

Resonances in the DSE/BSE approach to QCD.

Richard Williams University of Gießen

Bundesministerium für Bildung und Forschung

Motivation

Extract properties of hadrons from QCD

- Propagators and vertices
- Formulate description of bound-states in the continuum.

Test truncations against Hadronic Spectrum

• Include/Exclude interaction terms

Interaction terms responsible for

- Binding quarks and (anti)quarks
- Unquenching effects
- Decay channels
- Splitting between parity partners ...

Extract from Green's functions

From Correlation Functions to QCD Phenomenology, Physikzentrum Bad Honnef, Germany, April 03-06, 2018

BSE: gauge-invariant poles from Green's function

$$\mathbf{G} \sim \sum_{\lambda} \frac{\Psi^{\lambda} \bar{\Psi}^{\lambda}}{p^{2} + m_{\lambda}^{2}} \qquad \qquad \mathbf{\Psi}_{\alpha\beta\gamma}^{\lambda} = \langle 0 | T \psi_{\alpha} \psi_{\beta} \psi_{\gamma} | \lambda \rangle$$

Spectral decomposition.

BS wavefunction

Considerations

See Eichmann

- Bound states **below** strong decay threshold: π , K, D, B
- Most hadrons lie **above** strong decay threshold

(in)finite volume

Lattice: finite volume. No cuts. Bound states, scattering states

0.20.20.150.150.10.1branch point 0.050.05 $\begin{bmatrix} s \\ m \end{bmatrix} = 0$ -0.05 bound states, scattering states $\begin{bmatrix} \underline{s} \\ \underline{m} \\ -0.05 \end{bmatrix} 0$ bound state -0.1-0.1-0.15-0.15-0.2-0.2-0.2-0.8-0.6-0.8-0.6-0.4-0.4-0.2 $\operatorname{Re}[s]$ $\operatorname{Re}[s]$ (sketch)

Continuum: infinite volume.

Branch cuts. Bound states, resonances

Resonances

- Appear as poles on the "unphysical sheet" (labelled II).
- Information reconstructed on the Lattice via Lüscher formalism.

From Correlation Functions to QCD Phenomenology, Physikzentrum Bad Honnef, Germany, April 03-06, 2018

Expectations

Consider: function V(s) that exposes "pole" of correlation function e.g. two-point correlator on the lattice, vertex function etc.

Below decay threshold

- Expect poles on the real-axis
- Bound state

$$V(s) \sim \frac{1}{s + M^2}$$

Above decay threshold

- Expect poles shifted from real-axis, in "unphysical sheet"
- Resonance

Pole readily apparent on the real-axis

No poles on the "physical" sheet

Poles on the "unphysical" sheet

Resonance

What would we expect to see in the BSE approach?

Resonance

What would we expect to see in the BSE approach?

This is the Bethe-Salpeter approach! ©

DSE and BSE

Back to the beginning: Green's functions

DSE and BSE

Trade one unknown G, for another unknown K

Solution (on-shell) yields Bethe-Salpeter wavefunction

Dressed particle constituents: Green's functions

Routinely solved by standard methods

- Quark for complex momenta (Cauchy, shell-method, path deformation)
- One-loop BSE kernel independent of total momentum P

e.g. [Sanchis-Alepuz, RW, arXiv:1710.04903]

[RW, Fischer, Heupel, PRD93 (2016)]

[Watson, Cassing, FBS 35 (2004)] [Fischer, Nickel, Wambach, PRD 76 (2007)] [Fischer, RW, PRD 78 (2008)]

Specifically

- Two-pion decay kernel
- Couples to *e.g.* vector and scalar mesons.
- Does not couple to pseudoscalar (CP and P): *maintains chiral symmetry*

Truncation

Decomposition

(

Covariant basis for bound-state:
$$\Gamma^{(
ho)} = \sum_i g_i \tau_i^{(
ho)}, \quad \chi^{(
ho)} = \sum_i h_i \tau_i^{(
ho)}$$

1 1

$$\begin{array}{c} \text{vector} \\ \hline \tau_1^{\rho} = \gamma_T^{\rho} & \tau_3^{\rho} = i\widehat{p_T}^{\rho} & \tau_5^{\rho} = 3\widehat{p_T}^{\rho}\widehat{\not{p}_T} - \gamma_T^{\rho} & \tau_7^{\rho} = \gamma_T^{\rho}\widehat{\not{p}_T} - \widehat{p_T}^{\rho} \\ \tau_2^{\rho} = \gamma_T^{\rho}\widehat{\not{P}} & \tau_4^{\rho} = \widehat{p_T}^{\rho}\widehat{\not{P}} & \tau_6^{\rho} = (3\widehat{p_T}^{\rho}\widehat{\not{p}_T} - \gamma_T^{\rho})\widehat{\not{P}} & \tau_8^{\rho} = i(\gamma_T^{\rho}\widehat{\not{p}_T} - \widehat{p_T}^{\rho})\widehat{\not{P}} \end{array}$$

Quark rotation matrix:

$$Y_{ij} = \operatorname{Tr}\left[\overline{\tau}_i^{(\rho)} S(p_+) \tau_j^{(\rho)}(p, P) S(p_-)\right]$$

Kernel trace:

$$\begin{split} L_{ij}^{\mathrm{RL}} &= \int_{k} \mathrm{Tr} \left[\overline{\tau}_{i}^{\rho}(p,P) \gamma^{\mu} \tau_{j}^{\rho}(k,P) \gamma^{\nu} \right] D^{\mu\nu}(q), \\ L_{ij}^{\pi\pi,\mathrm{s}} &= \int_{k} \int_{l} \overline{J}_{i}^{\rho}(p,l,P) J_{j}^{\rho}(k,l,P) D_{+}^{\pi} D_{-}^{\pi}, \end{split}$$

 $J_{j}^{\rho}(k,l,P) = \operatorname{Tr}\left[\overline{\Gamma}_{\pi}\tau_{j}^{\rho}(k,P)\overline{\Gamma}_{\pi}S(k-l)\right],$ $\overline{J}_{i}^{\rho}(p,l,P) = -\left[C^{T}J_{i}^{\rho}(-p,-l,-P)C\right]^{T}.$

BSE:

$$g_i = \sum_A L_{ij}^A h_j = \sum_A L_{ij}^A Y_{jk} g_k = M_{ik} g_k,$$

From Correlation Functions to QCD Phenomenology, Physikzentrum Bad Honnef, Germany, April 03-06, 2018

Integrating over Poles

Consider: general integral of the form

$$A(p^2) = \int d^4k f(k^2, p^2, z) \qquad z = k \cdot p$$

With $f(k^2, p^2, z)$ containing a pole, dependent upon the angle z

- Angular integral "sweeps" out the pole.
- Radial integral should be deformed to avoid cut structure.

Applied to quark propagator

Integrating over Poles

Applied to rare pion decay $\pi^0 \rightarrow e^+ e^-$ to avoid cut structure during integration

$$\mathcal{A}(t) = \frac{1}{2\pi^2 t} \int d^4 \Sigma \, \frac{(\Sigma \cdot \Delta)^2 - \Sigma^2 \Delta^2}{(p+\Sigma)^2 + m^2} \, \frac{F(Q^2, {Q'}^2)}{Q^2 \, {Q'}^2}$$

- Results in agreement with dispersion relations
- Technique has further applications

Integrating over Poles

See also [Windisch, Huber, Alkofer, APPS 6 (2013)]

Two-pion integral

$$F(l,P) \propto \frac{l_T^{\rho}}{l_T^2} \int_k J_j^{\rho}(k,l,P) h_j(k,P) \, . \qquad I(P^2) = \int_l \frac{1}{l^2 \left(l_+^2 + m_\pi^2\right) \left(l_-^2 + m_\pi^2\right)} \, .$$

Calculation

Put together:

- Solve quark for complex momenta
- Calculate one-loop RL kernel
- Calculate two-loop pi-pi kernel
- Choose appropriate path deformation

 $P^2 \in \mathbb{C}$

Solve BSE as eigenvalue equation in $\lambda(P^2)$ complex

$$\Gamma = \lambda(P^2) \, K \, \Gamma,$$

Use right tools for solving the eigensystem

Eigenvalues

- "tent structure" in real part
- Branch cut in imaginary part

No solution on "physical sheet" where: $\lambda(s) = 1$

Analytic Continuation

Analytic continuation (from e.g. z_1 to z_5)

- Using power series (i.e. Hadamard method)
- Pade approximants. RVP and Schlessinger point method.

[Tripolt et al, arXiv:1801.10384]

Analytically continue to find $\lambda(s) = 1$ on "unphysical sheet"

$$s = -0.408 - 0.065i [GeV^2]$$

 $M = 0.641 [GeV]$
 $\Gamma = 0.101 [GeV]$

$$\Gamma_R = \frac{p^3}{M_R^2} \frac{g_{\rho\pi\pi}^2}{6\pi}, \quad p = \sqrt{M_R^2/4 - m_\pi^2} ,$$

Mass dependence

Here: strong coupling constant $g_{\rho\pi\pi} \sim 5.7$ (experimental value $g_{\rho\pi\pi} \sim 6.0$)

RL: (impulse approximation) $g_{\rho\pi\pi} \sim 5.2$

[Jarecke, Maris, Tandy, PRC67 (2003)] [Mader, Eichmann, Blank, Krassnigg, PRD84 (2011)]

Summary

Resonances in BSE!

[RW, in preparation]

Next Steps

- Extend to other bound-states
 - Baryons
 - Tetraquarks
- Solidify truncation + ... more

See Wallbott (Poster)

Review

Eichmann, Sanchis-Alepuz, RW, Alkofer, Fischer 1606.9602 Prog. Part. Nucl. Phys. (in press)