# In-Medium Spectral Functions of hadrons with the Functional Renormalization Group

Ralf-Arno Tripolt, ECT\*, Trento, Italy

In collaboration with: Chris Jung, Fabian Rennecke, Naoto Tanji, Lorenz von Smekal, Jochen Wambach

666. WE-Heraeus-Seminar "From correlation functions to QCD phenomenology" Bad Honnef, Germany, April 3-6, 2018



# Outline

#### I) Theoretical setup

- Functional Renormalization Group (FRG)
- QCD effective model
- Analytic continuation procedure

#### II) Results

- (Pseudo-)scalar meson spectral functions
- ▶ (Axial-)vector meson spectral functions
- Electromagnetic spectral function
- Dilepton rates

#### III) Summary and outlook

# I) Theoretical setup



[courtesy L. Holicki]

## **Functional Renormalization Group**

Euclidean partition function for a scalar field:

$$Z[J] = \int \mathcal{D}\varphi \, \exp\left(-S[\varphi] + \int d^4x \, J(x)\varphi(x)
ight)$$

Wilson's coarse-graining: split  $\varphi$  into low- and high-frequency modes

$$\varphi(x) = \varphi_{q \le k}(x) + \varphi_{q > k}(x)$$

only include fluctuations with  $\boldsymbol{q} > \boldsymbol{k}$ 

$$Z[J] = \int \mathcal{D}\varphi_{q \le k} \underbrace{\int \mathcal{D}\varphi_{q > k} \, \exp\left(-S[\varphi] + \int d^4x J(x)\varphi(x)\right)}_{Z_k[J]}$$

## **Functional Renormalization Group**

Scale-dependent partition function can be defined as

$$Z_k[J] = \int \mathcal{D}\varphi \, \exp\left(-S[\varphi] - \Delta S_k[\varphi] + \int d^4x J(x)\varphi(x)\right)$$

by introducing a regulator term that suppresses IR modes

$$\Delta S_k[\varphi] = \frac{1}{2} \int \frac{d^4q}{(2\pi)^4} \,\varphi(-q) R_k(q) \varphi(q)$$

Switch to scale-dependent effective action ( $\phi(x) = \langle \varphi(x) \rangle$ ):

$$\Gamma_k[\phi] = \sup_J \left( \int d^4x \, J(x)\phi(x) - \log Z_k[J] \right) - \Delta S_k[\phi]$$

## **Functional Renormalization Group**

Flow equation for the effective average action  $\Gamma_k$ :

$$\partial_k \Gamma_k = \frac{1}{2} \mathrm{STr} \left( \partial_k R_k \left[ \Gamma_k^{(2)} + R_k \right]^{-1} \right)$$

[C. Wetterich, Phys. Lett. B 301 (1993) 90]





[wikipedia.org/wiki/Functional\_renormalization\_group]

- $\blacktriangleright$   $\Gamma_k$  interpolates between bare action S at  $k=\Lambda$  and effective action  $\Gamma$  at k=0
- $\blacktriangleright$  regulator  $R_k$  acts as a mass term and suppresses fluctuations with momenta smaller than k
- ▶ the use of 3D regulators allows for a simple analytic continuation procedure

## Modeling vector mesons

- Sakurai (1960): vector mesons as gauge bosons of local gauge symmetry SU(2)
  - $\rightarrow\,$  Electromagnetic-hadronic interaction via exchange of vector mesons
  - $\rightarrow$  Current Field Identity (CFI):

$$j^{\mu}_{\rm em} = \frac{m^2_{\rho}}{g_{\rho}} \rho^{\mu} + \frac{m^2_{\omega}}{g_{\omega}} \omega^{\mu} + \frac{m^2_{\phi}}{g_{\phi}} \phi^{\mu}$$

 $\Rightarrow$  Vector Meson Dominance (VMD)



[Berghaeuser, www.staff.uni-giessen.de (2016)]

► Lee and Nieh (1960s): Gauged linear sigma model, local gauge symmetry SU(2)<sub>L</sub> × SU(2)<sub>R</sub>

 $\Rightarrow 
ho$  meson and chiral partner  $a_1$  meson as gauge bosons

## Gauged linear-sigma model with quarks

- ▶ Local gauge symmetry  $SU(2)_L \times SU(2)_R$ : Low-energy model of two-flavor QCD
- $\blacktriangleright$  Additional gauge symmetry U(1) to include photon field

Ansatz for the effective average action  $\Gamma_k \equiv \Gamma_k[\sigma, \pi, \rho, a_1, \psi, \bar{\psi}, A_\mu]$ :

$$\begin{split} \Gamma_{k} &= \int d^{4}x \bigg\{ \bar{\psi} \left( \not{D} - \mu \gamma_{0} + h_{S} \left( \sigma + \mathrm{i} \vec{\tau} \vec{\pi} \gamma_{5} \right) + \mathrm{i} h_{V} \left( \gamma_{\mu} \vec{\tau} \vec{\rho}^{\mu} + \gamma_{\mu} \gamma_{5} \vec{\tau} \vec{a}_{1}^{\mu} \right) \right) \psi + U_{k} (\phi^{2}) \\ &- c \sigma + \frac{1}{2} \left| (D_{\mu} - \mathrm{i} g V_{\mu}) \Phi \right|^{2} + \frac{1}{8} \mathrm{Tr} \left( V_{\mu\nu} V^{\mu\nu} \right) + \frac{1}{4} m_{V,k}^{2} \mathrm{Tr} \left( V_{\mu} V^{\mu} \right) \bigg\} \end{split}$$

with

$$V_{\mu\nu} = D_{\mu}V_{\nu} - D_{\nu}V_{\mu} - ig [V_{\mu}, V_{\nu}], \quad D_{\mu}\psi = (\partial_{\mu} - ieA_{\mu}Q)\psi,$$
$$D_{\mu}V_{\mu} = \partial_{\mu}V_{\nu} - ieA_{\mu}[T_{3}, V_{\nu}], \quad \phi \equiv (\vec{\pi}, \sigma), \quad V_{\mu} \equiv \vec{\rho}_{\mu}\vec{T} + \vec{a}_{1,\mu}\vec{T}^{5}$$

## Flow of the effective potential at $\mu = 0$ and T = 0

#### Flow equations for two-point functions



▶ quark-meson vertices are given by  $\Gamma^{(3)}_{\bar{\psi}\psi\sigma} = h$ ,  $\Gamma^{(3)}_{\bar{\psi}\psi\pi} = ih\gamma^5 \vec{\tau}$ 

• mesonic vertices from scale-dependent effective potential:  $U_{k,\phi_i\phi_j\phi_m}^{(3)}$ ,  $U_{k,\phi_i\phi_j\phi_m\phi_n}^{(4)}$ 

one-loop structure and 3D regulators allow for a simple analytic continuation!

[R.-A. Tripolt, L. von Smekal, and J. Wambach, Phys. Rev. D 90, 074031 (2014)]

## The analytic continuation problem

Calculations at finite temperature are often performed using imaginary energies:



## The analytic continuation problem

Analytic continuation problem: How to get back to real energies?



## Two-step analytic continuation procedure

1) Use periodicity w.r.t. imaginary energy  $ip_0 = i2n\pi T$ :

 $n_{B,F}(E+ip_0) \to n_{B,F}(E)$ 

2) Substitute  $p_0$  by continuous real frequency  $\omega$ :

$$\Gamma^{(2),R}(\omega,\vec{p}) = -\lim_{\epsilon \to 0} \Gamma^{(2),E}(ip_0 \to -\omega - i\epsilon,\vec{p})$$



Spectral function is then given by

$$\rho(\omega, \vec{p}) = -\frac{1}{\pi} \operatorname{Im} \frac{1}{\Gamma^{(2), R}(\omega, \vec{p})}$$

[R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)] [J. M. Pawlowski, N. Strodthoff, Phys. Rev. D 92, 094009 (2015)]

[N. Landsman and C. v. Weert, Physics Reports 145, 3&4 (1987) 141]

# III) Results



[courtesy L. Holicki]

## Phase diagram of the quark-meson model

- chiral order parameter σ<sub>0</sub>
   decreases towards higher T and μ
- ► a crossover is observed at T ≈ 175 MeV and µ = 0
- ▶ critical endpoint (CEP) at  $\mu \approx 292$  MeV and  $T \approx 10$  MeV
- ▶ we will study spectral functions along  $\mu = 0$  and  $T \approx 10$  MeV



[R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)]

## Phase diagram of the quark-meson model

- chiral order parameter σ<sub>0</sub>
   decreases towards higher T and μ
- ► a crossover is observed at T ≈ 175 MeV and µ = 0
- critical endpoint (CEP) at  $\mu \approx 292$  MeV and  $T \approx 10$  MeV
- we will study spectral functions along  $\mu = 0$  and  $T \approx 10$  MeV



[R.-A. T., N. Strodthoff, L. v. Smekal, and J. Wambach, Phys. Rev. D 89, 034010 (2014)]

### Flow of $\sigma$ and $\pi$ spectral function at $\mu = T = 0$

#### $\sigma$ and $\pi$ spectral function for T>0 at $\mu=0$

### $\sigma$ and $\pi$ spectral function for $\mu > 0$ at $T_c$

#### $\sigma$ spectral function vs. $\omega$ and $\vec{p}$ at $\mu = T = 0$



time-like region
 (ω > p) is
 Lorentz-boosted to
 higher energies

▶ space-like region (ω < p) is non-zero at finite T due to space-like processes



### $\sigma$ spectral function vs. $\omega$ and $\vec{p}$ for T>0, $\mu=0$

► time-like region (ω > p) is Lorentz-boosted to higher energies

• space-like region  $(\omega < \vec{p})$  is non-zero at finite T due to space-like processes

#### $\pi$ spectral function vs. $\omega$ and $\vec{p}$ at $\mu=T=0$



T = 0 MeV

- time-like region  $(\omega > \vec{p})$  is Lorentz-boosted to higher energies
- capture process  $\pi^* + \pi \rightarrow \sigma$  is suppressed at large  $\vec{p}$
- Space-like region (ω < p) is non-zero at finite T due to space-like processes

### $\pi$ spectral function vs. $\omega$ and $\vec{p}$ for T>0, $\mu=0$

- ► time-like region (ω > p) is Lorentz-boosted to higher energies
- ► capture process  $\pi^* + \pi \rightarrow \sigma$  is suppressed at large  $\vec{p}$
- space-like region

   (ω < p) is non-zero at
   finite T due to
   space-like processes</li>

### Flow equations for $\rho$ and $a_1$ 2-point functions



neglect vector mesons inside the loops

- $\blacktriangleright$  vertices extracted from ansatz for the effective average action  $\Gamma_k$
- $\blacktriangleright$  tadpole diagrams give  $\omega\text{-independent contributions}$

#### $\rho$ and $a_1$ vacuum spectral functions



[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]

#### T-dependence of $\rho$ and $a_1$ spectral functions



[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]

## $\mu$ -dependence of $\rho$ and $a_1$ spectral functions



[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]

## T-dependence of $\rho$ and $a_1$ spectral functions

## T-dependence of $\rho$ and $a_1$ pole masses

pole masses in the vacuum:

 $m_{\rho}^p = 789 \text{ MeV}, \quad m_{a_1}^p = 1275 \text{ MeV}$ 

- degeneration of ρ and a<sub>1</sub> spectral functions in chirally symmetric phase
- broadening of spectral functions with increasing T
- pole masses do not vary much, no dropping ρ mass



[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]



## Momentum-dependence of $\rho$ spectral function

- ▶ shown for  $\mu = 0$  and T = 100 MeV
- ► time-like region (ω > p) is Lorentz-boosted to higher energies
- ► space-like region (ω < p) is non-zero at finite T due to space-like processes



[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]

## Temperature-dependence of $\rho$ spectral function

- time-like region  $(\omega > \vec{p})$  is Lorentz-boosted to higher energies
- space-like region

   (ω

(Loading movie...)

[C. Jung, F. Rennecke, R.-A. T., L. von Smekal, and J. Wambach, Phys. Rev. D 95, 036020 (2017)]

## Including fluctuating (axial-)vector mesons



### $\rho$ and $a_1$ spectral functions at $\mu = 0$ - preliminary



## **Rho-photon mixing**

$$\begin{pmatrix} \Gamma_{AA}^{(2)} & \Gamma_{A\rho}^{(2)} \\ \Gamma_{\rho A}^{(2)} & \Gamma_{\rho \rho}^{(2)} \end{pmatrix} \xrightarrow{\text{diagonalize}} \begin{pmatrix} \tilde{\Gamma}_{AA}^{(2)} & 0 \\ 0 & \tilde{\Gamma}_{\rho \rho}^{(2)} \end{pmatrix}, \quad \tilde{\Gamma}_{AA}^{(2)} = \overbrace{\Gamma_{AA}^{(2)} - \frac{\Gamma_{A\rho}^{(2)}\Gamma_{\rho A}^{(2)}}{\Gamma_{\rho \rho}^{(2)}} + \mathcal{O}(e^4)$$







## **EM** spectral functions - preliminary



We use the Weldon formula for the thermal dilepton rate:

$$\frac{d^8 N_{l\bar{l}}}{d^4 x d^4 q} = \frac{\alpha}{12\pi^3} \left(1 + \frac{2m^2}{q^2}\right) \left(1 - \frac{4m^2}{q^2}\right)^{1/2} q^2 (2\rho_T + \rho_L) n_B(q_0)$$

▶ in the following we assume m = 0 and set the external spatial momentum to zero, such that  $\rho_T = \rho_L = \rho_{\tilde{A}\tilde{A}}$ 

[H. A. Weldon, Phys. Rev. D42, 2384 (1990)]

### **Dilepton rates - preliminary**



- Analytically continued flow equations for vector meson two-point functions based on a gauged linear sigma model within the FRG
- Chiral order parameter and in-medium spectral functions obtained by the same theoretical framework
  - $\Rightarrow$  Spectral functions of vector mesons with fluctuating vector mesons
  - $\Rightarrow$  Calculation of EM spectral functions and dilepton rates

#### Work in progress:

- Improve truncation (e.g. self-consistent solution of flow equations)
- Improve phenomenology (e.g. include baryons)