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Introduction

Gribov copies are known to exists in Yang-Mills theory but
their influence on physical observables is still debated.

Strong similarities with the field Stat. Mech. in presence of
quenched disorder.

Recent progresses in this field indicate new paths to attack
the problem of Gribov copies.
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Gribov copies in a nutshell

For a given gauge configuration A, consider
fA[U] =

∫
Tr(AUAU), where AU is the gauge transform of A.

The extrema Ui of fA fulfill ∂µA
Ui
µ = 0 (ie are in the Landau

gauge).

Typically, there are many extrema. What/how do we choose?

f[U]

U
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A toy model for Gribov ambiguity I

1975: Imry and Ma introduce the Random Field Ising Model
(RFIM)

H = −J
∑
〈ij〉

si sj −
∑
i

hi si

with si Ising variables, hi a set of independent, quenched,
random variables P(h) ∝ exp(−h2/h20).

1976: dimensional reduction (to all orders!) [Aharony, Imry,

Ma,Young]:
νRFIM(d) = νIsing(d − 2)

1979, Parisi and Sourlas reinterpret the model by using
Faddeev-Popov construction. Dimensional reduction is a
consequence of a BRST (super)symmetry!
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A toy model for Gribov ambiguity II

1980-87, the property of dimensinal reduction is not valid in
lower dimensions (νRFIM(3) 6= νIsing(1)) [Bray, Moore, Imbrie,

Bricmond, Kupiainen].

1982, Parisi argues that the RFIM has many local minima in
the action. In principle, this invalidates Parisi-Sourlas
construction.

Energy Landscape

1986, Fisher realizes that the many minima can lead to
singularities in the renormalization-group flow.
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Avalanches

2007-10, we reformulate the problem to take into account the
many minima. Dimensional reduction is realized in high
dimensions (d & 5.1) and broken in low dimensions [MT,

Tarjus].

What counts for dimensional reduction the size of avalanches,
not the existence of many minima.

Compare the ground states for two slightly different external
fields (say δJ and −δJ). A large fraction of the spins may
have flipped, with a fractal structure.

What counts for dimensional reduction is the fractal
dimension of these spanning avalanches.
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Avalanches in Yang-Mills theory

Objective: test the influence of Gribov copies by using the
same methodology.

Gauge fixing obtained by extremizing

fA,η[U] =

∫
Tr (AUAU + η†U + U†η)

where Aµ = Aa
µσ

a/2 [for SU(2)] and η is a quenched random
variable:

P[η] ∝ exp

[
−g2

0

ξ0

∫
x

Tr (η†η)

]
If we omit the Gribov ambiguity (ie if we build the naive
Faddeev-Popov action), this leads to the
Curci-Ferrari-Delbourgo-Jarvis action [Serreau, Tresmontant,

Tissier].

ξ0 = 0 gives back the Landau gauge.
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Gauge fixing I

To take into account the Gribov ambiguity, we fix the gauge
by summing over all extrema (all Gribov copies) [Serreau,

Tissier] of fA,η. For some operator O:

〈O[A]〉 =

∑
i s(i)O[AUi ]e−ρ0fA,η[Ui ]∑

i s(i)e−ρ0fA,η[Ui ]

s(i) is a sign which depends on the number of unstable
direction of the extremum Ui . ρ0 is a dimension-2 gauge
parameter.

The denominator ensures that we have a benevolent gauge
fixing.

〈Oinv[A]〉 = Oinv[A]

Once we fixed the gauge, we can integrate over A and η.
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Gauge fixing II

The denominator can be computed via the replica trick
1/x = limn→0 x

n−1.

Both numerator and denominator can be written in terms of a
SU(2) nonlinear sigma model (super)field V = n01 + inaσa
(with n a unit 4-vector) which depend x and on 2 grassman
variables, θ and θ̄.

We can factorize the gauge group and obtain a continuous
theory for: A, c ,c , h and n − 1 copies of the superfield
Vi (x , θ, θ) (i = 2 · · · n).
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Gauge fixing III

(Skipping technical details) the microscopic action reads:
S = SYM + S0 + S1 + S2 with

S0 =

∫
x

1

2
(Dµc

a∂µc
a + ∂µc

aDµc
a) + ha∂µA

a
µ

− ξ0
2

(ha)2 − g2
0 ξ0
4

(εabccbcc)2 +
ρ0
2

(Aa
µ)2 + ρ0ξ0c

aca

S1 =
n∑

i=2

∫
xθi

Tr (AViµ )2 + ξ0(n0i c
aca − 4

g2
0

n0i ρ0 +
2

g0
nai h

a)

S2 =− 2ξ0
g2
0

n∑
i ,j=2

∫
xθiθj

(n0i n
0
j + nai n

a
j )

Last term permits to test the presence of avalanches.
Both gluons and ghosts are massless.

Gribov copies, avalanches ...



Renormalization-group flow I

A standard (but lengthy!) calculation leads to the 1-loop
calculation for the theory.

the 2-replica potential evolves form R(x) = x to some
nontrivial function:
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Renormalization-group flow II

In the first part of the flow, the theory is identical to the naive
Curci-Ferrari-Delbourgo-Jarvis theory: coupling constant and
gauge parameter ξ have the same flows, ghosts and gluons are
massless. Can be traced back to the fact that R ′(1) = 1 is a
fixed point. BRST is realized.

At the Larkin scale, R ′′(1) diverges. The function generates a
cusp R ′(x) ∼ cte − a

√
1− x .

Below the Larkin scale, R ′(1) < 1. Both gluons and ghosts
are massive. BRST is broken.
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Renormalization-group flow III

 0
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Interplay between the Larkin length and ΛQCD (which one is
bigger?). At 1-loop, for 26/3 > ξ0 > ξc ' 4.35, the Larkin
scale is more ultraviolet than the Landau pole.

ΛLarkin = ΛQCD exp

[
6π

22αUV

(
1− ξc

ξUV

)22/13
]
.
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Conclusions

Gluon mass can be generated perturbatively because of the
Gribov copies.

This works for ξ sufficiently large. Could be tested
numerically?

The gluon mass squared is negative, in lines with the
observation of Orsay’s group.

Does it lead to a stabilization of the theory in the IR, as in the
Landau gauge?
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