultraviolet than the Landau pole.

67 22/13
Atarkin = Aqcp exp [22auv <1 B ;UCV> .




Concl

@ Gluon mass can be generated perturbatively because of the
Gribov copies.

@ This works for & sufficiently large. Could be tested
numerically?

@ The gluon mass squared is negative, in lines with the
observation of Orsay’s group.

@ Does it lead to a stabilization of the theory in the IR, as in the
Landau gauge?



