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Why Amplitude Analyses?

• QM is intrinsically complex: 
 
Wave functions/transition amplitudes etc: ψ = a eiα. Observable: |ψ|2.  
 
Only half the information. How do I get the rest?


• Note that the rest is very interesting - CP violation in the SM comes from phases!


• Answer: Interference effects: 
 
ψtotal    =  a eiα + b eiβ + … 
|ψtotal|2 =  |a eiα + b eiβ + …| = a2 + b2 + 2ab cos(α – β) + …
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Dalitz plot analyses - lots of interfering amplitudes!
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Intermediate state Amplitude |cj | Phase �j (�)
K�(892)+�� 1.656 ± 0.012 137.6 ± 0.6
K�(892)��+ (14.9 ± 0.7)� 10�2 325.2 ± 2.2
K�

0 (1430)+�� 1.96 ± 0.04 357.3 ± 1.5
K�

0 (1430)��+ 0.30 ± 0.05 128 ± 8
K�

2 (1430)+�� 1.32 ± 0.03 313.5 ± 1.8
K�

2 (1430)��+ 0.21 ± 0.03 281 ± 9
K�(1680)+�� 2.56 ± 0.22 70 ± 6
K�(1680)��+ 1.02 ± 0.2 103 ± 11
KS�0 1.0 (fixed) 0 (fixed)
KS� (33.0 ± 1.3)� 10�3 114.3 ± 2.3
KSf0(980) 0.405 ± 0.008 212.9 ± 2.3
KSf0(1370) 0.82 ± 0.10 308 ± 8
KSf2(1270) 1.35 ± 0.06 352 ± 3
KS�1 1.66 ± 0.11 218 ± 4
KS�2 0.31 ± 0.05 236 ± 11
non-resonant 6.1 ± 0.3 146 ± 3

Dº Ksπ+π–

Many interfering decay 
paths contribute to the 

same final state

A(s+, s�)

=
X

k

ak(s+, s�) e
i�k(s+,s�)

Described by a 
sum of complex 

amplitudes

s+ /GeV2

s –
 /G

eV
2

Dº
|A(s+, s–)|2 

represented 
in a Dalitz 

plot
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3 body decays

M

1

2

3
d� = |Mfi|2d�

= |Mfi|2
����

@�

@(s12, s13)

���� ds12ds13

=
1

(2⇡)2 32M3
|Mfi|2ds12ds13

sij ⌘ (pi + pj)
2 ⌘ m2

ij
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3-body phase space

s12

s13

sij ⌘ (pi + pj)
2 ⌘ m2

ij
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3-body phase space

s12

s13

(m1 + m2)2

sij ⌘ (pi + pj)
2 ⌘ m2

ij
5



Jonas Rademacker: Amplitude Analyses                                                    B-workshop                                          Neckarzimmern 18 Feb 2015 

3-body phase space

s12

s13

(m1 + m2)2 (M – m3)2

sij ⌘ (pi + pj)
2 ⌘ m2

ij
5
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3-body phase space

s12

s13

(m1 + m3)2

(m1 + m2)2 (M – m3)2

sij ⌘ (pi + pj)
2 ⌘ m2

ij
5
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3-body phase space

s12

s13

(m1 + m3)2

(m1 + m2)2

(M – m2)2

(M – m3)2

sij ⌘ (pi + pj)
2 ⌘ m2

ij
5
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3-body phase space

M2 +m2
1 +m2

2 +m2
3 = s12 + s13 + s23

s12

s13

(m1 + m3)2

(m1 + m2)2

(M – m2)2

(M – m3)2

sij ⌘ (pi + pj)
2 ⌘ m2

ij
5
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3-body phase space

M2 +m2
1 +m2

2 +m2
3 = s12 + s13 + s23

s12

s13

(m1 + m3)2

(m1 + m2)2

(M – m2)2

(M – m3)2

m22 + m32 + Mm1 s
23 =

(m
2 +

m
3 ) 2

sij ⌘ (pi + pj)
2 ⌘ m2

ij
5
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3-body phase space

M2 +m2
1 +m2

2 +m2
3 = s12 + s13 + s23

s12

s13

(m1 + m3)2

(m1 + m2)2

(M – m2)2

(M – m3)2

m22 + m32 + Mm1 s
23 =

(m
2 +

m
3 ) 2

M2 – m12 + 2m2m3

s
23 =

(M
�
m

1 ) 2

sij ⌘ (pi + pj)
2 ⌘ m2

ij
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3-body phase space

M2 +m2
1 +m2

2 +m2
3 = s12 + s13 + s23

s12

s13

(m1 + m3)2

(m1 + m2)2

(M – m2)2
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m22 + m32 + Mm1 s
23 =

(m
2 +

m
3 ) 2
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3-body phase space

sij ⌘ (pi + pj)
2 ⌘ m2

ij

✬

✫

✩

✪

Dalitz plot Analysis

✷ The region of kinematically allowed phase space described by these constraints is here.

✷ Kinematic boundaries of the three-body decay phase space.

✷ In this example, B0 → D0K+π− phase space is shown. a = π−, b = D0, c = K+.

36
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What happens if nothing 
happens

sij ⌘ (pi + pj)
2 ⌘ m2

ij

✬

✫

✩

✪

Isobar formalism

✷ The figure shows how various intermediate two-body states appear in the Dalitz plot.
✷ Unlike the uniform distribution that the phase-space decay has , scalar resonances appear as
bands in the Dalitz plot plane.

Scalar in bc channel, Scalar in ac channel, Scalar in ab channel

46

d� =
1

(2⇡)2 32M3
|Mfi|2ds12ds13x

M

1

2

3

Mfi = 1
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What really happens

sij ⌘ (pi + pj)
2 ⌘ m2

ij
d� =

1

(2⇡)2 32M3
|Mfi|2ds12ds13

D Mfi =?

Ks

π+

π–

s(Ksπ–)

s(K
sπ

+ )

D→Ksπ+π–

Ba
Ba

r P
hy

s.
 R

ev
. L

et
t. 

10
5,

 0
81

80
3 

(2
01

0)
.
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http://inspirehep.net/record/853279
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✬

✫

✩

✪

Isobar formalism

✷ The figure shows how various intermediate two-body states appear in the Dalitz plot.
✷ Unlike the uniform distribution that the phase-space decay has , scalar resonances appear as
bands in the Dalitz plot plane.

Scalar in bc channel, Scalar in ac channel, Scalar in ab channel

46

What happens if one thing 
happens

sij ⌘ (pi + pj)
2 ⌘ m2

ij
d� =

1

(2⇡)2 32M3
|Mfi|2ds12ds13

M 1

2

3
s12

s 1
3

R
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What happens if one thing 
happens

sij ⌘ (pi + pj)
2 ⌘ m2

ij
d� =

1

(2⇡)2 32M3
|Mfi|2ds12ds13

✬

✫

✩

✪

Isobar formalism

✷ The figure shows how various intermediate two-body states appear in the Dalitz plot.
✷ Unlike the uniform distribution that the phase-space decay has , scalar resonances appear as
bands in the Dalitz plot plane.

Scalar in bc channel, Scalar in ac channel, Scalar in ab channel

46

s12

s 1
3

M

2

3

1
R
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What happens if one thing 
happens

sij ⌘ (pi + pj)
2 ⌘ m2

ij
d� =

1

(2⇡)2 32M3
|Mfi|2ds12ds13

M

1

2

3

✬

✫

✩

✪

Isobar formalism

✷ The figure shows how various intermediate two-body states appear in the Dalitz plot.
✷ Unlike the uniform distribution that the phase-space decay has , scalar resonances appear as
bands in the Dalitz plot plane.

Scalar in bc channel, Scalar in ac channel, Scalar in ab channel

46

s12

s 1
3

R

11
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✬

✫

✩

✪

✷ Angular distributions for the vector and tensor intermediate states introduce the characteristic
non-uniformity of the event density.

✷ Finally, the region where the amplitudes of two resonances overlap is sensitive to the phase
difference between the two amplitudes.

Two scalars, ∆φ = 0, Two scalars, ∆φ = π

47

What happens if two things 
happens

d� =
1

(2⇡)2 32M3
|Mfi|2ds12ds13

M

2

1

3

s12

s 1
3R

M

2

3

1
R

+

12
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✬

✫

✩

✪

✷ Angular distributions for the vector and tensor intermediate states introduce the characteristic
non-uniformity of the event density.

✷ Finally, the region where the amplitudes of two resonances overlap is sensitive to the phase
difference between the two amplitudes.

Two scalars, ∆φ = 0, Two scalars, ∆φ = π
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✬

✫

✩

✪

Isobar formalism

✷ The figure shows how various intermediate two-body states appear in the Dalitz plot.
✷ Unlike the uniform distribution that the phase-space decay has , scalar resonances appear as
bands in the Dalitz plot plane.

Scalar in bc channel, Scalar in ac channel, Scalar in ab channel

46

What happens if something 
with spin happens

sij ⌘ (pi + pj)
2 ⌘ m2

ij
d� =

1

(2⇡)2 32M3
|Mfi|2ds12ds13

M 1

2

3
s12

s 1
3

R

✬

✫

✩

✪

✷ Angular distributions for the vector and tensor intermediate states introduce the characteristic
non-uniformity of the event density.

✷ Finally, the region where the amplitudes of two resonances overlap is sensitive to the phase
difference between the two amplitudes.

Two scalars, ∆φ = 0, Two scalars, ∆φ = π

47

✬

✫

✩

✪

✷ Angular distributions for the vector and tensor intermediate states introduce the characteristic
non-uniformity of the event density.

✷ Finally, the region where the amplitudes of two resonances overlap is sensitive to the phase
difference between the two amplitudes.

Two scalars, ∆φ = 0, Two scalars, ∆φ = π

47

s12

s 1
3

s12

s 1
3

L=0 L=1

L=2
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Real dalitz plots

sij ⌘ (pi + pj)
2 ⌘ m2

ij
d� =

1

(2⇡)2 32M3
|Mfi|2ds12ds13

D Mfi =?

s(Ksπ–)

s(K
sπ

+ )

D→Ksπ+π–

Ks

π+

π–

Ba
Ba

r P
hy

s.
 R
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Real Dalitz pots

sij ⌘ (pi + pj)
2 ⌘ m2

ij
d� =

1

(2⇡)2 32M3
|Mfi|2ds12ds13

D Mfi =?

Ks

π+

π–
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Figure 2: Dalitz plots for (a) D+! ⇡�⇡+⇡+ and (b) D+

s

! ⇡�⇡+⇡+ candidates selected within
±2�̃ around the respective m̃ weighted average mass.

4 Binned analysis

4.1 Method

The binned method used to search for localised asymmetries in the D+ ! ⇡�⇡+⇡+

decay phase space is based on a bin-by-bin comparison between the D+ and D� Dalitz
plots [19,20]. For each bin of the Dalitz plot, the significance of the di↵erence between the
number of D+ and D� candidates, S i

CP

, is computed as

S i

CP

⌘ N+

i

� ↵N�
ip

↵(N+

i

+N�
i

)
, ↵ ⌘ N+

N� , (1)

where N+

i

(N�
i

) is the number of D+ (D�) candidates in the ith bin and N+ (N�) is
the sum of N+

i

(N�
i

) over all bins. The parameter ↵ removes the contribution of global
asymmetries which may arise due to production [21, 22] and detection asymmetries, as
well as from CPV . Two binning schemes are used, a uniform grid with bins of equal size
and an adaptive binning where the bins have the same population.

In the absence of localised asymmetries, the S i

CP

values follow a standard normal
Gaussian distribution. Therefore, CPV can be detected as a deviation from this behaviour.
The numerical comparison between the D+ and D� Dalitz plots is made by a �2 test,
with �2 =

P
i

(S i

CP

)2. A p-value for the hypothesis of no CPV is obtained considering that
the number of degrees of freedom (ndf) is equal to the total number of bins minus one,
due to the constraint on the overall D+/D� normalisation.

A CPV signal is established if a p-value lower than 3⇥10�7 is found, in which case it
can be converted to a significance for the exclusion of CP symmetry in this channel. If no
evidence of CPV is found, this technique provides no model-independent way to set an
upper limit.

4

ρ(770)
f(980)

σ(500)?
2.4M D±→π±π∓π± decays (LHCb)

Phys. Lett. B728 (2014) 585

16



Jonas Rademacker: Amplitude Analyses                                                    B-workshop                                          Neckarzimmern 18 Feb 2015 

Calculating amplitudes
• Let us assume(!) that 

the full amplitude can 
be calculated as the 
sum of essentially 
independent two 
body processes. 

• Doing this results in 
the so-called “isobar” 
model.

M

1

2

3
R

17

Three-body decays: V → 3π

Unitarity relation for F(s):
discF(s) = 2i

{

F(s)
︸︷︷︸

right-hand cut

+ F̂(s)
︸︷︷︸

left-hand cut

}

× θ(s− 4M2
π)× sin δ11(s) e

−iδ11(s)

• inhomogeneities F̂(s): angular averages over the F(t), F(u)

F(s) = aΩ(s)

{

1 +
s

π

∫ ∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s)

}

F̂(s) =
3

2

∫ 1

−1

dz (1− z2)F
(

t(s, z)
)

Anisovich, Leutwyler 1998

F(s) = +++ ...

B. Kubis, Three-body decays beyond the isobar model – p. 8

Three-body decays: V → 3π

Unitarity relation for F(s):
discF(s) = 2i

{

F(s)
︸︷︷︸

right-hand cut

+ F̂(s)
︸︷︷︸

left-hand cut

}

× θ(s− 4M2
π)× sin δ11(s) e

−iδ11(s)

• inhomogeneities F̂(s): angular averages over the F(t), F(u)

F(s) = aΩ(s)

{

1 +
s

π

∫ ∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s)

}

F̂(s) =
3

2

∫ 1

−1

dz (1− z2)F
(

t(s, z)
)

Anisovich, Leutwyler 1998

F(s) = +++ ...

B. Kubis, Three-body decays beyond the isobar model – p. 8

Three-body decays: V → 3π

Unitarity relation for F(s):
discF(s) = 2i

{

F(s)
︸︷︷︸

right-hand cut

+ F̂(s)
︸︷︷︸

left-hand cut

}

× θ(s− 4M
2
π)× sin δ

1
1(s) e

−iδ
1
1(s)

• inhomogeneities F̂(s): angular averages over the F(t), F(u)

F(s) = aΩ(s)

{

1 +
s

π

∫ ∞

4M2
π

ds
′

s
′

sin δ1
1(s

′
)F̂(s

′
)

|Ω(s
′
)|(s

′
− s)

}

F̂(s) =
3

2

∫ 1

−1

dz (1− z
2
)F

(

t(s, z)
)

Anisovich, Leutwyler 1998

F(s) = +++ ...

B. Kubis, Three-body decays beyond the isobar model – p. 8

Three-body decays: V → 3π

Unitarity relation for F(s):
discF(s) = 2i

{

F(s)
︸︷︷︸

right-hand cut

+ F̂(s)
︸︷︷︸

left-hand cut

}

× θ(s− 4M2
π)× sin δ11(s) e

−iδ11(s)

• inhomogeneities F̂(s): angular averages over the F(t), F(u)

F(s) = aΩ(s)

{

1 +
s

π

∫ ∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s)

}

F̂(s) =
3

2

∫ 1

−1

dz (1− z2)F
(

t(s, z)
)

Anisovich, Leutwyler 1998

F(s) = +++ ...

B. Kubis, Three-body decays beyond the isobar model – p. 8

+ +

+ + + ….
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Calculating amplitudes
• We don’t know anything 

about the strong 
interaction dynamics. 

• As a first 
approximation, we treat 
each particle as point 
particle. 

• We want a Lorentz-
invariant matrix 
element… 

M

1

2

3
R

18
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Calculating amplitudes

M

1

2

3
R

1

s23 �m2
R � imR�

RELATIVISTIC BREIT-WIGNER 

31 

RELATIVISTIC BREIT-WIGNER 

31 

RELATIVISTIC BREIT-WIGNER 

31 
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Calculating the amplitudes

M

1

2

3
R q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

say R has spin 1 (e.g. K*(892), ρ(770) etc)
q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

20
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Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

1

s23 �m2
R � imR�

21
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Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

pµ1

q23 ⌫"⌫Rp1µ "µ⇤R

"⇤R

1

s23 �m2
R � imR�

22
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Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

pµ1

q23 ⌫p1µ

X

all �

"�µ⇤R

"⇤R

"�⌫R
1

s23 �m2
R � imR�

23
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Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

pµ1

q23 ⌫p1µ

X

all �

"�µ⇤R

"⇤R

"�⌫R

X

all �

"�µ⇤R "�⌫R = �gµ⌫ +
pµRp

⌫
R

p2R

1

s23 �m2
R � imR�

23
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Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

pµ1

"⇤R

q23 ⌫p1µ

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�

24



Jonas Rademacker: Amplitude Analyses                                                    B-workshop                                          Neckarzimmern 18 Feb 2015 

spin factor

Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

pµ1

"⇤R

q23 ⌫p1µ

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�

24
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Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

pµ1

"⇤R

✓
�p1 · q23 +

(p1 · pR)(q23 · pR)
p2R

◆
1

s23 �m2
R � imR�

spin factor 25
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Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

pµ1

"⇤R

Express in terms of sij if you wish, using

pi · pj = sij �m2
i �m2

2

✓
�p1 · q23 +

(p1 · pR)(q23 · pR)
p2R

◆
1

s23 �m2
R � imR�

spin factor 25
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Calculating the amplitudes

M

1

2

3
R

"�Rq⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

q⌫23

pµ1

"⇤R

q23 ⌫p1µ

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�
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Calculating the amplitudes

M

1

2

3

R (with J=1)

q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R
Angular Momenta 
require momenta

l=1
l=1

d

L =
p

l(l + 1)

classical mechanics

QM

in decay rest frame

~L = 2 ~d⇥ ~qr

~qr

�~qr

q23 ⌫p1µ

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�
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Blatt Weisskopf Penetration 
Factors

classical 
mechanics: 
L = 2 qd 

QM: 
L2 = l(l+1)

– 3–

Barrier Factor BL: The maximum angular momentum L

in a strong decay is limited by the linear momentum q —

the relative momentum of the decay particles in the center of

mass frame of the decaying resonance. Decay particles moving

slowly with an impact parameter (meson radius) d of order

1 fm have difficulty generating sufficient angular momentum to

conserve the spin of the resonance. The Blatt-Weisskopf [14,15]

functions BL, given in Table 2, weight the reaction amplitudes

to account for this spin-dependent effect. These functions are

normalized to give BL = 1 for z = (|q| d)2 = 1. Another

common formulation, B′
L, also in Table 2, is normalized to give

B′
L = 1 for z = z0 = (|q0| d)2 where q0 is the value of q when

mab = mr. An important difference between the BL and the

B′
L is that the former include explictly the centrifugal barrier,

while it is to be moved to the dynamical functions in the case

of B′
L.

Table 2: Blatt-Weisskopf barrier factors weight
the reaction amplitudes to account for spin-
dependent effects (c.f. Sec. VIII.5 of Ref. 14) .
Two formulations with different normalization
conditions (described in text) are shown. BL is
commonly used in Dalitz plot analyses; B′

L is
commonly used with the helicity formalism.

L BL(q) B′
L(q, q0)

0 1 1

1

√

2z

1 + z

√

1 + z0

1 + z

2

√

13z2

(z−3)2+9z

√

(z0−3)2+9z0

(z−3)2+9z

where z = (|q| d)2 and z0 = (|q0| d)2

Dynamical Function Tr: The dynamical function Tr is de-

rived from the S-matrix formalism [5]. In general, the am-

plitude that a final state f couples to an initial state i is

Sfi = ⟨f |S|i⟩, where the scattering operator S is unitary:

June 18, 2012 15:23
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Blatt Weisskopf Penetration 
Factors

1/4 L2 = 1/4 l(l+1) for l = …
1 2 3 4

classical 
mechanics: 
L = 2 qd 

QM: 
L2 = l(l+1)

0 10 20
0.0

0.2

0.4

0.6

0.8

1.0

(qd)^2

B_
L(
q)
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Calculating the amplitudes

M

1

2

3

R (with J=1)

q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R
Angular Momenta 
require momenta

l=1
l=1

d

in decay rest frame

~qr

�~qr

q23 ⌫p1µ BL(qrM , dM ) BL(qrR, dR)
�gµ⌫ +

pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�
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Calculating the amplitudes

M

1

2

3

R (with J=1)

q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

l=1
l=1

q23 ⌫p1µ BL(qrM , dM ) BL(qrR, dR)
�gµ⌫ +

pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�

• Width Γ = rate, depends 
on phase space = 2q/m. 

• Rate also depends on BL.
break-up momentum
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Calculating the amplitudes

M

1

2

3

R (with J=1)

q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

l=1
l=1

q23 ⌫p1µ BL(qrM , dM ) BL(qrR, dR)

• Width Γ = rate, depends 
on phase space = 2q/m. 

• Rate also depends on BL.

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�(m23)

break-up momentum

32



Jonas Rademacker: Amplitude Analyses                                                    B-workshop                                          Neckarzimmern 18 Feb 2015 

Calculating the amplitudes

M

1

2

3

R (with J=1)

q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

l=1
l=1

q23 ⌫p1µ BL(qrM , dM ) BL(qrR, dR)

• Width Γ = rate, depends 
on phase space = 2q/m. 

• Rate also depends on BL.

�(m23) = �0
(q23/m23)BL(q23)

(q0/mR) BL(q0)

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�(m23)

break-up momentum
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Calculating the amplitudes

M

1

2

3

R (with J=1)

q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

l=1
l=1

q23 ⌫p1µ BL(qrM , dM ) BL(qrR, dR)

• Width Γ = rate, depends 
on phase space = 2q/m. 

• Rate also depends on BL.

�(m23) = �0
(q23/m23)BL(q23)

(q0/mR) BL(q0)

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�(m23)

break-up momentum in restframe of decaying resonance

reconstructed mass m23 ⌘
p
s23

break-up momentum
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Calculating the amplitudes

M

1

2

3

R (with J=1)

q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

l=1
l=1

q23 ⌫p1µ BL(qrM , dM ) BL(qrR, dR)

• Width Γ = rate, depends 
on phase space = 2q/m. 

• Rate also depends on BL.

�(m23) = �0
(q23/m23)BL(q23)

(q0/mR) BL(q0)

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�(m23)

break-up momentum in restframe of decaying resonance

reconstructed mass m23 ⌘
p
s23

centrifugal barrier factor

break-up momentum

32



Jonas Rademacker: Amplitude Analyses                                                    B-workshop                                          Neckarzimmern 18 Feb 2015 

Calculating the amplitudes

M

1

2

3

R (with J=1)

q⌫23 ⌘ p⌫2 � p⌫3

pµ1

"�R

l=1
l=1

q23 ⌫p1µ BL(qrM , dM ) BL(qrR, dR)

• Width Γ = rate, depends 
on phase space = 2q/m. 

• Rate also depends on BL.

�(m23) = �0
(q23/m23)BL(q23)

(q0/mR) BL(q0)

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�(m23)

break-up momentum in restframe of decaying resonance

reconstructed mass m23 ⌘
p
s23

centrifugal barrier factor

the same as numerator, but 
calculated for “nominal” (peak) 

resonance mass.

break-up momentum
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Mass dependent width 
(ignoring ang. mom)

✬

✫

✩

✪

Breit-Wigner Lineshape.

✷ Comparison between resonances lineshapes without (dashed) and with a mass-dependent Γ (solid

line).

39

�(m23) = �0
(q23/m23)BL(q23)

(q0/mR) BL(q0)

dashed: fixed width 

solid: mass dependent width

33
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Breit Wigner with angular 
momentum effects (only)

✬

✫

✩

✪

Breit-Wigner with Blatt-Weisskopf penetration factors

✷ Breit-Wigner lineshape with different angular momentum factors.

41

�(m23) = �0
(q23/m23)BL(q23)

(q0/mR) BL(q0)
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Amplitude Model
q23 ⌫p1µ BL(qrM , dM ) BL(qrR, dR)

�gµ⌫ +
pµ
Rp⌫

R

p2
R

s23 �m2
R � imR�(m23)

AR =

Mfi =
X

R

cRe
i✓RAR(s12, s23)

P (s12, s23) =
|Mfi|2

��� d�
ds12 ds23

���
R
|Mfi|2

��� d�
ds12 ds23

��� ds12 ds23

=
|Mfi|2R

within kin boundary

|Mfi|2 ds12 ds23

sensitivity to phases is one of the 
key reasons amplitude analyses 

are so interesting.

35

Fitters frequently used at 
LHCb: 
MINT (esp for >3 body) 
Laura++ 
GooFit-based fitter 
and others.
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Amplitude Model
Mfi =

X

R

cRe
i✓RAR(s12, s23)

the deviations between the pTð!D"#Þ distributions for posi-
tive and negative pion charges found in data.

Two different parametrization approaches to measure
CP-violation asymmetries in a simultaneous Dalitz-plot fit
to the D0 and reweighted !D0 samples are applied. The first
one corresponds to an independent parametrization of the
relative amplitudes and phases in the Dalitz-plot fits of the
D0 and !D0 samples, respectively. Differences in the esti-
mated resonance parameters can then be interpreted as
CP-violation effects. The second parametrization approach
is a simultaneous fit to the D0 and !D0 samples, where two
additional parameters, representing CP-violation ampli-
tudes and phases, are introduced for each resonance.

1. Independent D0 and !D0 parametrizations

The fitting procedure described in Sec. VIA is repeated
with separate parametrizations for the amplitudes and phases
in theD0 and !D0 samples. By performing a simultaneousD0

and !D0 fit, common parameters are used for the Gaussian-
constrained masses and widths of the included resonances,
the nonresonant contribution, theK"ð892Þ#, f0ð600Þ, and"2

masses and widths, as well as the mistag fraction.

To quantify possible CP-violation effects, the fit-
fraction asymmetries,

AFF ¼
FFD0 & FF !D0

FFD0 þ FF !D0

; (7)

are calculated for each intermediate resonance, where the
statistical uncertainties are determined by Gaussian uncer-
tainties propagated from the statistical uncertainties of the
individual fit fractions.
A measure for the overall integrated CP asymmetry is

given by

ACP ¼
R jMj2&j !Mj2

jMj2þj !Mj2 dM
2
K0
S!

#ðRSÞdM
2
!þ!&

R
dM2

K0
S!

#ðRSÞdM
2
!þ!&

; (8)

whereM is the matrix element of Eq. (3) for the D0 decay
and !M the one for the !D0 decay. The statistical uncertainty
on ACP is determined with the same procedure used for the
determination of the fit-fraction uncertainties.

2. CP-violation amplitudes and phases

Following Ref. [6], a simultaneous fit to the D0 and !D0

samples is performed, where the matrix elements for D0

and !D0 read

M ¼ a0e
i#0 þ

X

j

aje
ið#jþ$jÞ

!
1þ bj

aj

"
Aj;

!M ¼ a0e
i#0 þ

X

j

aje
ið#j&$jÞ

!
1& bj

aj

"
Aj:

(9)

Compared to Eq. (3) the additional parameters bj and
$j, representing CP-violation amplitudes and phases, are

TABLE I. CombinedD0 and !D0 Dalitz-plot-fit results for the relative amplitudes and phases of
the included intermediate resonances, together with the fit fractions calculated from them.
Because of interference effects between the various resonances the fit fractions are not con-
strained to add up exactly to 100%.

Resonance a # [(] Fit fractions [%]

K"ð892Þ# 1:911# 0:012 132:1# 0:7 61:80# 0:31
K"

0ð1430Þ# 2:093# 0:065 54:2# 1:9 6:25# 0:25
K"

2ð1430Þ# 0:986# 0:034 308:6# 2:1 1:28# 0:08
K"ð1410Þ# 1:092# 0:069 155:9# 2:8 1:07# 0:10
%ð770Þ 1 0 18:85# 0:18
!ð782Þ 0:038# 0:002 107:9# 2:3 0:46# 0:05
f0ð980Þ 0:476# 0:016 182:8# 1:3 4:91# 0:19
f2ð1270Þ 1:713# 0:048 329:9# 1:6 1:95# 0:10
f0ð1370Þ 0:342# 0:021 109:3# 3:1 0:57# 0:05
%ð1450Þ 0:709# 0:043 8:7# 2:7 0:41# 0:04
f0ð600Þ 1:134# 0:041 201:0# 2:9 7:02# 0:30
"2 0:282# 0:023 16:2# 9:0 0:33# 0:04
K"ð892Þ#ðDCSÞ 0:137# 0:007 317:6# 2:8 0:32# 0:03
K"

0ð1430Þ#ðDCSÞ 0:439# 0:035 156:1# 4:9 0:28# 0:04
K"

2ð1430Þ#ðDCSÞ 0:291# 0:034 213:5# 6:1 0:11# 0:03
Nonresonant 1:797# 0:147 94:0# 5:3 1:64# 0:27
Sum 107:25# 0:65

TABLE II. Combined D0 and !D0 Dalitz-plot-fit results for the
masses and widths of the K"ð892Þ#, f0ð600Þ, and "2 contribu-
tions.

Resonance Mass [MeV=c2] Natural width [MeV=c2]

K"ð892Þ# 893:9# 0:1 51:9# 0:2
f0ð600Þ 527:3# 5:2 308:7# 8:9
"2 1150:5# 7:7 138:8# 7:8

MEASUREMENT OF CP-VIOLATION ASYMMETRIES . . . PHYSICAL REVIEW D 86, 032007 (2012)

032007-9

CDF: PHYSICAL REVIEW D 86, 032007 (2012)example:

36

http://prd.aps.org/pdf/PRD/v86/i3/e032007
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Amplitude Model
Mfi =

X

R

cRe
i✓RAR(s12, s23)

the deviations between the pTð!D"#Þ distributions for posi-
tive and negative pion charges found in data.

Two different parametrization approaches to measure
CP-violation asymmetries in a simultaneous Dalitz-plot fit
to the D0 and reweighted !D0 samples are applied. The first
one corresponds to an independent parametrization of the
relative amplitudes and phases in the Dalitz-plot fits of the
D0 and !D0 samples, respectively. Differences in the esti-
mated resonance parameters can then be interpreted as
CP-violation effects. The second parametrization approach
is a simultaneous fit to the D0 and !D0 samples, where two
additional parameters, representing CP-violation ampli-
tudes and phases, are introduced for each resonance.

1. Independent D0 and !D0 parametrizations

The fitting procedure described in Sec. VIA is repeated
with separate parametrizations for the amplitudes and phases
in theD0 and !D0 samples. By performing a simultaneousD0

and !D0 fit, common parameters are used for the Gaussian-
constrained masses and widths of the included resonances,
the nonresonant contribution, theK"ð892Þ#, f0ð600Þ, and"2

masses and widths, as well as the mistag fraction.

To quantify possible CP-violation effects, the fit-
fraction asymmetries,

AFF ¼
FFD0 & FF !D0

FFD0 þ FF !D0

; (7)

are calculated for each intermediate resonance, where the
statistical uncertainties are determined by Gaussian uncer-
tainties propagated from the statistical uncertainties of the
individual fit fractions.
A measure for the overall integrated CP asymmetry is

given by

ACP ¼
R jMj2&j !Mj2

jMj2þj !Mj2 dM
2
K0
S!

#ðRSÞdM
2
!þ!&

R
dM2

K0
S!

#ðRSÞdM
2
!þ!&

; (8)

whereM is the matrix element of Eq. (3) for the D0 decay
and !M the one for the !D0 decay. The statistical uncertainty
on ACP is determined with the same procedure used for the
determination of the fit-fraction uncertainties.

2. CP-violation amplitudes and phases

Following Ref. [6], a simultaneous fit to the D0 and !D0

samples is performed, where the matrix elements for D0

and !D0 read

M ¼ a0e
i#0 þ

X

j

aje
ið#jþ$jÞ

!
1þ bj

aj

"
Aj;

!M ¼ a0e
i#0 þ

X

j

aje
ið#j&$jÞ

!
1& bj

aj

"
Aj:

(9)

Compared to Eq. (3) the additional parameters bj and
$j, representing CP-violation amplitudes and phases, are

TABLE I. CombinedD0 and !D0 Dalitz-plot-fit results for the relative amplitudes and phases of
the included intermediate resonances, together with the fit fractions calculated from them.
Because of interference effects between the various resonances the fit fractions are not con-
strained to add up exactly to 100%.

Resonance a # [(] Fit fractions [%]

K"ð892Þ# 1:911# 0:012 132:1# 0:7 61:80# 0:31
K"

0ð1430Þ# 2:093# 0:065 54:2# 1:9 6:25# 0:25
K"

2ð1430Þ# 0:986# 0:034 308:6# 2:1 1:28# 0:08
K"ð1410Þ# 1:092# 0:069 155:9# 2:8 1:07# 0:10
%ð770Þ 1 0 18:85# 0:18
!ð782Þ 0:038# 0:002 107:9# 2:3 0:46# 0:05
f0ð980Þ 0:476# 0:016 182:8# 1:3 4:91# 0:19
f2ð1270Þ 1:713# 0:048 329:9# 1:6 1:95# 0:10
f0ð1370Þ 0:342# 0:021 109:3# 3:1 0:57# 0:05
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f0ð600Þ 1:134# 0:041 201:0# 2:9 7:02# 0:30
"2 0:282# 0:023 16:2# 9:0 0:33# 0:04
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TABLE II. Combined D0 and !D0 Dalitz-plot-fit results for the
masses and widths of the K"ð892Þ#, f0ð600Þ, and "2 contribu-
tions.

Resonance Mass [MeV=c2] Natural width [MeV=c2]

K"ð892Þ# 893:9# 0:1 51:9# 0:2
f0ð600Þ 527:3# 5:2 308:7# 8:9
"2 1150:5# 7:7 138:8# 7:8
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the deviations between the pTð!D"#Þ distributions for posi-
tive and negative pion charges found in data.

Two different parametrization approaches to measure
CP-violation asymmetries in a simultaneous Dalitz-plot fit
to the D0 and reweighted !D0 samples are applied. The first
one corresponds to an independent parametrization of the
relative amplitudes and phases in the Dalitz-plot fits of the
D0 and !D0 samples, respectively. Differences in the esti-
mated resonance parameters can then be interpreted as
CP-violation effects. The second parametrization approach
is a simultaneous fit to the D0 and !D0 samples, where two
additional parameters, representing CP-violation ampli-
tudes and phases, are introduced for each resonance.

1. Independent D0 and !D0 parametrizations

The fitting procedure described in Sec. VIA is repeated
with separate parametrizations for the amplitudes and phases
in theD0 and !D0 samples. By performing a simultaneousD0

and !D0 fit, common parameters are used for the Gaussian-
constrained masses and widths of the included resonances,
the nonresonant contribution, theK"ð892Þ#, f0ð600Þ, and"2

masses and widths, as well as the mistag fraction.

To quantify possible CP-violation effects, the fit-
fraction asymmetries,

AFF ¼
FFD0 & FF !D0

FFD0 þ FF !D0

; (7)

are calculated for each intermediate resonance, where the
statistical uncertainties are determined by Gaussian uncer-
tainties propagated from the statistical uncertainties of the
individual fit fractions.
A measure for the overall integrated CP asymmetry is

given by

ACP ¼
R jMj2&j !Mj2

jMj2þj !Mj2 dM
2
K0
S!

#ðRSÞdM
2
!þ!&

R
dM2

K0
S!

#ðRSÞdM
2
!þ!&

; (8)

whereM is the matrix element of Eq. (3) for the D0 decay
and !M the one for the !D0 decay. The statistical uncertainty
on ACP is determined with the same procedure used for the
determination of the fit-fraction uncertainties.

2. CP-violation amplitudes and phases

Following Ref. [6], a simultaneous fit to the D0 and !D0

samples is performed, where the matrix elements for D0

and !D0 read

M ¼ a0e
i#0 þ

X

j

aje
ið#jþ$jÞ

!
1þ bj

aj

"
Aj;

!M ¼ a0e
i#0 þ

X

j

aje
ið#j&$jÞ

!
1& bj

aj

"
Aj:

(9)

Compared to Eq. (3) the additional parameters bj and
$j, representing CP-violation amplitudes and phases, are

TABLE I. CombinedD0 and !D0 Dalitz-plot-fit results for the relative amplitudes and phases of
the included intermediate resonances, together with the fit fractions calculated from them.
Because of interference effects between the various resonances the fit fractions are not con-
strained to add up exactly to 100%.

Resonance a # [(] Fit fractions [%]

K"ð892Þ# 1:911# 0:012 132:1# 0:7 61:80# 0:31
K"

0ð1430Þ# 2:093# 0:065 54:2# 1:9 6:25# 0:25
K"

2ð1430Þ# 0:986# 0:034 308:6# 2:1 1:28# 0:08
K"ð1410Þ# 1:092# 0:069 155:9# 2:8 1:07# 0:10
%ð770Þ 1 0 18:85# 0:18
!ð782Þ 0:038# 0:002 107:9# 2:3 0:46# 0:05
f0ð980Þ 0:476# 0:016 182:8# 1:3 4:91# 0:19
f2ð1270Þ 1:713# 0:048 329:9# 1:6 1:95# 0:10
f0ð1370Þ 0:342# 0:021 109:3# 3:1 0:57# 0:05
%ð1450Þ 0:709# 0:043 8:7# 2:7 0:41# 0:04
f0ð600Þ 1:134# 0:041 201:0# 2:9 7:02# 0:30
"2 0:282# 0:023 16:2# 9:0 0:33# 0:04
K"ð892Þ#ðDCSÞ 0:137# 0:007 317:6# 2:8 0:32# 0:03
K"

0ð1430Þ#ðDCSÞ 0:439# 0:035 156:1# 4:9 0:28# 0:04
K"

2ð1430Þ#ðDCSÞ 0:291# 0:034 213:5# 6:1 0:11# 0:03
Nonresonant 1:797# 0:147 94:0# 5:3 1:64# 0:27
Sum 107:25# 0:65

TABLE II. Combined D0 and !D0 Dalitz-plot-fit results for the
masses and widths of the K"ð892Þ#, f0ð600Þ, and "2 contribu-
tions.

Resonance Mass [MeV=c2] Natural width [MeV=c2]

K"ð892Þ# 893:9# 0:1 51:9# 0:2
f0ð600Þ 527:3# 5:2 308:7# 8:9
"2 1150:5# 7:7 138:8# 7:8
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the deviations between the pTð!D"#Þ distributions for posi-
tive and negative pion charges found in data.

Two different parametrization approaches to measure
CP-violation asymmetries in a simultaneous Dalitz-plot fit
to the D0 and reweighted !D0 samples are applied. The first
one corresponds to an independent parametrization of the
relative amplitudes and phases in the Dalitz-plot fits of the
D0 and !D0 samples, respectively. Differences in the esti-
mated resonance parameters can then be interpreted as
CP-violation effects. The second parametrization approach
is a simultaneous fit to the D0 and !D0 samples, where two
additional parameters, representing CP-violation ampli-
tudes and phases, are introduced for each resonance.

1. Independent D0 and !D0 parametrizations

The fitting procedure described in Sec. VIA is repeated
with separate parametrizations for the amplitudes and phases
in theD0 and !D0 samples. By performing a simultaneousD0

and !D0 fit, common parameters are used for the Gaussian-
constrained masses and widths of the included resonances,
the nonresonant contribution, theK"ð892Þ#, f0ð600Þ, and"2

masses and widths, as well as the mistag fraction.

To quantify possible CP-violation effects, the fit-
fraction asymmetries,

AFF ¼
FFD0 & FF !D0

FFD0 þ FF !D0

; (7)

are calculated for each intermediate resonance, where the
statistical uncertainties are determined by Gaussian uncer-
tainties propagated from the statistical uncertainties of the
individual fit fractions.
A measure for the overall integrated CP asymmetry is

given by

ACP ¼
R jMj2&j !Mj2

jMj2þj !Mj2 dM
2
K0
S!

#ðRSÞdM
2
!þ!&

R
dM2

K0
S!

#ðRSÞdM
2
!þ!&

; (8)

whereM is the matrix element of Eq. (3) for the D0 decay
and !M the one for the !D0 decay. The statistical uncertainty
on ACP is determined with the same procedure used for the
determination of the fit-fraction uncertainties.

2. CP-violation amplitudes and phases

Following Ref. [6], a simultaneous fit to the D0 and !D0

samples is performed, where the matrix elements for D0

and !D0 read

M ¼ a0e
i#0 þ

X

j

aje
ið#jþ$jÞ

!
1þ bj

aj

"
Aj;

!M ¼ a0e
i#0 þ

X

j

aje
ið#j&$jÞ

!
1& bj

aj

"
Aj:

(9)

Compared to Eq. (3) the additional parameters bj and
$j, representing CP-violation amplitudes and phases, are

TABLE I. CombinedD0 and !D0 Dalitz-plot-fit results for the relative amplitudes and phases of
the included intermediate resonances, together with the fit fractions calculated from them.
Because of interference effects between the various resonances the fit fractions are not con-
strained to add up exactly to 100%.

Resonance a # [(] Fit fractions [%]

K"ð892Þ# 1:911# 0:012 132:1# 0:7 61:80# 0:31
K"

0ð1430Þ# 2:093# 0:065 54:2# 1:9 6:25# 0:25
K"

2ð1430Þ# 0:986# 0:034 308:6# 2:1 1:28# 0:08
K"ð1410Þ# 1:092# 0:069 155:9# 2:8 1:07# 0:10
%ð770Þ 1 0 18:85# 0:18
!ð782Þ 0:038# 0:002 107:9# 2:3 0:46# 0:05
f0ð980Þ 0:476# 0:016 182:8# 1:3 4:91# 0:19
f2ð1270Þ 1:713# 0:048 329:9# 1:6 1:95# 0:10
f0ð1370Þ 0:342# 0:021 109:3# 3:1 0:57# 0:05
%ð1450Þ 0:709# 0:043 8:7# 2:7 0:41# 0:04
f0ð600Þ 1:134# 0:041 201:0# 2:9 7:02# 0:30
"2 0:282# 0:023 16:2# 9:0 0:33# 0:04
K"ð892Þ#ðDCSÞ 0:137# 0:007 317:6# 2:8 0:32# 0:03
K"

0ð1430Þ#ðDCSÞ 0:439# 0:035 156:1# 4:9 0:28# 0:04
K"

2ð1430Þ#ðDCSÞ 0:291# 0:034 213:5# 6:1 0:11# 0:03
Nonresonant 1:797# 0:147 94:0# 5:3 1:64# 0:27
Sum 107:25# 0:65

TABLE II. Combined D0 and !D0 Dalitz-plot-fit results for the
masses and widths of the K"ð892Þ#, f0ð600Þ, and "2 contribu-
tions.

Resonance Mass [MeV=c2] Natural width [MeV=c2]

K"ð892Þ# 893:9# 0:1 51:9# 0:2
f0ð600Þ 527:3# 5:2 308:7# 8:9
"2 1150:5# 7:7 138:8# 7:8
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introduced. Again, common parameters are used for the
Gaussian-constrained masses and widths of the included
resonances, the nonresonant contribution, the K!ð892Þ$,
f0ð600Þ, and !2 masses and widths, as well as the mistag
fraction.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are categorized into experi-
mental and modeling uncertainties. The considered experi-
mental sources are efficiency asymmetries varying over the
Dalitz plot, asymmetries of the background in the D0 and

!D0 samples, and the applied efficiency distribution which
is estimated by simulated events and may not adequately
model the composition of trigger configurations in data.
Modeling uncertainties arise from the chosen values for the
radius parameters in the Blatt-Weisskopf form factors and
the limited knowledge on the complex dynamics of the
three-body decay. In this context, the stability of the de-
termined CP-violation quantities under variations of the
employed Dalitz model is tested. The contributions from
the various sources to the total systematic uncertainties can
be found in Tables III, IV, V, and VI.

A. Efficiency asymmetry

The reweighting procedure of the !D0 Dalitz plot accord-
ing to the deviations between the pTð"D!$Þ distributions
for positively and negatively charged pions may not fully
correct for residual small asymmetries between the D0 and
!D0 efficiency distributions. To estimate the size of a sys-
tematic effect originating from such an asymmetry, the
Dalitz-plot fits are repeated without reweighting the !D0

Dalitz plot. The scale of systematic uncertainties is esti-
mated as the differences between the resulting values and
the ones from the default fits.

B. Background asymmetry

To investigate a possible systematic effect originating
from different Dalitz-plot distributions of the background
inD0 and !D0 data, the Dalitz-plot fits are repeated with two
independent background samples distinguished by the
charge of the slow pion in the D!$ decay. The systematic
uncertainties are calculated as differences between the
resulting values and the ones from the default fits.

C. Fit model

The systematic uncertainties originating from the spe-
cific model used for the Dalitz-plot fit are estimated by
repeating the fits when one of the resonances K!ð1410Þ$,
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FIG. 4 (color online). Projections of the Dalitz-plot fit on the
individual two-body masses, together with the corresponding
distributions in data.
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introduced. Again, common parameters are used for the
Gaussian-constrained masses and widths of the included
resonances, the nonresonant contribution, the K!ð892Þ$,
f0ð600Þ, and !2 masses and widths, as well as the mistag
fraction.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are categorized into experi-
mental and modeling uncertainties. The considered experi-
mental sources are efficiency asymmetries varying over the
Dalitz plot, asymmetries of the background in the D0 and

!D0 samples, and the applied efficiency distribution which
is estimated by simulated events and may not adequately
model the composition of trigger configurations in data.
Modeling uncertainties arise from the chosen values for the
radius parameters in the Blatt-Weisskopf form factors and
the limited knowledge on the complex dynamics of the
three-body decay. In this context, the stability of the de-
termined CP-violation quantities under variations of the
employed Dalitz model is tested. The contributions from
the various sources to the total systematic uncertainties can
be found in Tables III, IV, V, and VI.

A. Efficiency asymmetry

The reweighting procedure of the !D0 Dalitz plot accord-
ing to the deviations between the pTð"D!$Þ distributions
for positively and negatively charged pions may not fully
correct for residual small asymmetries between the D0 and
!D0 efficiency distributions. To estimate the size of a sys-
tematic effect originating from such an asymmetry, the
Dalitz-plot fits are repeated without reweighting the !D0

Dalitz plot. The scale of systematic uncertainties is esti-
mated as the differences between the resulting values and
the ones from the default fits.

B. Background asymmetry

To investigate a possible systematic effect originating
from different Dalitz-plot distributions of the background
inD0 and !D0 data, the Dalitz-plot fits are repeated with two
independent background samples distinguished by the
charge of the slow pion in the D!$ decay. The systematic
uncertainties are calculated as differences between the
resulting values and the ones from the default fits.

C. Fit model

The systematic uncertainties originating from the spe-
cific model used for the Dalitz-plot fit are estimated by
repeating the fits when one of the resonances K!ð1410Þ$,
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individual two-body masses, together with the corresponding
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) [GeV/c]±D*π(
T

p
0.5 1 1.5 2

)-
D

*
+N +

D
*

)/
(N

-
D

*
-N +

D
*

(N

-0.1

-0.05

0

0.05

0.1

FIG. 5 (color online). Asymmetry between the numbers of
reconstructed D!þ and D!& candidates as a function of the
soft pion’s pT .

T. AALTONEN et al. PHYSICAL REVIEW D 86, 032007 (2012)

032007-10

introduced. Again, common parameters are used for the
Gaussian-constrained masses and widths of the included
resonances, the nonresonant contribution, the K!ð892Þ$,
f0ð600Þ, and !2 masses and widths, as well as the mistag
fraction.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are categorized into experi-
mental and modeling uncertainties. The considered experi-
mental sources are efficiency asymmetries varying over the
Dalitz plot, asymmetries of the background in the D0 and

!D0 samples, and the applied efficiency distribution which
is estimated by simulated events and may not adequately
model the composition of trigger configurations in data.
Modeling uncertainties arise from the chosen values for the
radius parameters in the Blatt-Weisskopf form factors and
the limited knowledge on the complex dynamics of the
three-body decay. In this context, the stability of the de-
termined CP-violation quantities under variations of the
employed Dalitz model is tested. The contributions from
the various sources to the total systematic uncertainties can
be found in Tables III, IV, V, and VI.

A. Efficiency asymmetry

The reweighting procedure of the !D0 Dalitz plot accord-
ing to the deviations between the pTð"D!$Þ distributions
for positively and negatively charged pions may not fully
correct for residual small asymmetries between the D0 and
!D0 efficiency distributions. To estimate the size of a sys-
tematic effect originating from such an asymmetry, the
Dalitz-plot fits are repeated without reweighting the !D0

Dalitz plot. The scale of systematic uncertainties is esti-
mated as the differences between the resulting values and
the ones from the default fits.

B. Background asymmetry

To investigate a possible systematic effect originating
from different Dalitz-plot distributions of the background
inD0 and !D0 data, the Dalitz-plot fits are repeated with two
independent background samples distinguished by the
charge of the slow pion in the D!$ decay. The systematic
uncertainties are calculated as differences between the
resulting values and the ones from the default fits.

C. Fit model

The systematic uncertainties originating from the spe-
cific model used for the Dalitz-plot fit are estimated by
repeating the fits when one of the resonances K!ð1410Þ$,
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individual two-body masses, together with the corresponding
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introduced. Again, common parameters are used for the
Gaussian-constrained masses and widths of the included
resonances, the nonresonant contribution, the K!ð892Þ$,
f0ð600Þ, and !2 masses and widths, as well as the mistag
fraction.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are categorized into experi-
mental and modeling uncertainties. The considered experi-
mental sources are efficiency asymmetries varying over the
Dalitz plot, asymmetries of the background in the D0 and

!D0 samples, and the applied efficiency distribution which
is estimated by simulated events and may not adequately
model the composition of trigger configurations in data.
Modeling uncertainties arise from the chosen values for the
radius parameters in the Blatt-Weisskopf form factors and
the limited knowledge on the complex dynamics of the
three-body decay. In this context, the stability of the de-
termined CP-violation quantities under variations of the
employed Dalitz model is tested. The contributions from
the various sources to the total systematic uncertainties can
be found in Tables III, IV, V, and VI.

A. Efficiency asymmetry

The reweighting procedure of the !D0 Dalitz plot accord-
ing to the deviations between the pTð"D!$Þ distributions
for positively and negatively charged pions may not fully
correct for residual small asymmetries between the D0 and
!D0 efficiency distributions. To estimate the size of a sys-
tematic effect originating from such an asymmetry, the
Dalitz-plot fits are repeated without reweighting the !D0

Dalitz plot. The scale of systematic uncertainties is esti-
mated as the differences between the resulting values and
the ones from the default fits.

B. Background asymmetry

To investigate a possible systematic effect originating
from different Dalitz-plot distributions of the background
inD0 and !D0 data, the Dalitz-plot fits are repeated with two
independent background samples distinguished by the
charge of the slow pion in the D!$ decay. The systematic
uncertainties are calculated as differences between the
resulting values and the ones from the default fits.

C. Fit model

The systematic uncertainties originating from the spe-
cific model used for the Dalitz-plot fit are estimated by
repeating the fits when one of the resonances K!ð1410Þ$,
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individual two-body masses, together with the corresponding
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introduced. Again, common parameters are used for the
Gaussian-constrained masses and widths of the included
resonances, the nonresonant contribution, the K!ð892Þ$,
f0ð600Þ, and !2 masses and widths, as well as the mistag
fraction.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are categorized into experi-
mental and modeling uncertainties. The considered experi-
mental sources are efficiency asymmetries varying over the
Dalitz plot, asymmetries of the background in the D0 and

!D0 samples, and the applied efficiency distribution which
is estimated by simulated events and may not adequately
model the composition of trigger configurations in data.
Modeling uncertainties arise from the chosen values for the
radius parameters in the Blatt-Weisskopf form factors and
the limited knowledge on the complex dynamics of the
three-body decay. In this context, the stability of the de-
termined CP-violation quantities under variations of the
employed Dalitz model is tested. The contributions from
the various sources to the total systematic uncertainties can
be found in Tables III, IV, V, and VI.

A. Efficiency asymmetry

The reweighting procedure of the !D0 Dalitz plot accord-
ing to the deviations between the pTð"D!$Þ distributions
for positively and negatively charged pions may not fully
correct for residual small asymmetries between the D0 and
!D0 efficiency distributions. To estimate the size of a sys-
tematic effect originating from such an asymmetry, the
Dalitz-plot fits are repeated without reweighting the !D0

Dalitz plot. The scale of systematic uncertainties is esti-
mated as the differences between the resulting values and
the ones from the default fits.

B. Background asymmetry

To investigate a possible systematic effect originating
from different Dalitz-plot distributions of the background
inD0 and !D0 data, the Dalitz-plot fits are repeated with two
independent background samples distinguished by the
charge of the slow pion in the D!$ decay. The systematic
uncertainties are calculated as differences between the
resulting values and the ones from the default fits.

C. Fit model

The systematic uncertainties originating from the spe-
cific model used for the Dalitz-plot fit are estimated by
repeating the fits when one of the resonances K!ð1410Þ$,
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introduced. Again, common parameters are used for the
Gaussian-constrained masses and widths of the included
resonances, the nonresonant contribution, the K!ð892Þ$,
f0ð600Þ, and !2 masses and widths, as well as the mistag
fraction.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are categorized into experi-
mental and modeling uncertainties. The considered experi-
mental sources are efficiency asymmetries varying over the
Dalitz plot, asymmetries of the background in the D0 and

!D0 samples, and the applied efficiency distribution which
is estimated by simulated events and may not adequately
model the composition of trigger configurations in data.
Modeling uncertainties arise from the chosen values for the
radius parameters in the Blatt-Weisskopf form factors and
the limited knowledge on the complex dynamics of the
three-body decay. In this context, the stability of the de-
termined CP-violation quantities under variations of the
employed Dalitz model is tested. The contributions from
the various sources to the total systematic uncertainties can
be found in Tables III, IV, V, and VI.

A. Efficiency asymmetry

The reweighting procedure of the !D0 Dalitz plot accord-
ing to the deviations between the pTð"D!$Þ distributions
for positively and negatively charged pions may not fully
correct for residual small asymmetries between the D0 and
!D0 efficiency distributions. To estimate the size of a sys-
tematic effect originating from such an asymmetry, the
Dalitz-plot fits are repeated without reweighting the !D0

Dalitz plot. The scale of systematic uncertainties is esti-
mated as the differences between the resulting values and
the ones from the default fits.

B. Background asymmetry

To investigate a possible systematic effect originating
from different Dalitz-plot distributions of the background
inD0 and !D0 data, the Dalitz-plot fits are repeated with two
independent background samples distinguished by the
charge of the slow pion in the D!$ decay. The systematic
uncertainties are calculated as differences between the
resulting values and the ones from the default fits.
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Mixing formalism for 2-body 
WS decays

38
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amplitude model dependence. (Could be 
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“Isobar” Model

• “Isobar”: Describe decay as series of 2-body processes. 
 
 

• Usually: each resonance  described by Breit Wigner lineshape (or similar) times 
factors accounting for spin.


• Popular amongst experimentalists, less so amongst theorists: violates unitarity. But 
not much as long as resonances are reasonably narrow, don’t overlap too much.


• General consensus: Isobar OK for P, D wave, but problematic for S-
wave.Alternatives exist, e.g. K-matrix formalism, which respects unitarity.

40

Three-body decays: V → 3π

Unitarity relation for F(s):
discF(s) = 2i

{

F(s)
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right-hand cut

+ F̂(s)
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left-hand cut

}

× θ(s− 4M2
π)× sin δ11(s) e

−iδ11(s)

• inhomogeneities F̂(s): angular averages over the F(t), F(u)

F(s) = aΩ(s)
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s
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4M2
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ds′
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sin δ11(s
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|Ω(s′)|(s′ − s)
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F̂(s) =
3

2
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−1

dz (1− z2)F
(

t(s, z)
)

Anisovich, Leutwyler 1998

F(s) = +++ ...

B. Kubis, Three-body decays beyond the isobar model – p. 8
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Isobar Model with sum of 
Breit Wigners

• Single resonance well described by Breit Wigner 

• Overlapping resonances not so. Theoretically 
problematic: violates unitarity. From a practical point of 
view problematic as you might get the wrong phase 
motion.
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Isobar Model with sum of 
Breit Wigners

4 resonances
32 resonances
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t(s, z)
)

Anisovich, Leutwyler 1998

F(s) = +++ ...

B. Kubis, Three-body decays beyond the isobar model – p. 8
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}
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F(s) = +++ ...

B. Kubis, Three-body decays beyond the isobar model – p. 8

Three-body decays: V → 3π

Unitarity relation for F(s):
discF(s) = 2i

{

F(s)
︸︷︷︸

right-hand cut

+ F̂(s)
︸︷︷︸

left-hand cut

}

× θ(s− 4M2
π)× sin δ11(s) e

−iδ11(s)

• inhomogeneities F̂(s): angular averages over the F(t), F(u)

F(s) = aΩ(s)

{

1 +
s

π

∫ ∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s)

}

F̂(s) =
3

2

∫ 1

−1

dz (1− z2)F
(

t(s, z)
)

Anisovich, Leutwyler 1998

F(s) = +++ ...

B. Kubis, Three-body decays beyond the isobar model – p. 8

+ + …
R1

R2 R3

1

s12 �m2
2 � im2�2(s12)

1

s12 �m2
1 � im1�1(s12)

1

s12 �m2
3 � im3�3(s12)+ + …
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Flatté Formula
• Consider f0(980) (width Γ ≈ 40-100 MeV). Decays to 
π π and KK. To KK only above ~987.4 MeV.  

• The availability of the KK final state above 987.4 
MeV increases the phase space and thus the width 
above this threshold. 

• Need to take this into account even if I only look at 
f0(980)→ππ.

BWJ!s" #
1

M2
R $ s$ iMR!

!J"
R !s"

; (5)

whereMR is the nominal mass of the resonance, and !!J"
R !s"

is the ‘‘mass dependent width.’’ In the general case, !!J"
R !s"

is expressed as [20]

!!J"
R !s" # !R

!
ps
pr

"
2J%1

!
MR

s1=2

"

F2
R; (6)

where pr is the momentum of either daughter in the
resonance rest frame, calculated with the resonance mass
equal to the nominal MR value, ps is the momentum of
either daughter in the resonance rest frame when the reso-
nance mass is equal to s1=2, J is the spin of the resonance,
and !R is the width of the resonance.

The function TJ in Eq. (3) describes the angular corre-
lations between the B decay products. We distinguish the
following three cases:

(1) Scalar-pseudoscalar !J # 0" decay—If R is a scalar
state, the decay amplitude Eq. (3) takes the simplest form
with T0 & 1. We treat the scalar f0!980" as a special case,
for which we try two parametrizations for the s-dependent
width !f0!s": by Eq. (6), and following the parametrization
by Flatté [21]

!f0!s" # !!!s" % !K!s"; (7)

where

!!!s" # g!
#####################

s=4$m2
!

q

;

!K!s" #
gK
2

! #######################

s=4$m2
K%

q

%
#######################

s=4$m2
K0

q "

;
(8)

and g! and gK are coupling constants for f0!980" ! !!
and f0!980" ! KK, respectively.

(2) Vector-pseudoscalar !J # 1" decay—In the case of a
pseudoscalar-vector decay of the B meson, the Lorentz-
invariant expression for T1 is given by

T1!h1h2h3jR23" # s12 $ s13 %
!M2 $m2

1"!m2
3 $m2

2"
s23

;

(9)

where R23 is an intermediate resonance state decaying to
h2h3 final state.

(3) Tensor-pseudoscalar !J # 2" decay—For a
pseudoscalar-tensor decay, T2 takes the form

T2!h1h2h3jR23" #
!

s13 $ s12 %
!M2

B$m2
1"!m2

2 $m2
3"

s23

"
2

$ 1

3

!

s23 $ 2M2
B$ 2m2

1 %
!M2

B$m2
1"2

s23

"

'
!

s23 $ 2m2
2 $ 2m2

3 %
!m2

2 $m2
3"2

s23

"

:

(10)

We do not consider resonant states of higher spin in our
analysis.

There is also the possibility of a so-called ‘‘nonreso-
nant’’ amplitude. In the Dalitz analysis of D meson decays
to three-body final states the nonresonant amplitude is
often parametrized as a complex constant. In the case of
B meson decays, where the available phase space is much
larger, it is rather unlikely that the nonresonant amplitude
will have a constant value over the entire phase space;
some form factors should be introduced. Unfortunately,
at the moment there is no theoretical consensus on the
properties of nonresonant B meson decays. In our analysis
we use an empirical parametrization that in the case of the
K%!%!$ final state is

A nr!K%!%!$" # anr1 e
$"s13ei#

nr
1 % anr2 e

$"s23ei#
nr
2 ; (11)

where s13 & M2!K%!$", s23 & M2!!%!$", and anr1;2, and
#nr
1;2 and " are fit parameters. In a certain limit this pa-

rametrization is equivalent to a constant. Several alterna-
tive parametrizations (mentioned below) are also
considered to estimate the model dependence.

An important feature that should be taken into account in
the construction of the matrix element for the decay B% !
K%K%K$ is the presence of the two identical kaons in the
final state. This is achieved by symmetrizing the matrix
element with respect to the interchange of the two kaons of
the same charge, that is s13 $ s23. Because of symmetri-
zation the nonresonant amplitude for the K%K%K$ final
state becomes

A nr!K%K%K$" # anr!e$"s13 % e$"s23"ei#nr
; (12)

where s13 & M2!K%
1 K

$", s23 & M2!K%
2 K

$".
Given the amplitude for each decay type, the overall

matrix elements can be written as a coherent sum

M #
X

j
ajei#jAj %Anr; (13)

TABLE II. Blatt-Weisskopf penetration form factors. pr is the
momentum of either daughter in the meson rest frame. ps is the
momentum of either daughter in the candidate rest frame (same
as pr except the parent mass used is the two-track invariant mass
of the candidate rather than the mass of the meson). R is the
meson radial parameter.

Spin J Form factor F!J"
R
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1
#############

1%R2p2
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p
#############

1%R2p2
s

p

2
#########################

9%3R2p2
r%R4p4

r

p
#########################

9%3R2p2
s%R4p4

s

p
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BWJ!s" #
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R $ s$ iMR!

!J"
R !s"

; (5)

whereMR is the nominal mass of the resonance, and !!J"
R !s"

is the ‘‘mass dependent width.’’ In the general case, !!J"
R !s"

is expressed as [20]

!!J"
R !s" # !R

!
ps
pr

"
2J%1

!
MR

s1=2

"

F2
R; (6)

where pr is the momentum of either daughter in the
resonance rest frame, calculated with the resonance mass
equal to the nominal MR value, ps is the momentum of
either daughter in the resonance rest frame when the reso-
nance mass is equal to s1=2, J is the spin of the resonance,
and !R is the width of the resonance.

The function TJ in Eq. (3) describes the angular corre-
lations between the B decay products. We distinguish the
following three cases:

(1) Scalar-pseudoscalar !J # 0" decay—If R is a scalar
state, the decay amplitude Eq. (3) takes the simplest form
with T0 & 1. We treat the scalar f0!980" as a special case,
for which we try two parametrizations for the s-dependent
width !f0!s": by Eq. (6), and following the parametrization
by Flatté [21]

!f0!s" # !!!s" % !K!s"; (7)

where

!!!s" # g!
#####################

s=4$m2
!

q

;

!K!s" #
gK
2

! #######################

s=4$m2
K%

q

%
#######################

s=4$m2
K0

q "

;
(8)

and g! and gK are coupling constants for f0!980" ! !!
and f0!980" ! KK, respectively.

(2) Vector-pseudoscalar !J # 1" decay—In the case of a
pseudoscalar-vector decay of the B meson, the Lorentz-
invariant expression for T1 is given by

T1!h1h2h3jR23" # s12 $ s13 %
!M2 $m2

1"!m2
3 $m2

2"
s23

;

(9)

where R23 is an intermediate resonance state decaying to
h2h3 final state.

(3) Tensor-pseudoscalar !J # 2" decay—For a
pseudoscalar-tensor decay, T2 takes the form

T2!h1h2h3jR23" #
!

s13 $ s12 %
!M2

B$m2
1"!m2

2 $m2
3"

s23

"
2

$ 1

3

!

s23 $ 2M2
B$ 2m2
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!M2

B$m2
1"2

s23

"

'
!

s23 $ 2m2
2 $ 2m2

3 %
!m2

2 $m2
3"2

s23

"

:

(10)

We do not consider resonant states of higher spin in our
analysis.

There is also the possibility of a so-called ‘‘nonreso-
nant’’ amplitude. In the Dalitz analysis of D meson decays
to three-body final states the nonresonant amplitude is
often parametrized as a complex constant. In the case of
B meson decays, where the available phase space is much
larger, it is rather unlikely that the nonresonant amplitude
will have a constant value over the entire phase space;
some form factors should be introduced. Unfortunately,
at the moment there is no theoretical consensus on the
properties of nonresonant B meson decays. In our analysis
we use an empirical parametrization that in the case of the
K%!%!$ final state is

A nr!K%!%!$" # anr1 e
$"s13ei#

nr
1 % anr2 e

$"s23ei#
nr
2 ; (11)

where s13 & M2!K%!$", s23 & M2!!%!$", and anr1;2, and
#nr
1;2 and " are fit parameters. In a certain limit this pa-

rametrization is equivalent to a constant. Several alterna-
tive parametrizations (mentioned below) are also
considered to estimate the model dependence.

An important feature that should be taken into account in
the construction of the matrix element for the decay B% !
K%K%K$ is the presence of the two identical kaons in the
final state. This is achieved by symmetrizing the matrix
element with respect to the interchange of the two kaons of
the same charge, that is s13 $ s23. Because of symmetri-
zation the nonresonant amplitude for the K%K%K$ final
state becomes

A nr!K%K%K$" # anr!e$"s13 % e$"s23"ei#nr
; (12)

where s13 & M2!K%
1 K

$", s23 & M2!K%
2 K

$".
Given the amplitude for each decay type, the overall

matrix elements can be written as a coherent sum

M #
X

j
ajei#jAj %Anr; (13)

TABLE II. Blatt-Weisskopf penetration form factors. pr is the
momentum of either daughter in the meson rest frame. ps is the
momentum of either daughter in the candidate rest frame (same
as pr except the parent mass used is the two-track invariant mass
of the candidate rather than the mass of the meson). R is the
meson radial parameter.
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K-matrix

• For single channel: Reproduces Breit Wigner 

• For single resonance that can decay to different 
final state: Reproduces Flatté.

Sfi = hf |S|ii = I + 2iT

T = K(I � iK)�1

Kij =
X

↵

p
m↵�↵i

p
m↵�↵j

m2
↵ �m2

44
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K-matrix

N RELATIVISTIC BREIT-WIGNER’S 

33 

Consider two poles in a single channel: 
N RELATIVISTIC BREIT-WIGNER’S 

33 

Consider two poles in a single channel: 

Sfi = hf |S|ii = I + 2iT

T = K(I � iK)�1

Kij =
X

↵

p
m↵�↵i

p
m↵�↵j

m2
↵ �m2
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K-matrix
• Note that the K-matrix approach is still an approximation. 

• While it ensures unitarity (by construction), it is not 
completely theoretically sound/motivated (and violates 
analyticity). 

• And it does not in any way address this:

Three-body decays: V → 3π

Unitarity relation for F(s):
discF(s) = 2i

{

F(s)
︸︷︷︸

right-hand cut

+ F̂(s)
︸︷︷︸

left-hand cut

}

× θ(s− 4M2
π)× sin δ11(s) e

−iδ11(s)

• inhomogeneities F̂(s): angular averages over the F(t), F(u)

F(s) = aΩ(s)

{

1 +
s

π

∫ ∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s)

}

F̂(s) =
3

2

∫ 1

−1

dz (1− z2)F
(

t(s, z)
)

Anisovich, Leutwyler 1998

F(s) = +++ ...

B. Kubis, Three-body decays beyond the isobar model – p. 8

46
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What theorists think of all 
this

47

(a few slides from a recent LHCb Amplitude Analysis 
Workshop with experimentalists and theorists)



48

Modeling hadron physics
Standard treatment: sum of Breit-Wigners

Propagator: iGk(s) = k = i/(s−M2
k + iMkΓk)

Scattering: Σ
k k

=
∑

k ig
2
kGk(s)

Production: Σ
k k

=
(
∑

k igkGk(s)αk

)

+ iβ

Problems:

→ Wrong threshold behavior (cured by Γ = Γ(s))

→ Violates unitarity −→ wrong phase motion

→ Parameters reaction dependent
only pole positions and resides universal!

Towards a model independent treatment of light meson dynamics – p. 6/17

Christoph Hanhart
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Sum of Breit Wigners
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3-body Dalitz plot (theory)

50

A simple Dalitz plot: φ → 3π

• 2×106 events in 1834 bins
KLOE 2003

• analyzed in terms of:
sum of 3 Breit–Wigners (ρ±, ρ0)

+ constant background term

+ crossed +
φ

ρ

π

π

π

φ

π

π

π

Problem:
−→ unitarity fixes Im/Re parts
−→ adding a contact term destroys this relation

B. Kubis, Three-body decays beyond the isobar model – p. 5

Bastian Kubis
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Sum of Breit Wigners with non-resonant term

Last Judgement (Detail) by Fra Angelico 
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Factorising the form factor into universal and reaction-
specific parts

52

Imposing Unitarity
Imaginary part of a form factor Fi to channel i

Im(Fi) =
∑

k

T ∗
ikσkFk → Dispersion Integral(s)

for single channel → Watson theorem and Omnès function

Ω(s) = exp

(

s

π

∫ ∞

4m2
π

ds′
δ(s′)

s′(s′ − s− iϵ)

)

such that, for negligible left-hand cuts

F (s) = P (s)Ω(s)

→ Ω(s) is universal and fixed in elastic regime

→ P (s) reaction specific and contains e.g.

◃ higher thresholds

◃ inelastic resonances !"# $ $"# %
&$'%()*+,-

!

.#

/!

$0#

$1!

δ(
)2
+3
4+
+&
-

η

Towards a model independent treatment of light meson dynamics – p. 7/17

(Omnès function)

Christoph Hanhart
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3-body Dalitz plot (theory)

53

Three-body decays: V → 3π

Unitarity relation for F(s):
discF(s) = 2i

{

F(s)
︸︷︷︸

right-hand cut

+ F̂(s)
︸︷︷︸

left-hand cut

}

× θ(s− 4M2
π)× sin δ11(s) e

−iδ11(s)

• inhomogeneities F̂(s): angular averages over the F(t), F(u)

F(s) = aΩ(s)

{

1 +
s

π

∫ ∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s)

}

F̂(s) =
3

2

∫ 1

−1

dz (1− z2)F
(

t(s, z)
)

Anisovich, Leutwyler 1998

F(s) = +++ ...

B. Kubis, Three-body decays beyond the isobar model – p. 8

takes into account 
this

Omnès 
takes into 

account just this

Three-body decays: V → 3π

Unitarity relation for F(s):
discF(s) = 2i

{

F(s)
︸︷︷︸

right-hand cut

+ F̂(s)
︸︷︷︸

left-hand cut

}

× θ(s− 4M2
π)× sin δ11(s) e

−iδ11(s)

• inhomogeneities F̂(s): angular averages over the F(t), F(u)

F(s) = aΩ(s)

{

1 +
s

π

∫ ∞

4M2
π

ds′

s′
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s)

}

F̂(s) =
3

2

∫ 1

−1

dz (1− z2)F
(

t(s, z)
)

Anisovich, Leutwyler 1998

−→ crossed-channel scattering between s-, t-, and u-channel

B. Kubis, Three-body decays beyond the isobar model – p. 8

Bastian Kubis
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3-body Dalitz plot (theory)

54

Subtraction constants

F(s) = Ω(s)

{

a+ b s+
s2

π

∫ ∞

4M2
π

ds′

s′2
sin δ11(s

′)F̂(s′)

|Ω(s′)|(s′ − s)

}

• number of necessary subtractions guessed from high-energy
behaviour −→ not very reliable

• increase precision by oversubtraction:
◃ suppress high-energies / inelastic effects more efficiently
◃ gain some flexibility in the Dalitz plot description (one more
complex constant b )

• important observation: F(s) linear in a, b

F(s) = aFa(s) + bFb(s)

−→ basis functions Fa,b(s) calculated independently of a, b
−→ subtraction constants a, b =̂ experimental fit parameters

B. Kubis, Three-body decays beyond the isobar model – p. 10

Bastian Kubis

calculable (but interaction-dependent)

fit to data
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Formalism applied to φ→πππº

55

Experimental comparison to φ → 3π

• successive slices through Dalitz plot: Niecknig, BK, Schneider 2012

750 800 850 900 950 1000 1050 1100 1150 1200 1250
bin number

0

2000

4000

6000

8000

χ2/ndof 1.7 . . . 2.1

−→ pairwise interaction only (with correct ππ scattering phase)

B. Kubis, Three-body decays beyond the isobar model – p. 11

Bastian Kubis

A simple Dalitz plot: φ → 3π

• 2×106 events in 1834 bins
KLOE 2003

• analyzed in terms of:
sum of 3 Breit–Wigners (ρ±, ρ0)

+ constant background term

+ crossed +
φ

ρ

π

π

π

φ

π

π

π

Problem:
−→ unitarity fixes Im/Re parts
−→ adding a contact term destroys this relation
−→ reconcile data with dispersion relations?

B. Kubis, Three-body decays beyond the isobar model – p. 5
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Formalism applied to φ→πππº

55

Experimental comparison to φ → 3π

• successive slices through Dalitz plot: Niecknig, BK, Schneider 2012

750 800 850 900 950 1000 1050 1100 1150 1200 1250
bin number

0

2000

4000

6000

8000

χ2/ndof 1.7 . . . 2.1 1.2 . . . 1.5

−→ full 3-particle rescattering, only overall normalization adjustable

B. Kubis, Three-body decays beyond the isobar model – p. 11

Bastian Kubis

A simple Dalitz plot: φ → 3π

• 2×106 events in 1834 bins
KLOE 2003

• analyzed in terms of:
sum of 3 Breit–Wigners (ρ±, ρ0)

+ constant background term

+ crossed +
φ

ρ

π

π

π

φ

π

π

π

Problem:
−→ unitarity fixes Im/Re parts
−→ adding a contact term destroys this relation
−→ reconcile data with dispersion relations?

B. Kubis, Three-body decays beyond the isobar model – p. 5
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Formalism applied to φ→πππº

55

Experimental comparison to φ → 3π

• successive slices through Dalitz plot: Niecknig, BK, Schneider 2012

750 800 850 900 950 1000 1050 1100 1150 1200 1250
bin number

0

2000

4000

6000

8000

χ2/ndof 1.7 . . . 2.1 1.2 . . . 1.5 1.0

−→ full 3-particle rescattering, 2 adjustable parameters
(additional "subtraction constant" to suppress inelastic effects)

B. Kubis, Three-body decays beyond the isobar model – p. 11

Bastian Kubis

A simple Dalitz plot: φ → 3π

• 2×106 events in 1834 bins
KLOE 2003

• analyzed in terms of:
sum of 3 Breit–Wigners (ρ±, ρ0)

+ constant background term

+ crossed +
φ

ρ

π

π

π

φ

π

π

π

Problem:
−→ unitarity fixes Im/Re parts
−→ adding a contact term destroys this relation
−→ reconcile data with dispersion relations?

B. Kubis, Three-body decays beyond the isobar model – p. 5
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Formalism applied to φ→πππº

55

Experimental comparison to φ → 3π

• successive slices through Dalitz plot: Niecknig, BK, Schneider 2012

750 800 850 900 950 1000 1050 1100 1150 1200 1250
bin number

0

2000

4000

6000

8000

χ2/ndof 1.7 . . . 2.1 1.2 . . . 1.5 1.0

• perfect fit respecting analyticity and unitarity possible
• contact term emulates neglected rescattering effects
• no need for "background" — inseparable from "resonance"

B. Kubis, Three-body decays beyond the isobar model – p. 11

Bastian Kubis

A simple Dalitz plot: φ → 3π

• 2×106 events in 1834 bins
KLOE 2003

• analyzed in terms of:
sum of 3 Breit–Wigners (ρ±, ρ0)

+ constant background term

+ crossed +
φ

ρ

π

π

π

φ

π

π

π

Problem:
−→ unitarity fixes Im/Re parts
−→ adding a contact term destroys this relation
−→ reconcile data with dispersion relations?

B. Kubis, Three-body decays beyond the isobar model – p. 5
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Formalism applied to D→ππK

56

Bastian Kubis

 7 fit parameters
Fit limited to  
M(Kπ) < M(η’) + M(K) ≈ 1.45GeV 
elastic approximation breaks down 
beyond.

(Slices through) Dalitz plotD+ → π+π+K−

 0

 100

 200

 300

 400

 500

 600

 700

 0  50  100  150  200  250

#

Bins

Data   
Full   

Omnes   

• Omnès fit: χ2/ndof ≈ 1.42

("isobar model" + non-resonant background waves)
• full dispersive solution: χ2/ndof ≈ 1.11

−→ visible improvement similar to φ → 3π

• full fit in terms of 7 complex subtraction constants
(–1 phase, –1 overall normalisation) Niecknig, BK in progress

B. Kubis, Three-body decays beyond the isobar model – p. 14
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Summary / Open questions

Dalitz plot analyses
• rigorous using modern phase shift input
• allow to understand ad-hoc "background"
• ideal demonstration case: φ → 3π (elastic, one partial wave)
• implementation: + linear combination of basis functions

– basis functions different for each decay

Open questions / problems
• inelastic effects

◃ we understand I = 0 S-wave ππ ↔ KK̄ ↔ f0(980)

−→ may attempt D → 3π /πKK̄

◃ how to parametrise "small" inelastic effects (η′K in πK)?
• complex subtractions — can we understand imaginary parts?
• uncertainties in πK phase shifts? can we learn about them?
• high-energy extensions (B → 3h Dalitz plots??)

B. Kubis, Three-body decays beyond the isobar model – p. 15

Bastian Kubis

non-resonant 
contribution
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Das Model

• There are, for most cases we care about, no 
theoretically sound amplitude models…


• However, there are “good enough” models. What’s 
good enough depends on the purpose.


• So what to do? Suggest a mix of….


• model-independent approaches


• “good enough” models of various levels of 
sophistication


• improve models (there is - and that’s fairly new - 
real, tangible, progress!)

58

The Model

http://www.youtube.com/watch?v=OQIYEPe6DWY&feature=kp
http://www.youtube.com/watch?v=_g4x82CuNPM
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A few recent applications 
of amplitude analyses.

59



Jonas Rademacker: Amplitude Analyses                                                    B-workshop                                             Neckarzimmern 18 Feb 2015 

The Z(4430) question:

60

mass to be greater than 0.44 GeV and jM!!"!#‘"‘#$ #
M!‘"‘#$ # 0:589 GeVj< 0:0076 GeV, which is %2:5",
where " is the rms resolution.

We suppress continuum e"e# ! q !q events, where q &
u, d, s or c, by requiring R2 < 0:4, where R2 is the second
normalized Fox-Wolfram event-shape moment [19]. We
also require j cos#Bj< 0:9, where #B is the angle between
the B meson and e" beam directions [20].

We identify B mesons using the beam-constrained mass

Mbc &
!!!!!!!!!!!!!!!!!!!!!!!!
E2

beam # p2
B

q
and the energy difference "E &

Ebeam # EB, where Ebeam is the c.m.s. beam energy, pB
is the vector sum of the c.m.s. momenta of the B meson
decay products and EB is their c.m.s. energy sum. We
select events with jMbc #mBj< 0:0071 GeV (mB &
5:279 GeV, is the world-average B-meson mass [21]) and
j"Ej< 0:034 GeV, which are%2:5"windows around the
nominal peak values.

The invariant mass of the selected B! K! 0 candidate
tracks is kinematically constrained to equal mB. This im-
proves the  0 ! ‘"‘# (J= ! ‘"‘#) mass resolution to
" & 4:4 MeV (5.3 MeV). We require M!‘"‘#$ computed
with the fitted lepton four-vectors to be within %2:5" of
m 0 (mJ= ), the world-average  0 (J= ) mass [21].

For the  0 ! ‘"‘# mode we compute M!! 0$
as M!!‘"‘#$ #M!‘"‘#$ "m 0 ; for  0 ! !"!#J= 
decays, we use M!! 0$ & M!!!"!#J= $ #
M!!"!#J= $ " m 0 . Simulations of the two  0 decay
modes indicate that the experimental resolution for
M!!" 0$ is " ’ 2:5 MeV for both modes.

Figure 1 shows a Dalitz plot of M2!K!"$ (horizontal)
vs: M2!!" 0$ (vertical) for the B! K!" 0 candidate

events. Here, a distinct band at M2
K! ’ 0:8 GeV2, corre-

sponding to B! K'!890$ 0; K'!890$! K!, is evident.
In addition, there are signs of a K'2!1430$ signal near
M2
K! & 2:0 GeV2. The B! K'!890$ 0 events are used

to calibrate the Mbc and "E peak positions and widths.
Some clustering of events in a horizontal band is evident

in the upper half of the Dalitz plot near M2!! 0$ ’
20 GeV2. To study these events with the effects of the
known K! resonant states minimized, we restrict our
analysis to the events with jM!K!$ #mK'!890$j (
0:1 GeV and jM!K!$ #mK'2!1430$j ( 0:1 GeV. In the fol-
lowing, we refer to this requirement as the K' veto.

The open histogram in Fig. 2 shows the M!!" 0$ dis-
tribution for selected events with the K' veto applied. The
bin width is 10 MeV. The shaded histogram shows the
scaled distribution from "E sidebands (j"E% 0:070j<
0:034 GeV). Here a strong enhancement is evident near
M!! 0$ ) 4:43 GeV.

We perform a binned maximum-likelihood fit to the
M!! 0$ invariant mass distribution using a relativistic
S-wave Breit Wigner (BW) function to model the peak
plus a smooth phase-space-like function fcont!M$, where
fcont!M$ &N contq'!Q1=2 " A1Q3=2 " A2Q5=2$. Here q'

is the momentum of the !" in the ! 0 rest frame and Q &
Mmax #M, where Mmax & 4:78 GeV is the maximum
M!! 0$ value possible for B! K! 0 decay. The normal-
ization N cont and two shape parameters A1 and A2 are free
parameters in the fit. This form for fcont!M$ is chosen
because it mimics two-body phase-space behavior at the
lower and upper mass boundaries. [Since the M!! 0$

FIG. 1. The M2!K!$ (horizontal) vs M2!! 0$ (vertical)
Dalitz-plot distribution for B0 ! K#!" 0 candidate events.

3.8 4.05 4.3 4.55 4.8
M(π+ψι) (GeV)
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E
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s/
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01
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FIG. 2 (color online). The M!!" 0$ distribution for events in
the Mbc # "E signal region and with the K' veto applied. The
shaded histogram show the scaled results from the "E sideband.
The solid curves show the results of the fit described in the text.

PRL 100, 142001 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
11 APRIL 2008

142001-3

m(ψ(2S) π)/GeV
BELLE, Phys. Rev. Lett. 100 (2008) 142001, arXiv:0708.1790.

Is this peak in the ψ(2S)π– invariant mass, seen first by 
BELLE in 2008 when analysing B→ψ(2S)π– K+, really a 
resonance?

The problem is that this 
is just the 1-D projection 

of a 4-D distribution…

Big thing - charged 4-
quark state

Exotic States at LHCb, DIS2014 Tomasz Skwarnicki 16

Z(4430)- spin-parity analysis

• JP=1+ now establish beyond 
any doubt

26σ PRD 88, 074026 (2013)

Belle

18σ
using a 

conservative 
approach

5.1σ16.1σ2+

Rejection level relative to 1+

4.7σ14.6σ2-

3.7σ15.8σ1-

3.4σ9.7σ0-

BelleLHCbDisfavored JP

Including systematic variations: 

or or

Exotic
tetraquark
molecule

hybrid 
…

Standard
charmonium Standard

D*-D1
*0

threshold 
cusp

JP=0-,1-,2-

d

charged neutral

d

The only other confirmed charged four-quark candidate Z(3900)-

observed by BES-III and Belle in 2013 could be a DD* threshold effect
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The 2-D illustration of this 4-D question
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introduced. Again, common parameters are used for the
Gaussian-constrained masses and widths of the included
resonances, the nonresonant contribution, the K!ð892Þ$,
f0ð600Þ, and !2 masses and widths, as well as the mistag
fraction.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are categorized into experi-
mental and modeling uncertainties. The considered experi-
mental sources are efficiency asymmetries varying over the
Dalitz plot, asymmetries of the background in the D0 and

!D0 samples, and the applied efficiency distribution which
is estimated by simulated events and may not adequately
model the composition of trigger configurations in data.
Modeling uncertainties arise from the chosen values for the
radius parameters in the Blatt-Weisskopf form factors and
the limited knowledge on the complex dynamics of the
three-body decay. In this context, the stability of the de-
termined CP-violation quantities under variations of the
employed Dalitz model is tested. The contributions from
the various sources to the total systematic uncertainties can
be found in Tables III, IV, V, and VI.

A. Efficiency asymmetry

The reweighting procedure of the !D0 Dalitz plot accord-
ing to the deviations between the pTð"D!$Þ distributions
for positively and negatively charged pions may not fully
correct for residual small asymmetries between the D0 and
!D0 efficiency distributions. To estimate the size of a sys-
tematic effect originating from such an asymmetry, the
Dalitz-plot fits are repeated without reweighting the !D0

Dalitz plot. The scale of systematic uncertainties is esti-
mated as the differences between the resulting values and
the ones from the default fits.

B. Background asymmetry

To investigate a possible systematic effect originating
from different Dalitz-plot distributions of the background
inD0 and !D0 data, the Dalitz-plot fits are repeated with two
independent background samples distinguished by the
charge of the slow pion in the D!$ decay. The systematic
uncertainties are calculated as differences between the
resulting values and the ones from the default fits.

C. Fit model

The systematic uncertainties originating from the spe-
cific model used for the Dalitz-plot fit are estimated by
repeating the fits when one of the resonances K!ð1410Þ$,
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FIG. 4 (color online). Projections of the Dalitz-plot fit on the
individual two-body masses, together with the corresponding
distributions in data.
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FIG. 5 (color online). Asymmetry between the numbers of
reconstructed D!þ and D!& candidates as a function of the
soft pion’s pT .

T. AALTONEN et al. PHYSICAL REVIEW D 86, 032007 (2012)

032007-10

 ππ 
resonance 

near 2GeV2?

m2(ππ)/GeV2

Dº→KSππ

CDF PHYSICAL REVIEW D 86, 
032007 (2012) (no claim of any such 
thing is made in this paper, it’s a 
paper about CPV in charm).

http://prd.aps.org/pdf/PRD/v86/i3/e032007
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The 2-D illustration of this 4-D question
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introduced. Again, common parameters are used for the
Gaussian-constrained masses and widths of the included
resonances, the nonresonant contribution, the K!ð892Þ$,
f0ð600Þ, and !2 masses and widths, as well as the mistag
fraction.

VII. SYSTEMATIC UNCERTAINTIES

The systematic uncertainties are categorized into experi-
mental and modeling uncertainties. The considered experi-
mental sources are efficiency asymmetries varying over the
Dalitz plot, asymmetries of the background in the D0 and

!D0 samples, and the applied efficiency distribution which
is estimated by simulated events and may not adequately
model the composition of trigger configurations in data.
Modeling uncertainties arise from the chosen values for the
radius parameters in the Blatt-Weisskopf form factors and
the limited knowledge on the complex dynamics of the
three-body decay. In this context, the stability of the de-
termined CP-violation quantities under variations of the
employed Dalitz model is tested. The contributions from
the various sources to the total systematic uncertainties can
be found in Tables III, IV, V, and VI.

A. Efficiency asymmetry

The reweighting procedure of the !D0 Dalitz plot accord-
ing to the deviations between the pTð"D!$Þ distributions
for positively and negatively charged pions may not fully
correct for residual small asymmetries between the D0 and
!D0 efficiency distributions. To estimate the size of a sys-
tematic effect originating from such an asymmetry, the
Dalitz-plot fits are repeated without reweighting the !D0

Dalitz plot. The scale of systematic uncertainties is esti-
mated as the differences between the resulting values and
the ones from the default fits.

B. Background asymmetry

To investigate a possible systematic effect originating
from different Dalitz-plot distributions of the background
inD0 and !D0 data, the Dalitz-plot fits are repeated with two
independent background samples distinguished by the
charge of the slow pion in the D!$ decay. The systematic
uncertainties are calculated as differences between the
resulting values and the ones from the default fits.

C. Fit model

The systematic uncertainties originating from the spe-
cific model used for the Dalitz-plot fit are estimated by
repeating the fits when one of the resonances K!ð1410Þ$,
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FIG. 4 (color online). Projections of the Dalitz-plot fit on the
individual two-body masses, together with the corresponding
distributions in data.
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FIG. 5 (color online). Asymmetry between the numbers of
reconstructed D!þ and D!& candidates as a function of the
soft pion’s pT .

T. AALTONEN et al. PHYSICAL REVIEW D 86, 032007 (2012)

032007-10

Not a (new)  
ππ resonance

m2(ππ)

m
2 (K

Sπ
)

Dº→KSππ
CDF PHYSICAL REVIEW D 86, 
032007 (2012) (no claim of any such 
thing is made in this paper, it’s a 
paper about CPV in charm).

Structure due 
to angular 
distribution in 
D→K*(KSπ)π

http://prd.aps.org/pdf/PRD/v86/i3/e032007
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Z(4430)→ψ(2S)π– in B→ψ(2S)π– K+?
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K*(893)
…and many other K* resonances

K*2(1430)

Z(4430)?→
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Z(4430)→ψ(2S)π– in B→ψ(2S)π– K+?

64

1D model-independent

Takes Kπ mass distribution as is 
(no K* model) and attempts to 
reproduce structure in ψ(2S)π–. 

from angular momentum effects. 
Works within statistics.

4D
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LHCb’s evidence for the Z(4430) in B→ψ(2S)π–K+

65

�2 test with an adaptive 4D binning, in which we split the data once in | cos ✓
 

0|, twice in42

� and then repeatedly in m2

K

+
⇡

� and m2

 

0
⇡

� preserving the bin content above 20 events, for43

a total of N
bin

= 768 bins. Simulations of many pseudo-experiments, each with the same44

number of signal and background events as for the data sample, show that the confidence45

level (CL) of the fit calculated from the �2 value has an approximately flat distribution46

assuming the number of degrees of freedom (ndf) equals N
bin

� 1 minus the number of47

free unconstrained parameters in the fit.48
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Figure 1: Background-subtracted and e�ciency-corrected m
 

0
⇡

� distribution (black data points),
superimposed with the reflections of cos ✓

K

⇤ moments up to order 4 allowing for J  2 (blue line
with yellow statistical-uncertainty band). The vertical scale is arbitrary.

As in Ref. [6] we allow all known K⇤0 ! K+⇡� resonances with nominal mass within49

or slightly above the kinematic limit (1593 MeV) in B0 !  0K+⇡� decays: K⇤
0

(800),50

K⇤
0

(1430) for J = 0; K⇤(892), K⇤
1

(1410), K⇤(1680) for J = 1; K⇤
2

(1430) for J = 2; and51

K⇤
3

(1780) for J = 3. We also include a non-resonant J = 0 term (NR) in the fits. We52

fix the masses and widths of the resonances to the world average (PDG) values [13],53

except for the widths of the two dominant contributions, K⇤
(892) and K⇤

2

(1430), and the54

poorly known K⇤
0

(800) mass and width, which are allowed to float in the fit but with55

Gaussian constraints to the PDG values. As an alternative J = 0 model we use the LASS56

parameterization [14, 15] which replaces the NR and K⇤
0

(800) components with an elastic57

scattering term (two free parameters) interfering with the K⇤
0

(1430) resonance. Fits with58

all of these K⇤ components, the two di↵erent J = 0 approaches and the two di↵erent59

fit implementations, do not give a satisfactory description of the data; the CL is below60

2 ⇥ 10�6, equivalent to 4.8� in the Gaussian distribution. When K⇤
3

(1780) is excluded61

from the amplitude, the fit CL is even lower, corresponding to at least 6.3�.62

2

Amplitude fit: 
>13.9σ in amplitude fit for Z(4430) (and 
>9.7σ for 1+ relative other JP assignments)

Model-independent 
Model-indep. description of K* resonances (w/o Z) 
incompatible with data, clear excess in Z(4430) region

Efficiency corrected data with 
model-independent 
description overlaid

Exotic States at LHCb, DIS2014 Tomasz Skwarnicki 12

Amplitude fits without Z(4430)-

• The χ2 p-value < 2x10-6

• The data cannot be adequately described with the 
J ≤ 3 K* contributions alone

(“K* veto region”)(“all data”)

Phase Motion 
Fit where K* amplitudes are allowed to float, 
but Z amplitude is described model-
independently by complex numbers in 6 
bins of m(ψ(2S)π) confirms resonance-like 
phase motion
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Tetraquark candidate travels 
around the world:

66

Exotic States at LHCb, DIS2014 Tomasz Skwarnicki 18

Z(4430)- is the first confirmed unambiguous four-quark candidate
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XYZ like states
• Plenty of new charmonium like states discovered. 

• What are they? (And in some cases: Are they?) 

• and how/where do we list them?
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http://kds.kek.jp/getFile.py/access?contribId=73&sessionId=9&resId=0&materialId=slides&confId=15873
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XYZ like states
• Plenty of new charmonium like states discovered. 

• What are they? (And in some cases: Are they?) 

• and how/where do we list them?
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XYZ papers published in 2013 and 2014  
(incomplete list) 
X(3872) 
LHCb: PRL 110, 222001 (2013) 
BES III: Phys. Rev. Lett. 112, 092001 (2014) 
BELLE: Phys. Rev. Lett. 110 252002 (2013) 
Y(4008, 4260, 4360, 4660) 
BES III Phys. Rev. Lett. 110, 252001 (2013) 
Z(3900, 4020, 4200, 4430) 
BELLE: Phys. Rev. Lett. 110 252002 (2013) 
BELLE: Phys. Rev. D 89, 072015 (2014) 
LHCb (2014): Phys.Rev.Lett. 112 (2014) 222002 
BELLE (2014): Phys.Rev. D88 (2013) 074026 
(no) Zcs 
BES III Phys. Rev. Lett. 111, 242001 (2013) 
BaBar: PRD 89, 111103(R) (2014) 
BES III:  PRL 111, 032001 (2013)X(3823)

http://kds.kek.jp/getFile.py/access?contribId=73&sessionId=9&resId=0&materialId=slides&confId=15873
http://inspirehep.net/record/1288881?ln=en
http://inspirehep.net/record/1239347?ln=en
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Spectroscopy

68

1 Introduction

Charm meson spectroscopy provides a powerful test of the quark model predictions of the
Standard Model. Many charm meson states, predicted in the 1980s [1], have not yet been
observed experimentally. The expected spectrum for the cū system is shown in Fig. 1
(the spectrum of the cd̄ system is almost identical). The JP states having P = (�1)J

and therefore JP = 0+, 1�, 2+, ... are called natural parity states and are labelled as D⇤,
while unnatural parity indicates the series JP = 0�, 1+, 2�, .... The low-mass spectrum of
the cū system is comprised of the ground states (1S), the orbital excitations with angular
momentum L=1, 2 (1P, 1D), and the first radial excitations (2S). Apart from the ground
states (D,D⇤), only two of the 1P states, D1(2420) and D⇤

2(2460) [2], are experimentally
well established since they have relatively narrow widths (⇠30MeV). 1 In contrast, the
broad L = 1 states, D⇤

0(2400) and D0
1(2430), have been established by the Belle and

BaBar experiments in exclusive B decays [3, 4].
The theoretical predictions are in agreement (within 20–30 MeV) with observations

for the 1S states and the JP = 2+ and JP = 1+ 1P states. In the cs̄ system, the
JP = 0+ and JP = 1+ states (both L = 1) have predicted masses about 100 MeV higher
than the measured masses of the D

sJ

mesons. To quantitatively assess the accuracy of
the quark model predictions, assumptions are needed to formulate a wave equation for
quark-antiquark bound states starting from the QCD Lagrangian [5]. Nevertheless, the

1We work in units where c = 1.
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+ (3079)  33D
+*(3084)  44D

Figure 1: Modified Godfrey-Isgur mass predictions [1]. The figure shows the cū spectrum in
which the masses have been scaled such that the ground state coincides with the D0 mass.
The 2� states, not shown in the original publication, have been inserted following the splitting
structure of the 1P states.

1
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Bs→DK–π+
• Amongst many new results: The 

D*sJ(2860) does exist - not only 
once, but twice:  
 
B→DK–π+ Dalitz plot analysis finds 
two particles in the same mass 
region, one with spin 1, one with 
spin 3.
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FIG. 9 (color online). Projections of the data and the Dalitz plot fit result onto the cosine of the helicity angle of the K−πþ system,
cos θðK−πþÞ, for mðK−πþÞ slices of (a) 0–0.8 GeV=c2, (b) 0.8–1.0 GeV=c2, (c) 1.0–1.3 GeV=c2, and (d) 1.4–1.5 GeV=c2. The data
are shown as black points, the total fit result as a solid blue curve, and the small contributions from B0 → D̄ð$Þ0πþπ−, Λ̄0

b → D̄ð$Þ0p̄πþ,
and combinatorial background shown as green, black, and red curves, respectively.
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FIG. 8 (color online). Projections of the data and the Dalitz plot fit result onto (a)mðK−πþÞ in the range 0.5–1.8 GeV=c2, (b)mðD̄0K−Þ
between 2.2 GeV=c2 and 3.2 GeV=c2, (c) mðD̄0K−Þ around the D$

s2ð2573Þ− resonance, and (d) the D$
sJð2860Þ− region. Discrepancies

between the data and the model are discussed at the end of Sec. VII. The components are as described in the legend for Fig. 7.

DALITZ PLOT ANALYSIS OF … PHYSICAL REVIEW D 90, 072003 (2014)

072003-13

DK spectra in B→DK–π+ at 
LHCb (Phys.Rev. D90 (2014) 072003)

–

–

–

Bs -> DKπ (Dan) 

•  Resolved the DsJ*(2860) state into spin 1 and spin 3 states 
•  Now part of a renaissance in D(s) spectroscopy (15 citations so far) 

•  Other results 
•  Mass, width and spin of Ds2* 
•  Fit fractions 
•  Branching fractions 
•  Complex amplitudes 

05/02/2015 4 
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Figure 14: Projections of the data and Dalitz plot fit results with alternative models onto the cosine
of the helicity angle of the D0K� system, cos ✓(D0K�), for 2.77 < m(D0K�) < 2.91GeV/c2.
The data are shown as black points, the result of the baseline fit with both spin-1 and spin-3
resonances is given as a solid blue curve, and results of fits from the best models with only either
a spin-1 or a spin-3 resonance are shown as dashed red and dotted green lines, respectively. The
dip at cos ✓(D0K�) ⇡ �0.6 is due to the D0 veto. Comparison of the data and the di↵erent fit
results in the 50 bins of this projection gives �2 values of 47.3, 214.0 and 150.0 for the default,
spin-1 only and spin-3 only models, respectively.
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Figure 15: Fits of �2 functions to the 2�NLL distributions obtained from fits to pseudoex-
periments generated with (left) no D⇤

s1

(2860)� and (right) no D⇤
s3

(2860)� component. The
corresponding 2�NLL values observed in data are 273 and 314, respectively (see Table 7).

of the K

�
⇡

+ S-wave, the addition of the K

⇤
4

(2045)0 state and the variation of the D

0

mass are considered. The conclusion is that two states are required in this region with
significance of at least 10 standard deviations.

31

Table 14: Results for the complex amplitudes and their uncertainties. The three quoted errors are
statistical, experimental systematic and model uncertainties, respectively. The central values and
statistical uncertainties are as reported in Table 5, while the experimental and model systematic
uncertainties are as reported in Tables 8 and 11.

Resonance Real part Imaginary part Magnitude Phase (radians)

K

⇤(892)0 �0.75±0.08±0.16±0.72 0.74±0.08±0.13±0.33 1.06±0.02±0.03±0.03 2.36±0.13±0.20±0.76
K

⇤(1410)0 �0.25±0.03±0.02±0.15 �0.04±0.05±0.12±0.22 0.25±0.04±0.02±0.14 �2.96±0.21±0.50±1.09
LASS nonresonant �0.43±0.09±0.16±0.14 0.59±0.06±0.06±0.18 0.73±0.06±0.05±0.11 2.19±0.16±0.26±0.26
K

⇤
0

(1430)0 �0.49±0.10±0.22±0.14 0.73±0.07±0.07±0.08 0.88±0.04±0.03±0.07 2.16±0.20±0.25±0.16
K

⇤
2

(1430)0 0.09±0.05±0.08±0.26 �0.37±0.03±0.02±0.03 0.38±0.03±0.02±0.05 �1.34±0.10±0.20±0.65
K

⇤(1680)0 �0.08±0.04±0.06±0.14 0.12±0.04±0.02±0.20 0.14±0.06±0.04±0.11 2.16±0.26±0.32±2.66
K

⇤
0

(1950)0 0.11±0.03±0.03±0.21 �0.01±0.04±0.04±0.23 0.11±0.04±0.03±0.22 �0.09±0.41±0.32±1.71
D

⇤
s2

(2573)� 1.00 0.00 1.00 0.00
D

⇤
s1

(2700)� �0.22±0.04±0.02±0.06 �0.13±0.04±0.06±0.13 0.25±0.04±0.03±0.04 �2.61±0.17±0.18±0.53
D

⇤
s1

(2860)� �0.41±0.05±0.05±0.24 0.16±0.06±0.05±0.09 0.44±0.05±0.03±0.17 2.78±0.20±0.12±0.52
D

⇤
s3

(2860)� 0.27±0.02±0.03±0.05 �0.12±0.03±0.02±0.04 0.29±0.02±0.02±0.03 �0.42±0.07±0.10±0.18
Nonresonant 0.58±0.07±0.25±0.28 �0.39±0.06±0.04±0.28 0.70±0.08±0.15±0.19 �0.59±0.10±0.36±0.48
D

⇤�
s v

0.36±0.04±0.04±0.18 0.23±0.05±0.05±0.17 0.43±0.05±0.05±0.16 0.57±0.12±0.08±0.43
D

⇤
s0 v

(2317)� 0.18±0.08±0.22±0.18 0.24±0.04±0.05±0.09 0.30±0.06±0.16±0.13 0.91±0.21±0.72±0.43
B

⇤+
v

�0.09±0.10±0.08±0.25 �0.26±0.05±0.11±0.31 0.27±0.09±0.06±0.13 �1.90±0.40±0.34±1.53

The masses and widths of these three states are determined to be

m(D⇤
s2

(2573)�) = 2568.39± 0.29± 0.19± 0.18MeV/c2 ,

�(D⇤
s2

(2573)�) = 16.9± 0.5± 0.4± 0.4MeV/c2 ,

m(D⇤
s1

(2860)�) = 2859± 12± 6± 23MeV/c2 ,

�(D⇤
s1

(2860)�) = 159± 23± 27± 72MeV/c2 ,

m(D⇤
s3

(2860)�) = 2860.5± 2.6± 2.5± 6.0MeV/c2 ,

�(D⇤
s3

(2860)�) = 53± 7± 4± 6MeV/c2 ,

where the first uncertainty is statistical, the second is due to experimental systematic
e↵ects and the third due to model variations. The phase di↵erence between the D⇤

s1

(2860)�

and D

⇤
s3

(2860)� amplitudes is consistent with ⇡ within a large model uncertainty. The
results for the complex amplitudes, expressed both as real and imaginary parts and as
magnitudes and phases, are given in Table 14. The results for the fit fractions are given in
Table 15, while results for the interference fit fractions are given in App. A.

For resonances without a significant signal, it is possible to set upper limits on their
fit fractions, and therefore on their branching fractions. This is done for the K

⇤(1680)0,
K

⇤
0

(1950)0, D⇤
s0 v

(2317)� and B

⇤+
v

components of the default model, as well as for the
K

⇤
3

(1780)0 and K

⇤
4

(2045)0 states. The values of 2NLL as functions of the fit fractions are
obtained, and converted into likelihood functions. The e↵ect of systematic uncertainties
is included by convolving the likelihood function with a Gaussian of width given by the
systematic uncertainty. These are then used to set 90% and 95% confidence level (CL)
upper limits by integrating the likelihood. The upper limits obtained with this procedure
are included in Table 15.

The fit fractions of the resonant components are converted into quasi-two-body branch-

32

http://inspirehep.net/record/1308737?ln=en


Jonas Rademacker: Amplitude Analyses                                                    B-workshop                                             Neckarzimmern 18 Feb 2015 

Bs→J/ψππ CP content

• Amplitude analysis to evaluate the CP 
content of Bs→J/ψππ


• 4-dimensional analysis: 2 masses, 2 
helicity angles.

70

The invariant mass of the selected J=c!þ!" combina-
tions, where the dimuon candidate pair is constrained to
have the J=c mass, is shown in Fig. 3. There is a large peak
at the !B0

s mass and a smaller one at the !B0 mass on top
of a background. A double-Gaussian function is used to
fit the signal, the core Gaussian mean and width are al-
lowed to vary, and the fraction and width ratio for the
second Gaussian are fixed to that obtained in the fit of
!B0
s ! J=c". Other components in the fit model take

into account contributions from B" ! J=cK"ð!"Þ,
!B0
s ! J=c#0, #0 ! $%, !B0

s ! J=c", " ! !þ!"!0,
!B0 ! J=c!þ!" backgrounds and a !B0 ! J=cK"!þ

reflection. Here and elsewhere charged conjugated modes
are used when appropriate. The shape of the !B0!
J=c!þ!" signal is taken to be the same as that of the
!B0
s . The exponential combinatorial background shape is

taken from wrong-sign combinations, that are the sum of
!þ!þ and !"!" candidates. The shapes of the other
components are taken from the Monte Carlo simulation
with their normalizations allowed to vary (see Sec. IVB).
The mass fit gives 7598% 120 signal and 5825% 54
background candidates within %20 MeV of the !B0

s mass
peak.

IV. ANALYSIS FORMALISM

The decay of !B0
s ! J=c!þ!" with the J=c ! &þ&"

can be described by four variables. These are taken
to be the invariant mass squared of J=c!þ (s12 &
m2ðJ=c!þÞ), the invariant mass squared of !þ!" (s23 &
m2ð!þ!"Þ), the J=c helicity angle ('J=c ), which is the
angle of the &þ in the J=c rest frame with respect to the
J=c direction in the !B0

s rest frame, and the angle between

the J=c and !þ!" decay planes (() in the !B0
s rest frame.

To improve the resolution of these variables we perform a
kinematic fit constraining the !B0

s and J=c masses to their
PDG mass values [8] and recompute the final-state mo-
menta. Because of a limited event sample, we analyze the
decay process after integrating over (. The ( distribution
is shown in Fig. 4 after background subtraction using
wrong-sign events. The distribution has little structure,
and thus the ( acceptance can be integrated over without
biasing the other variables.

A. The decay model for !B0
s ! J=c!þ!"

One of the main challenges in performing a Dalitz plot
angular analysis is to construct a realistic probability
density function (PDF), where both the kinematic and
dynamical properties are modeled accurately. The overall
PDF given by the sum of signal, S, and background, B,
functions is

Fðs12; s23; 'J=c Þ ¼
fsig
N sig

"ðs12; s23; 'J=c ÞSðs12; s23; 'J=c Þ

þ ð1" fsigÞ
N bkg

Bðs12; s23; 'J=c Þ; (1)

where fsig is the fraction of the signal in the fitted region
and " is the detection efficiency. The normalization factors
are given by

N sig ¼
Z

"ðs12; s23;'J=c Þ

( Sðs12; s23;'J=c Þds12ds23d cos'J=c ;

N bkg ¼
Z

Bðs12; s23;'J=c Þds12ds23d cos'J=c : (2)

In this analysis we apply a formalism similar to that used in
Belle’s analysis of !B0 ! K"!þ(c1 decays [11].
To investigate if there are visible exotic structures in the

J=c!þ system as claimed in similar decays [12], we
examine the J=c!þ mass distribution shown in Fig. 5.
No resonant effects are evident. Examination of the event
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FIG. 3 (color online). Invariant mass of J=c!þ!" candidate
combinations. The data have been fitted with a double-Gaussian
signal and several background functions. The (red) solid line
shows the !B0

s signal, the (brown) dotted line shows the combi-
natorial background, the (green) short-dashed line shows the B"

background, the (purple) dotted-dashed line is !B0 ! J=c!þ!",
the (black) dotted-long-dashed line is the sum of !B0

s ! J=c#0

and !B0
s ! J=c" when " ! !þ!"!0 backgrounds, the (light

blue) long-dashed line is the !B0 ! J=cK"!þ reflection, and
the (blue) solid line is the total.
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distribution for m2ð!þ!#Þ versus m2ðJ=c!þÞ in Fig. 6
shows obvious structure in m2ð!þ!#Þ that we wish to
understand.

1. The signal function

The signal function is taken to be the sum over resonant
states that can decay into !þ!#, plus a possible nonreso-
nant S-wave contribution

Sðs12; s23; "J=c Þ

¼
X

#¼0;&1

!!!!!!!!
X

i

aRi
# ei$

Ri
# ARi

# ðs12; s23; "J=c Þ
!!!!!!!!

2
; (3)

whereARi
# ðs12; s23; "J=c Þ is the amplitude of the decay via

an intermediate resonance Ri with helicity #. Each Ri has
an associated amplitude strength aRi

# for each helicity state

# and a phase $Ri
# . The amplitudes are defined as

A R
#ðs12; s23; "J=c Þ ¼ FðLBÞ

B ARðs23ÞFðLRÞ
R T#

"
PB

mB

#
LB

'
"
PRffiffiffiffiffiffi
s23

p
#
LR

!#ð"J=c Þ; (4)

where PB is the J=c momentum in the "B0
s rest frame and

PR is the momentum of either of the two pions in the dipion

rest frame, mB is the "B0
s mass, FðLBÞ

B and FðLRÞ
R are the "B0

s

meson and Ri resonance decay form factors, LB is the
orbital angular momentum between the J=c and !þ!#

system, and LR the orbital angular momentum in the
!þ!# decay, and thus is the same as the spin of the
!þ!#. Since the parent "B0

s has spin-0 and the J=c is a
vector, when the !þ!# system forms a spin-0 resonance,
LB ¼ 1 and LR ¼ 0. For !þ!# resonances with nonzero
spin, LB can be 0, 1, or 2 (1, 2, or 3) for LR ¼ 1ð2Þ and so
on. We take the lowest LB as the default.

The Blatt-Weisskopf barrier factors FðLBÞ
B and FðLRÞ

R
[13] are

Fð0Þ ¼ 1; Fð1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z0

p
ffiffiffiffiffiffiffiffiffiffiffi
1þ z

p ; Fð2Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z20 þ 3z0 þ 9

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ 3zþ 9

p :

(5)

For the B meson z ¼ r2P2
B, where r, the hadron scale, is

taken as 5:0 GeV#1; for the R resonance z ¼ r2P2
R, and

r is taken as 1:5 GeV#1. In both cases z0 ¼ r2P2
0 where P0

is the decay daughter momentum at the pole mass, differ-
ent for the "B0 and the resonance decay.
The angular term, T#, is obtained using the helicity

formalism and is defined as

T# ¼ dJ#0ð"!!Þ; (6)

where d is the Wigner d function [8], J is the resonance
spin, and "!! is the !þ!# resonance helicity angle, which
is defined as the angle of !þ in the !þ!# rest frame with
respect to the !þ!# direction in the "B0

s rest frame and
calculated from the other variables as

cos"!! ¼ ½m2ðJ=c!þÞ #m2ðJ=c!#Þ)mð!þ!#Þ
4PRPBmB

: (7)

The J=c helicity-dependent term !#ð"J=c Þ is defined as

!#ð"J=c Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2"J=c

q
for helicity ¼ 0;

!#ð"J=c Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2"J=c

2

s
for helicity ¼ &1:

(8)

The function ARðs23Þ describes the mass squared shape
of the resonance R, that in most cases is a Breit-Wigner
(BW) amplitude. Complications arise, however, when a
new decay channel opens close to the resonant mass. The
proximity of a second threshold distorts the line shape of
the amplitude. This happens for the f0ð980Þ because the
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FIG. 5 (color online). Distribution of mðJ=c!þÞ for "B0
s !

J=c!þ!# candidate decays within &20 MeV of "B0
s mass

shown with the (blue) solid line; mðJ=c!þÞ for wrong-sign
J=c!þ!þ combinations is shown with the (red) dashed line, as
an estimate of the background.
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m2(ππ)

Addi)onal#informa)on#

8#March#2013# CP#viola)on#in#Bs#System#@#Sean#Benson# 22#

Φs#in#Bs@>#J/ψππ#decays#

CP@odd#frac)on:#Table#from#LHCb@PAPER@2012@006#
#
#
#
#
#
#
#
#
#
#
Upper#limit#on#ρ(770)#found#to#be#1.5%#@#95%#C.#L.#
Total#is#sum#in#quadrature#of##f2(1270)+ρ(770)#

Table 1: Resonance fractions in B0
s

! J/ ⇡+⇡� [17]. The final-state helicity of the
D-wave is denoted by ⇤. Only statistical uncertainties are quoted.

Resonance Normalized fraction (%)
f0(980) 69.7± 2.3
f0(1370) 21.2± 2.7
non-resonant ⇡+⇡� 8.4± 1.5
f2(1270), ⇤ = 0 0.49± 0.16
f2(1270), |⇤| = 1 0.21± 0.65

The final state is dominated by CP -odd S-wave over the entire fodd region. We also280

have a small D-wave component arising from the f2(1270) resonance. Its zero helicity281

(⇤ = 0) part is also pure CP -odd and corresponds to (0.49 ± 0.16+0.02
�0.08)% of the total282

rate.2 The |⇤| = 1 part, which is of mixed CP , corresponds to (0.21± 0.65+0.01
�0.03)% of the283

total. Performing a separate fit, we find that a possible ⇢ contribution is smaller than284

1.5% at 95% confidence level (CL). Summing the f2(1270) |⇤| = 1 and ⇢ rates, we find285

that the CP -odd fraction is larger than 97.7% at 95% CL. Thus the entire mass range can286

be used to study CP violation in this almost pure CP -odd final state.287

4 Flavour tagging288

Knowledge of the initial B0
s

flavour modeled is necessary in order to use Eq. 1. This289

is accomplished by tagging the flavour of the other b hadron in the event, exploiting290

information from four sources: the charges of muons, electrons, kaons with significant291

IP, and inclusively reconstructed secondary vertices. The decisions of the four tagging292

algorithms are individually calibrated using B⌥ ! J/ K⌥ decays and combined. The293

method is described in Ref. [19]. The tagging performance is characterized by "tagD2,294

where "tag is the e�ciency and D the dilution, defined as D ⌘ (1 � 2!), where ! is the295

probability of an incorrect tagging decision.296

We use both the information of the tag decision and of the predicted per-event mistag297

probability. The calibration procedure assumes a linear dependence between the pre-298

dicted mistag probability ⌘
i

for each event and the actual mistag probability !
i

given by299

!
i

= p0 + p1 · (⌘i � h⌘i), where p0 and p1 are calibration parameters and h⌘i the average300

estimated mistag probability as determined from the J/ K⌥ calibration sample. The val-301

ues are p0 = 0.392±0.002±0.009, p1 = 1.035±0.021±0.012, and h⌘i = 0.391. Systematic302

uncertainties are evaluated by using J/ K+ separately from J/ K�, performing the cali-303

bration with B0 ! J/ K⇤0 and B0 ! D+⇡� plus charge-conjugate channels, and viewing304

the dependence on di↵erent data taking periods. We find "tag = (32.9±0.6)% providing us305

with 2445±58 tagged signal events. The dilution is measured as D = 0.272±0.004±0.015,306

leading to "tagD2 = (2.43± 0.08± 0.26)%.307

2In this Letter whenever two uncertainties are given, the first is statistical and the second systematic.

5

• Result:

• Nearly all (>97.7% at 95 C.L.) CP-odd

• ⇒ No need for angular analysis to extract φs! (see also arXiv:1302.1213  for an amplitude 
analysis of Bs→J/ψKK
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Model-independent check

• Decay rate can be expressed in 
terms of spherical harmonics


• These can be related to different 
S, P, D amplitude components.


• To project out a given component:

71

d�

d(cos ✓)
= aml Y m

l (cos ✓)

aml =

Z
Y m
l (cos ✓)

d�

d(cos ✓)
d(cos ✓)

⇡
X

events

Y m
l (cos ✓i)

= sum of weighted events

projection of weighted events onto m(ππ)

D-wave

interference of (S
+P) with (P+D)

(P+D) + interference 
of S with D

VI. RESULTS

1. CP content

The main result in this paper is that CP-odd final
states dominate. The f2ð1270Þ helicity #1 yield is

ð0:21# 0:65Þ%. As this represents a mixed CP state, the
upper limit on the CP-even fraction due to this state is
<1:3% at 95% confidence level (C.L.). Adding the !ð770Þ
amplitude and repeating the fit shows that only an insig-
nificant amount of !ð770Þ can be tolerated; in fact, the
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Bs J/ψ ππ 

Bs
_

A0
A||
A⊥

AS

A0
A||
A⊥
AS

/ ei�s

Table 2: Definition of angular and time-dependent functions.

k fk(✓µ, ✓K ,'h) Nk ak bk ck dk

1 2 cos2 ✓K sin2 ✓µ |A0|2 1 D C �S
2 sin2 ✓K

�
1� sin2 ✓µ cos2 'h

�
|Ak|2 1 D C �S

3 sin2 ✓K
�
1� sin2 ✓µ sin2 'h

�
|A?|2 1 �D C S

4 sin2 ✓K sin2 ✓µ sin 2'h |AkA?| C sin(�? � �k) S cos(�? � �k) sin(�? � �k) D cos(�? � �k)

5 1
2

p
2 sin 2✓K sin 2✓µ cos'h |A0Ak| cos(�k � �0) D cos(�k � �0) C cos(�k � �0) �S cos(�k � �0)

6 � 1
2

p
2 sin 2✓K sin 2✓µ sin'h |A0A?| C sin(�? � �0) S cos(�? � �0) sin(�? � �0) D cos(�? � �0)

7 2
3 sin2 ✓µ |AS|2 1 �D C S

8 1
3

p
6 sin ✓K sin 2✓µ cos'h |ASAk| C cos(�k � �S) S sin(�k � �S) cos(�k � �S) D sin(�k � �S)

9 � 1
3

p
6 sin ✓K sin 2✓µ sin'h |ASA?| sin(�? � �S) �D sin(�? � �S) C sin(�? � �S) S sin(�? � �S)

10 4
3

p
3 cos ✓K sin2 ✓µ |ASA0| C cos(�0 � �S) S sin(�0 � �S) cos(�0 � �S) D sin(�0 � �S)

For the coe�cients ak, . . . , dk, three CP violating observables are introduced

C ⌘ 1� |�|2

1 + |�|2 , S ⌘ 2=(�)
1 + |�|2 , D ⌘ � 2<(�)

1 + |�|2 , (3)

where the parameter � is defined below. These definitions for S and C correspond to
those adopted by HFAG [19] and the sign of D is chosen such that it is equivalent to the
symbol A��

f used in Ref. [19]. The CP -violating phase �s is defined by �s ⌘ � arg(�) and
hence S and D can be written as

S ⌘ �2|�| sin�s

1 + |�|2 , D ⌘ �2|�| cos�s

1 + |�|2 . (4)

The parameter � describes CP violation in the interference between mixing and decay,
and is derived from the CP -violating parameter [20] associated with each polarisation
state i

�i ⌘ q

p

Āi

Ai

, (5)

where Ai (Āi) is the amplitude for a B

0
s (B0

s) meson to decay to final state i and the
complex parameters p = hB0

s |BLi and q = hB0
s|BLi describe the relation between mass and

flavour eigenstates. The polarisation states i have CP eigenvalue ⌘i = +1 for i 2 {0, k}
and ⌘i = �1 for i 2 {?, S}. Assuming that any possible CP violation in the decay is the
same for all amplitudes, then the product ⌘iĀi/Ai is independent of i. The polarisation-
independent CP -violating parameter � is then defined such that �i = ⌘i�. The di↵erential
decay rate for a B

0
s meson produced at time t = 0 can be obtained by changing the sign

of ck and dk and by including a relative factor |p/q|2.
The expressions are invariant under the transformation

(�s,��s, �0, �k, �?, �S) 7�! (⇡ � �s,���s,��0,��k, ⇡ � �?,��S) , (6)

which gives rise to a two-fold ambiguity in the results.

4
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Combined Bs→J/ψ KK and  Bs→J/ψ ππ for φs

73

φs very sensitive to NP. But 
no NP effects seen, yet...


ΔΓs less sensitive to NP 
(∝cos(φnew)), but impressive 
validation of HQE 
calculation. [rad]

s
φ

-1 0 1

]
-1

 [p
s

s
Γ

Δ

0

0.05

0.1

0.15

0.2

0.25
HFAG

April 2013

 logL = 1.15)Δ(
68% CL contours

-1 + ATLAS 4.9fb-1 + D0 8fb-1 + CDF 9.6fb-1LHCb 1fb

LHCb

Combined
SM

ATLAS

D0

CDF

�s = 0.07 ± 0.09 (stat) ± 0.01 (syst) rad,

�s ⌘ (�L + �H)/2 = 0.663 ± 0.005 (stat) ± 0.006 (syst) ps�1,

��s ⌘ �L � �H = 0.100 ± 0.016 (stat) ± 0.003 (syst) ps�1,

LHCb:
SM: �SM

s = �0.036 ± 0.002 rad

arXiv:1304.2600 (2013)

Physics Letters B 713 (2012) 378
Phys. Rev. Lett. 108 (2012) 101803

supersedes previous results:
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• New Physics  in loops?

Loops vs Trees

• Expect no New Physics in Trees

b c

u u

u

s

_ _

_

B+ D0
_
K+

74

2 Roads to New Physics

Direct Observations Indirect e�ects

Particles with MC2 > E

cannot be produced di-
rectly...

E=MC
2

... but they can have an e�ect as virtual
particles, especially in loops.

s
dd

b

_
s
_

s
_
s

KB

!
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Can penguins be bad?

75

http://youtu.be/5IjmOSFtoJc

http://youtu.be/5IjmOSFtoJc
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Can penguins be bad?

75

They can.http://youtu.be/5IjmOSFtoJc

http://youtu.be/5IjmOSFtoJc
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Measuring γ

76
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Measuring γ
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B±→DK±

f(D)
1

DK
ir  eB

−

−

−

−

−γ(δ     )
B

DK
K

K
Kf(D)+

+

+

+

1

ir  eB
+γ(δ     )

B
D

DK

CP-violating phase γ

CP-conserving strong phase δ

b c

u u

u

s

_ _

_

B– D0
_
K–

b
c

u u

u

s_ _

_

B–
D0

_
K–

–γ

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 
78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018  Belle Collaboration Phys.Rev. D70 (2004) 072003

–

77

http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B265,172
http://www.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B253,483
http://arxiv.org/abs/hep-ph/9612433
http://arxiv.org/abs/hep-ph/0303187
http://arxiv.org/abs/hep-ex/0406067
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CP violation is an interference effect

78
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CP violation is an interference effect
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CP violation is an interference effect

(KSπ+π–)D

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 
78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018  Belle Collaboration Phys.Rev. D70 (2004) 072003
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CP violation is an interference effect
• For D→3-body 

decays, the 
interference takes 
place in an abstract 
2-D space (Dalitz 
plot)


• Analysing the Dalitz 
plot of the D decay, 
in D’s that come from 
B±’s, gives access to 
γ

D
0
+ rBe

i(�±�)D0

D0

D
0

Gronau, Wyler Phys.Lett.B265:172-176,1991, (GLW), Gronau, London Phys.Lett.B253:483-488,1991 (GLW) Atwood, Dunietz and Soni Phys.Rev.Lett. 
78 (1997) 3257-3260 (ADS) Giri, Grossman, Soffer and Zupan Phys.Rev. D68 (2003) 054018  Belle Collaboration Phys.Rev. D70 (2004) 072003
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http://arxiv.org/abs/hep-ph/9612433
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Multi-Generational Flavour Physics

81

CLEO-c

LHCb

Edward V. Brewer (1883 – 1971)

http://americangallery.wordpress.com/2009/06/08/edward-v-brewer-1883-1971/
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Multi-Generational Flavour Physics

81

CLEO-c

LHCb

Regrettably, CLEO recently deceased - but her data live on.
Edward V. Brewer (1883 – 1971)

http://americangallery.wordpress.com/2009/06/08/edward-v-brewer-1883-1971/
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CLEO-c

• Threshold production of correlated DD.


• Final state must be CP-even with L=1: D 
mesons must have opposite intrinsic CP.


• Final state is also flavour-neutral.


• That gives us access to both amplitude 
and phase across the Dalitz plot.

3

Charm at Threshold

! high tagging efficiency:~22% of D’s
Compared to  ~0.1% of B’s at Y(4S)

e
+

Dsig

e
!

D tag

! "

K
+

! "

! +

! +

K
!

 !(3770) is to charm 
what  "(4S) is to beauty

(3770)

,

D

D K

D

D K

!

"" ""

+

+ # + +

#

# + # #$

$

$

" Pure DD, no additional particles (ED = Ebeam)
" #(DD) = 6.4 nb  (Y(4S)->BB ~ 1 nb)
" Low multiplicity ~ 5-6 charged particles/event

e+e- #!(3770)#DD

CLEO-c DATA

 A little luminosity goes a long way: 
# events in 100 pb-1 @ charm factory 
with 2D’s reconstructed ~  
#  events in 500 fb-1 @ "(4S) 
with 2B’s reconstructed 

Increased statistics is NOT an advantage 
of threshold running. Cross section is 3x 
higher than 10 GeV but luminosity is more than 100x lower



Run: 207267 Event: 5

X

Y



 γγγγ 






 γ

 γ  →→→→  

  

  

D →→→→ Kπππ 

 

CLEAN-c

⇥(3770)� D0(KS�
+��)D̄0(K+��)
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CP and flavour tagged Dº

D0

ψ’’
Dflavour→K+e- νe

Dflavour→Ksπ+π–

simulated data

m2(Ksπ+)/GeV2

m
2 (K

sπ
– )/

G
eV

2
_
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CP and flavour tagged Dº

D0

ψ’’
Dflavour→K+e- νe

Dflavour→Ksπ+π–

simulated data

m2(Ksπ+)/GeV2

m
2 (K

sπ
– )/

G
eV

2

DCP�

ψ’’
DCP+→KK

simulated data
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CP and flavour tagged Dº at CLEO
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CLEO-c preliminary, 818/pb

ψ’’
Dflavour→K+e- νe
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_

FIG. 8: CP-even tagged K0
Lπ+π− Dalitz plot (a), and its m2(π+π−) projection (b). CP-odd tagged

K0
Lπ+π− Dalitz plot (c), and its m2(π+π−) projection (d).

the latter, we estimate the biases and adjust the K(′)
i values using the correction factor:

|AD0→K0
S
π+π−|2/|AD0→K0

S
π+π− + re−iδAD̄0→K0

S
π+π−|2.

Here r = |A(D0 → K+π−)/A(D0 → K−π+)| and δKπ are the ratio of amplitudes of the
DCSD to CF decay and the relative strong phase, respectively. The amplitude ratio squared,
r2 = (3.44 ± 0.01 ± 0.09) × 10−3 and δKπ = (22 ± 16.3)◦ are taken from Ref. [16]. This
correction factor is estimated in each of our eight Dalitz-plot bins using the BaBar D0 →
K0

Sπ+π− Dalitz-plot fit amplitude [4]. The model dependence of this correction is negligible.
Uncertainties on these corrections due to the uncertainty on δKπ are small and are included
in our systematic uncertainties.

The fitting procedure was tested using a simulated C-odd D0D̄0 Monte Carlo sample
where we performed 100 toy K0

Sπ+π− vs. K0
Sπ+π− experiments with ci and si taken from

the BaBar model. The means and widths of the pull distributions of the ci and si parameters

tion of c(′)
i .

15

CLEO-c	 arXiv:0903.1681 818/pb
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Model independent γ fit

• Binned decay rate: 
 
 
 
 
 

• Binning such that such that ci = c-i, si = -s-i


• Distribution sensitive to ci, si, rB, δ and γ.


• To extract γ from realistic numbers of B events need external 
input from CLEO’s quantum-correlated DDbar pairs.

85

Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003).

    known from flavour-
specifc D decays (e.g. D*)
Ti

i

–i

�
�
B± ⇥ D(Ks⇤

+⇤�)K±⇥
i
=

Ti + r2
BT�i + 2rB

⇤
TiT�i {ci cos (⇥ ± �) + si sin (⇥ ± �)}

(weighted) average of cos(δD) and sin(δD) over bin i, where δD = phase 
difference between D→Ksππ and Dbar→Ksππ

http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=hep-ph/0303187
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• Best γ sensitivity if phase difference δD is 
as constant as possible over each bin[1].


• Plot shows CLEO-c’s 8 bins, uniform in δD, 
(based on BaBar isobar model*).


• Choice of model will not bias result. (At 
worst a bad model would reduce the 
statistical precision of the result.)

δD=0ºδD=180º

0 0.5 1 1.5 2 2.5 30

0.5

1

1.5

2

2.5

3

0

1

2

3

4

5

6

7

Phase Bins

m2(KSπ+)/GeV2
m

2 (K
Sπ

– )/
G

eV
2

*model = BaBar PRL 95 (2005) 121802

Binning at CLEO-c based on 
BaBar model*

Optimal binning

[1] Bondar, Poluektov hep-ph/0703267v1 (2007)

bi
n 

nu
m

be
r
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LHCb model-independent γ from B±→(KSππ)DK and 
B±→(KSKK)DK

• Binned, model-independent 
analysis using CLEO-c input.


• Plots show LHCb 2012 data


• Result of combined analysis (2011 
& 2012 data, KSππ & KSKK):

87

Table 1: Yields of each signal and background category in the signal region. The category
‘DK

± mis-ID’ indicates B

± ! D⇡

± candidates that are misidentified as B

± ! DK

± signal.

Parameter D ! K

0

S⇡
+

⇡

�
D ! K

0

SK
+

K

�

LL DD LL DD
DK

± signal 422 ± 14 964 ± 32 61 ± 3 140 ± 5
DK

± mis-ID 31 ± 5 67 ± 8 4 ± 2 10 ± 3
DK

± combinatorial 13 ± 4 22 ± 5 1 ± 1 3 ± 1
DK

± low mass 22 ± 2 60 ± 3 4 ± 1 8 ± 1
D⇡

± signal 6709 ± 85 15276 ± 136 961 ± 31 2211 ± 46
D⇡

± combinatorial 50 ± 5 201 ± 11 19 ± 3 31 ± 4
D⇡

± low mass 63 ± 1 145 ± 2 9 ± 1 21 ± 1

Table 2: Purity for each decay type in the signal region.

B

± decay mode D ! K

0

S⇡
+

⇡

�
D ! K

0

SK
+

K

�

LL DD LL DD
B

± ! DK

± (86.4± 1.3)% (86.6± 0.9)% (86.0± 2.8)% (87.1± 1.9)%
B

± ! D⇡

± (98.4± 0.1)% (97.8± 0.0)% (97.2± 0.1)% (97.7± 0.1)%

We split the data in categories depending on the decay type (D⇡

± or DK

±), K

0

S type
(LL or DD), B charge (plus or minus) and which Dalitz plot bin the event falls into. The
log likelihood is the sum of the log likelihoods for each category of candidates in every
bin of the D

0 Dalitz plot

logL =
X

charge

X

LL,DD K0
S

(logLD⇡± + logLDK±). (4)
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D from B+

CLEO-c input:: Phys. Rev. D 82 112006. 
Model-independent method: Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003). 
Optimal binning: Bondar, Poluektov hep-ph/0703267v1 (2007) 
BELLE’s first model-independent γ measurement: PRD 85 (2012) 112014
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The log likelihood for D⇡

± candidates is determined by summing the log likelihoods
over all the bins in Dalitz space (labelled �8 to +8)

logLD⇡± =
8X

i=�8, 6=0

log

 
N

i
D⇡±,sig SD⇡±(mD⇡±) +

2X

j=1

N

i
D⇡±,bkg,j BD⇡±,j(mD⇡±)

!
, (5)

where SD⇡± is the signal shape, BD⇡±,{1,2} are the two background shapes and the yields
of these three components, N

i
D⇡±,sig and N

i
D⇡±,bkg,{1,2}, are varied independently in each

bin. The log likelihood for B

± ! DK

± candidates is

logLDK± =
8X

i=�8, 6=0

log

 
N

i
DK±,sig SDK±(mDK±) +

3X

j=1

N

i
DK±,bkg,j BDK±,j(mDK±)

!
, (6)

where in this case there are three background components, and the signal yield is deter-
mined as follows. The yield of B

± ! DK

± candidates in each bin is

Y

�
±i / N

±i
D⇡�,sig + r

2

BN

⌥i
D⇡�,sig + 2

q
N

i
D⇡�,sigN

�i
D⇡�,sig(x�ci ± y�si), (7)

Y

+

±i / N

⌥i
D⇡+,sig + r

2

BN

±i
D⇡+,sig + 2

q
N

i
D⇡+,sigN

�i
D⇡+,sig(x+

ci ⌥ y

+

si) (8)

for B

� and B

+, respectively, where we have used the D⇡

± yield in each bin to represent
"iKi; we assume e�ciencies in opposite bins are the same and that there is no interference
in the B

± ! D⇡

± system (i.e. the value of rB(D⇡

±) is zero). The normalised yield
N

i
DK±,sig is then

N

i
DK±,sig = NDK±,tot

Y

±
iP

8

i=�8, 6=0

Y

±
i

, (9)

8

]4c/2 [GeV2
+m

1 1.2 1.4 1.6 1.8

]4 c/2
 [G

eV
2 −

m

1

1.2

1.4

1.6

1.8 LHCb preliminary
-1 = 2.0 fbtL d ∫

]4c/2 [GeV2
−m

1 1.2 1.4 1.6 1.8

]4 c/2
 [G

eV
2 +

m

1

1.2

1.4

1.6

1.8 LHCb preliminary
-1 = 2.0 fbtL d ∫

Figure 5: Dalitz plots for B

± ! (K0

SK

+

K

�)DK

± decays; (left) B

+, (right) B

�.

The log likelihood for D⇡

± candidates is determined by summing the log likelihoods
over all the bins in Dalitz space (labelled �8 to +8)

logLD⇡± =
8X

i=�8, 6=0

log

 
N

i
D⇡±,sig SD⇡±(mD⇡±) +

2X

j=1

N

i
D⇡±,bkg,j BD⇡±,j(mD⇡±)

!
, (5)

where SD⇡± is the signal shape, BD⇡±,{1,2} are the two background shapes and the yields
of these three components, N

i
D⇡±,sig and N

i
D⇡±,bkg,{1,2}, are varied independently in each

bin. The log likelihood for B

± ! DK

± candidates is

logLDK± =
8X

i=�8, 6=0

log

 
N

i
DK±,sig SDK±(mDK±) +

3X

j=1

N

i
DK±,bkg,j BDK±,j(mDK±)

!
, (6)

where in this case there are three background components, and the signal yield is deter-
mined as follows. The yield of B

± ! DK

± candidates in each bin is

Y

�
±i / N

±i
D⇡�,sig + r

2

BN

⌥i
D⇡�,sig + 2

q
N

i
D⇡�,sigN

�i
D⇡�,sig(x�ci ± y�si), (7)

Y

+

±i / N

⌥i
D⇡+,sig + r

2

BN

±i
D⇡+,sig + 2

q
N

i
D⇡+,sigN

�i
D⇡+,sig(x+

ci ⌥ y

+

si) (8)

for B

� and B

+, respectively, where we have used the D⇡

± yield in each bin to represent
"iKi; we assume e�ciencies in opposite bins are the same and that there is no interference
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Figure 6: Confidence intervals on the (x, y) plane for B

+ and B

� data collected in 2012 using
the statistical uncertainties and correlations only. The star indicates the central value and the
contours indicate the 1�, 2� and 3� boundaries moving from the centre outwards.

is conservatively assigned. The results that were obtained in 2011 are

x

+

= (�10.3± 4.5± 1.8± 1.4)⇥ 10�2

, x� = (0.0± 4.3± 1.5± 0.6)⇥ 10�2

,

y

+

= (�0.9± 3.7± 0.8± 3.0)⇥ 10�2

, y� = (2.7± 5.2± 0.8± 2.3)⇥ 10�2

.

The following results are obtained for the combined CP parameters

hx
+

i = (�8.9± 3.1)⇥ 10�2

, hx�i = (3.5± 2.9)⇥ 10�2

,

hy
+

i = (�0.1± 3.7)⇥ 10�2

, hy�i = (7.9± 3.8)⇥ 10�2

.

The correlation matrix for the combined parameters is given in Table 4.

Table 4: Correlation matrix between CP parameters in combination of 2011 and 2012 results.

x

+

x� y

+

y�
x

+

1.000 �0.136 0.106 �0.186
x� �0.136 1.000 �0.031 �0.053
y

+

0.106 �0.031 1.000 �0.074
y� �0.186 �0.053 �0.074 1.000

The results can be interpreted in terms of the underlying physics parameters �, rB
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LHCb’s γ combination

88

� = 68� ± 12�previous world average 
(Moriond 2012):

� = (67.2± 12)o

technique & 2011 data: Phys. Lett. B726 (2013) 151
2012 data: LHCb-CONF_2013-006)

World averages by CKM Fitter• LHCb combines inputs from  
B±→(hh’)DK± 

B±→(KSππ)DK± 
B±→(KSKK)DK± 
B±→(Kπππ)DK± 

• Result:


• More channels available, including  
B±→Dπ±, B0→DK*. 


• Most recent addition: B±→(KSKπ)DK± 
(see arXiv:1402.2982, 2014)

http://inspirehep.net/record/1232503?ln=en
https://cds.cern.ch/record/1537409?ln=en
http://inspirehep.net/record/1281231?ln=en
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LHCb’s γ combination
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LHCb model-dependent γ from B±→(KSππ)DK

89
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Figure 5: Dalitz plot and its projections, with fit result superimposed, for B

� ! DK

�

candidates; m

2

± ⌘ m

2

K

0
S⇡

± and m

2

0

⌘ m

2

⇡

+
⇡

� . The lower parts of the figures are normalised

residual distributions.

uncertainties.277

The yield of combinatorial D background is estimated using wrong-sign candidates278

selected from data. The systematic uncertainties arising from these estimates are found279

by repeating the CP asymmetry fit to data with the yields varied by the statistical280

uncertainties shown in Table 1. Corresponding variations in the random Dh background281

yield are made, so that the total combinatorial background yield, obtained from the B

±
282

invariant mass fit, is unchanged.283

In the B

± invariant mass fit, a component PDF for partially-reconstructed284

B

± ! D(! K

0

S⇡
+

⇡

�)µ±⌫ background is not included. The systematic uncertainties285

arising from the omission of this background are found by repeating the CP asymmetry fit286

to data with a contribution from this background. The upper limits on the yields and the287

mass functions are found by applying muon identification requirements to the bachelor288

tracks of data candidates, and are fixed in the fit.289

In the CP asymmetry fit, the background fractions obtained from the invariant mass290

11

Since CP violation in the charm sector has been neglected in the analysis, the world390

average values of the mixing parameters without CP violation (x
mix

= (0.53+0.16

�0.17

)⇥ 10�2,391

y

mix

= (0.67± 0.09)⇥ 10�2) [33] are used to perform this correction, giving the values392

x

corr

� = +0.030± 0.044+0.010

�0.008

± 0.001± 0.00045,

y

corr

� = +0.016± 0.048+0.009

�0.007

± 0.003± 0.00085,

x

corr

+

= �0.081± 0.045± 0.009± 0.003± 0.00045,

y

corr

+

= �0.029± 0.048+0.010

�0.009

± 0.007± 0.00085,

where the first uncertainty is statistical, the second systematic, the third arises from the393

D decay amplitude model and the fourth is the uncertainty associated to the values of394

the mixing parameters used for this correction. The change in the value of � due to this395

correction, found using the approach described in Section 6, is less than 1�.396

8 Conclusions397

Candidate B

± ! D(! K

0

S⇡
+

⇡

�)K± decays, selected from data recorded at LHCb in398

2011 at a centre-of-mass energy of 7 TeV and corresponding to an integrated luminosity of399

1 fb�1, are used to perform an amplitude analysis incorporating a model description of the400

D ! K

0

S⇡
+

⇡

� decay.401

The resulting values of the CP violation observables x± = r

B

cos (�
B

± �) and402

y± = r

B

sin (�
B

± �) are403

x� = +0.027± 0.044 +0.010

�0.008

± 0.001,

y� = +0.013± 0.048 +0.009

�0.007

± 0.003,

x

+

= �0.084± 0.045± 0.009± 0.003,

y

+

= �0.032± 0.048 +0.010

�0.009

± 0.007,

where the first uncertainty in each case is statistical, the second systematic and the third404

arises from uncertainty in the amplitude model used to describe the D ! K

0

S⇡
+

⇡

�
decay.405

These results are used to place constraints on the magnitude of the ratio of the interfering406

B

± decay amplitudes (r
B

), the strong phase di↵erence between them (�
B

) and the CKM407

angle �, giving the value � = (84+49

�42

)�. The results do not include the e↵ect of neutral D408

meson mixing, which is found to have a negligible e↵ect on �.409
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Figure 6: Dalitz plot and its projections, with fit result superimposed, for B

+ ! DK
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± ⌘ m
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⇡
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fit to B

± candidates are used for both B

+ and B

� candidates. This neglects any detection291

asymmetries for the charged bachelor tracks. It is assumed that there is no asymmetry for292

reconstructing bachelor pions. The CP asymmetry fit is repeated with a charged kaon293

asymmetry of �1.2% [25] introduced for the signal and background components where the294

bachelor is expected to be a kaon.295

In the CP asymmetry fit, combinatorial D background candidates are assumed to296

be distributed non-resonantly over the phase space of the D ! K

0

S⇡
+

⇡

�
decay. The CP297

asymmetry fit is repeated with the D decay model changed to the sum of a phase-space298

distribution and a K

⇤±(892) resonance; the fractions of the two components are fixed from299

study of the Dalitz plot projections of data.300

The D decay model included in the CP asymmetry fit for random Dh background301

candidates is an incoherent sum of the two D ! K

0

S⇡
+

⇡

� decay amplitudes because it is302

equally likely for a D

0

or D

0

meson to be present in an event. The CP asymmetry fit is303

repeated with the decay model changed to include a D

0 �D

0

production asymmetry of304
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Why stop here
• Why stop at 3-body decays?


• 4-body amplitude analyses very 
promising for γ measurement at LHCb.


• Tricky… “Dalitz Plot” becomes 5-
dimensional, phase space not flat, spin 
factors more complicated…
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Coherence Factor Analysis of:

• Treat K3π like two-body decay with single effective strong phase δD.


• Complex coherence parameter Z = c + i s = R eiδ with coherent factor R < 1. 

Measuring � with B±� D0K± events
No tagging required!

f(D)

1

DK
i

r  e
B

!

!

!

!

!"(#     )
B

DK

K

K

Kf(D)
+

+

+

+

1

i
r  e

B

+!("     )
B

D

DK

f(D) can be KK, ⇥⇥,
K⇥, K⇥⇥⇥.

Best if interfering amplitudes are of similar
size

.

“ADS” “GLW”

K

!

KK
!

!

+ !
!!B

D

DK

K

!

KK
!

!

+ !!
KB

D

DK

11

rB ei(⇥��) K–

(K+π–π+π–)DK–

�
�
B� ⇤

�
K+3⇤

⇥
D

K�
⇥
⌅ r2

B +
�
rK3�
D

⇥2
+ 2RK3�rBrK3�

D · cos
�
⇥B + ⇥K3�

D � �
⇥

91

rB =

�����
A(B� ! D

0
K�)

A(B� ! D0K�)

����� rD =

�����
A(D0 ! K+⇡�⇡+⇡�)

A(D
0 ! K+⇡�⇡+⇡�)

�����



Jonas Rademacker: Amplitude Analyses                                                    B-workshop                                             Neckarzimmern 18 Feb 2015 

Coherence Factor Analysis of:

• Treat K3π like two-body decay with single effective strong phase δD.


• Complex coherence parameter Z = c + i s = R eiδ with coherent factor R < 1.  

• CLEO-c used coherent ψ(3770)→DD events to measure R, δD for Kπππ and 
Kππº.

Theory:  
Atwood, Soni: Phys.Rev. D68 
(2003) 033003 
CLEO-c input: 
Phys.Rev.D80:031105,2009 
Phys.Lett. B731 (2014) 197-203 
LHCb  CPV result:  
Physics Letters B 723 (2013), 44
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Kπππ Kππº

CLEO-c CLEO-c

1, 2, 3 σ CL Kππº

http://arxiv.org/abs/hep-ph/0304085
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:0903.4853
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Dº Mixing as input to γ from B±→DK±
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Dº Mixing as input to γ from B±→DK±
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Figure 2: Simulated data and fit in bins of proper decay time, expressed in units of τ = 1/Γ.
The discontinuous shape of the line representing the fit in Fig. 2(b) reflects the way the
expected WS/RS ratio is calculated for each bin, described in the text.

the fit χ2.
An example of such a fit is shown in Fig. 2(b). The 8M events have

been generated using CLEO-c’s central value ZK3π = −0.133−0.301i [5] and
include 30.5k WS events. Figure 3 shows 1, 2 and 3σ confidence regions based
on 8 million simulated events that have been generated with the illustrative
values ZK3π = −0.3 and ZK3π = 0.9i used also to obtain Fig. 1. Figure 4
shows the constraints for events generated using the CLEO-c central value
for ZK3π, in both polar coordinates (i.e. the coherence factor RK3π

D =
∣

∣ZK3π
∣

∣

and strong phase difference δK3π
D = − arg

(

ZK3π
)

) and cartesian coordinates
(ReZK3π and ImZK3π).

To evaluate the potential impact of input from charm mixing on the preci-
sion of ZK3π, we combine the χ2 function used to obtain Fig. 4 with CLEO-c’s
measurement of ZK3π [5]. The CLEO-c results, and the combination with
our simulated data, are shown in Fig. 5. The input from charm mixing im-
proves the constraints considerably. The effect is particularly striking at the
≥ 2σ level where there were previously no constraints on δfD. To quantify
these improvements, one-dimensional 68% and 95% confidence intervals for
RK3π

D and δK3π
D are calculated, following the same procedures as used by

CLEO-c [5] to ensure comparable results. The 68% confidence limits are
based on a standard χ2 difference calculation. The same process would lead
to 95% confidence limits reaching the edge of the Rf

D-δ
f
D parameter space in

the CLEO-c measurement. These are therefore obtained using a Bayesian

12
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Figure 4: Constraints on ZK3π for 8M RS and 30k WS simulated events generated with
CLEO-c’s central value for the complex interference parameter, ZK3π = −0.133−0.301 =
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Table 1: Constraints on RK3π
D and δK3π

D as well as ReZK3π and ImZK3π from simulation,
CLEO-c [5], and their combination, at 68% and 95% CL, obtained with two different
techniques following [5], as described in the text. The ∆χ2 method is not suitable for
obtaining separate constraints on ReZf

Ω and ImZf
Ω from the simulated mixing data alone.
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Figure 2: Simulated data and fit in bins of proper decay time, expressed in units of τ = 1/Γ.
The discontinuous shape of the line representing the fit in Fig. 2(b) reflects the way the
expected WS/RS ratio is calculated for each bin, described in the text.
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measurement of ZK3π [5]. The CLEO-c results, and the combination with
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Physics Letters B 723 (2013), pp. 44-53

48 LHCb Collaboration / Physics Letters B 723 (2013) 44–53

Fig. 1. Invariant mass distributions of selected B± → [K ±π∓π+π−]D h± candidates, separated by charge. The left plots are B− candidates, B+ are on the right. In the top
plots, the bachelor track passes the PID cut and the B± candidates are reconstructed assigning this track the kaon mass. The remaining candidates are placed in the sample
displayed on the bottom row and are reconstructed with a pion mass hypothesis. The dark (red) and light (green) curves represent the fitted B± → D K ± and B± → Dπ±

components, respectively. The shaded contribution indicates partially reconstructed decays and the total PDF includes the combinatorial component. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

Fig. 2. Invariant mass distributions of selected B± → [π± K ∓π+π−]D h± decays, separated by charge. See the caption of Fig. 1 for a full description. The dashed line
here represents the partially reconstructed, but Cabibbo-favoured, B0

s → D K −π+ , and charge-conjugated, decays where the pion is not reconstructed. The favoured mode
cross-feed is included in the fit, but is too small to be seen.

summarised in Table 2. Correlations between the uncertainties are considered negligible, so the total systematic uncertainty is the sum in
quadrature of the individual components.

5. Results and interpretation

The results of the fit with their statistical and systematic uncertainties are

R K 3π
K/π = 0.0771 ± 0.0017 ± 0.0026,

AK 3π
K = −0.029 ± 0.020 ± 0.018,

AK 3π
π = −0.006 ± 0.005 ± 0.010,

R K 3π ,−
K = 0.0072+0.0036

−0.0032 ± 0.0008,

R K 3π ,+
K = 0.0175+0.0043

−0.0039 ± 0.0010,

R K 3π ,−
π = 0.00417+0.00054

−0.00050 ± 0.00011,

R K 3π ,+
π = 0.00321+0.00048

−0.00045 ± 0.00011.

1/fb
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The ratios of the favoured and suppressed rates are given by107
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These can also be expressed in terms of the Cartesian coordinates108
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using the relations109
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E↵ects due to D

0-D0 mixing have been ignored in the expressions for the B⌥ ! DK

⌥,110

D ! f (¯f ) decay rates, which is justified given the expected statistical precision. These111

e↵ects can be included if required [29].112

2.4 Parameter counting using ratios113

Taking �
D

, x, and y from external inputs, Eqs. 2.10, 2.16, 2.17 depend on three un-114

known parameters for each pair of CP -conjugate phase space bins (⌦, ⌦̄): rD ,⌦ , ReZf
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and ImZf
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; and three that are the same in all bins: �, �
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and r
B

. The time-dependent116

fit to the tagged charm decay rates (Eq. 2.10) provides two constraints on these param-117

eters for each bin (the constant and the coe�cient of the linear term). The B⌥ ! DK

⌥
118

decay rate ratios (Eqs. 2.16, 2.17) provide another two constraints. For N bin pairs,119

there are therefore 4N constraints and 3N + 3 unknown parameters. To extract all120

unknown parameters from the data therefore requires 4N � 3N + 3 , N � 3. If121

instead we wish to measure x±, y±, we need N � 4.122

2.5 Parameter counting using rates123

Taking again �
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, x, and y from external inputs, Eqs. 2.8, 2.9, 2.13, 2.14, 2.15 depend124

on four unknown parameters for each pair of CP -conjugate phase space bins: A2

⌦

, B2

⌦

,125

ReZf

⌦

, and ImZf

⌦

; and four that are the same in all bins: �, �
B

, r
B

= S/F , F2.126

Eqs. 2.8 - 2.9 provide three constraints for each bin, and Eqs. 2.13 - 2.15 another three.127

Hence, to extract all of these parameters, we require 6N � 4N + 4 , N � 2. A fit to128

extract x±, y± requires N � 3.129

– 6 –

2 Formalism36

2.1 Phase-space integrated amplitudes and interference parameter37
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In these expressions, | @
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| represents the density of states at phase space point48
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1

, . . . , p
n

)40

identifies a point in n dimensional phase space, with n = 3N
f

� 7 for a final state f41

with a particle content of N
f
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Binning is good for you

98

which would be evident from the statistical uncertainty estimated from the fit, it would177

not introduce a model-dependent bias. Figure 2 shows the binned ZK3⇡

⌦

obtained from

)Ω
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)
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Figure 2. The plot shows simulated events (small dots), complex coherence parameters

Z

K3⇡

⌦

(colour-filled circles) for each bin, and the global coherence parameters ZK3⇡ (white-

filled circle), represented in the ReZK3⇡-ImZK3⇡ plane, with bin assignments based on a

perfect and an imperfect amplitude model, as described in the text.{Should we change f to

K3pi in the figure?}
178

the default model, on the left hand side for a binning based on a perfect model and on179

the right for a binning based on an imperfect model. The perfect model is identical to180

the one used for the event generation. The imperfect model is obtained from the perfect181

one by multiplying each amplitude component’s magnitude by a random factor between182

0.8 and 1.2 (corresponding to a fit fraction variation of 0.64-1.44), and by adding to183

each component a random phase between �0.3 and +0.3 radians. Figure 2 shows184

simulated events represented in the ReZK3⇡-ImZK3⇡ plane. The events are generated185

according to the phase space density of states. The position of the small dots represents186

the true value of 1

A⌦B⌦
hfp|Ĥ|D0ihfp|Ĥ|D0i⇤, while the colour-coding represents the bin187

they have been assigned to. For the left hand plot, this assignment is done with the188

perfect model, for the right hand plot with an imperfect model. The circular “pie189

chart” represents the bins in �p based on the model used for the binning. The ZK3⇡

⌦

190

values extracted are the average over the true values of 1

A⌦B⌦
hfp|Ĥ|D0ihfp|Ĥ|D0i⇤ for191

the events in the bin they have been assigned to (which includes events beyond the192

plot boundaries). The model-independent method proposed above does of course not193

require the knowledge of 1

A⌦B⌦
hfp|Ĥ|D0ihfp|Ĥ|D0i⇤ to measure ZK3⇡

⌦

, this information194

is only used for this illustration. The ZK3⇡

⌦

values are shown as colour-filled circles.195
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The ratios of the favoured and suppressed rates are given by107

� (B� ! DK

�,D ! f)
⌦

�
�
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� �f
⌦

� �) (2.16)

�
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+ ! DK

+,D ! f̄
�

¯
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�

�

�
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⌦

�

�

�

cos(�
B

� �f
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These can also be expressed in terms of the Cartesian coordinates108

x± ⌘ Re

�

r
B

ei(�B±�)

�

y± ⌘ Im

�

r
B

ei(�B±�)

�

(2.18)

using the relations109

r
B

�

�

�

Zf

⌦

�

�

�

cos(�
B

� �f
⌦

± �) = x±ReZf

⌦

+ y±ImZf

⌦

and r2
B

= x2

± + y2±. (2.19)

E↵ects due to D

0-D0 mixing have been ignored in the expressions for the B⌥ ! DK

⌥,110

D ! f (¯f ) decay rates, which is justified given the expected statistical precision. These111

e↵ects can be included if required [29].112

2.4 Parameter counting using ratios113

Taking �
D

, x, and y from external inputs, Eqs. 2.10, 2.16, 2.17 depend on three un-114

known parameters for each pair of CP -conjugate phase space bins (⌦, ⌦̄): rD ,⌦ , ReZf

⌦

115

and ImZf

⌦

; and three that are the same in all bins: �, �
B

and r
B

. The time-dependent116

fit to the tagged charm decay rates (Eq. 2.10) provides two constraints on these param-117

eters for each bin (the constant and the coe�cient of the linear term). The B⌥ ! DK

⌥
118

decay rate ratios (Eqs. 2.16, 2.17) provide another two constraints. For N bin pairs,119

there are therefore 4N constraints and 3N + 3 unknown parameters. To extract all120

unknown parameters from the data therefore requires 4N � 3N + 3 , N � 3. If121

instead we wish to measure x±, y±, we need N � 4.122

2.5 Parameter counting using rates123

Taking again �
D

, x, and y from external inputs, Eqs. 2.8, 2.9, 2.13, 2.14, 2.15 depend124

on four unknown parameters for each pair of CP -conjugate phase space bins: A2

⌦

, B2

⌦

,125

ReZf

⌦

, and ImZf

⌦

; and four that are the same in all bins: �, �
B

, r
B

= S/F , F2.126

Eqs. 2.8 - 2.9 provide three constraints for each bin, and Eqs. 2.13 - 2.15 another three.127

Hence, to extract all of these parameters, we require 6N � 4N + 4 , N � 2. A fit to128

extract x±, y± requires N � 3.129
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Mean |Z| increases if you bin in terms of 
the phase difference between D and 

Dbar amplitudes. 

Turns out: if you have sufficiently many 
bins, you can extract γ model-

independently, even w/o input from the 
charm threshold.
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p. The complex interference parameters Zf
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has a magnitude between 0 and 1. It49

encodes the relevant interference e↵ects in phase-space region ⌦. As the integrand50

in the definition of Zf
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is proportional to ei�p , |Zf
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| is maximal if �p is constant over51
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Gets even better if we divide the 5-D space into bins

99
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Figure 8. Constraints on x± and y±, obtained by combining simulated B⌥ ! DK⌥ data

(LHCb Run II statistics) with di↵erent constraints from charm. Left: future (BES III) charm

threshold constraints on ZK3⇡ (only the e↵ect on x�, y� is shown, results for x

+

, y

+

are

similar). Centre: D mixing constraints. Right: Both. (Same format as in Fig. 4.)

to obtain point-estimates, 68% confidence regions can still be interpreted in terms of325

uncertainties on �, �
B

and r
B

, as described in Sec. 4.7. Averaging over 10 simulated326

experiments, we find �(�) = 56� (64�), �(�
B

) = 53� (66�) and �(r
B

) = 0.92 · 10�2

327

(4.1 · 10�2) with (without) input from D mixing. While the constraints on � and �
B

328

are rather weak, the precision on r
B

is excellent. As [14] have shown, input from such329

an analysis would play an important role in a global fit to measure �.330

4.6.2 Global constraints from the charm threshold, with a binned B⌥ ! DK⌥
331

and D mixing analysis332

Performing the fit on the absolute decay rates (see Sections 2.5 and 4.2) rather than333

the fractions, it is possible to incorporate constraints on the total coherence factor Zf

334

from the charm threshold while still performing the binned analysis of B⌥ ! DK⌥ and335

charm mixing data as described above, using the relation336

X

all ⌦i

A
⌦iB⌦iZ

f

⌦i
= ABZf . (4.4)

In the above expressions, A,B,Zf are the equivalent quantities to A
⌦

,B
⌦

,Zf

⌦

for a337

volume that encompasses the entire phase space. Figure 8 illustrates the significant338

benefit of such additional constraints, numerical results can be found in Tab. 2. The339

predicted BES III uncertainties on ZK3⇡ are taken from [14].340

– 17 –

BES III (global) D mixing (binned) BES III (global)

(w/o D mixing) alone with binned D mixing

-x
-0.2 -0.1 0 0.1 0.2

-y

-0.2
-0.15
-0.1
-0.05

0
0.05
0.1
0.15
0.2

±x
-0.2 -0.1 0 0.1 0.2

±y
-0.2
-0.15
-0.1
-0.05

0
0.05
0.1
0.15
0.2

±x
-0.2 -0.1 0 0.1 0.2

±y

-0.2
-0.15
-0.1
-0.05

0
0.05
0.1
0.15
0.2

Figure 8. Constraints on x± and y±, obtained by combining simulated B⌥ ! DK⌥ data

(LHCb Run II statistics) with di↵erent constraints from charm. Left: future (BES III) charm

threshold constraints on ZK3⇡ (only the e↵ect on x�, y� is shown, results for x

+

, y

+

are

similar). Centre: D mixing constraints. Right: Both. (Same format as in Fig. 4.)
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BES III (binned) BES III binned
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Figure 9. Constraints on x± and y±, obtained by combining simulated B⌥ ! DK⌥ data

(LHCb Run II statistics) with di↵erent constraints from charm. Two plots on the left: future

(BES III) charm threshold constraints on binned Z

K3⇡

⌦

. Right: that, combined with D mixing.

(Same format as in Fig. 4.)

4.6.3 Binned constraints from the charm threshold341

In this section we compare the performance of a binned analysis relying on charm342

threshold data for the charm interference parameter, as proposed in [7], with the novel343

method proposed in this letter, and with a combined approach using binned threshold344

and charm mixing data. We analyse the charm threshold data in the same phase-space345

bins as B⌥ ! DK⌥ and charm mixing. This provides a constraint from threshold data346

on each individual ZK3⇡

⌦

, rather than only their weighted sum as in Sec. 4.6.2. To347

estimate the uncertainties on ZK3⇡

⌦

from such an analysis, we take the results on ZK3⇡

348

from [14], and assume that uncertainties scale with the inverse square-root of the num-349

ber of signal events used for the measurement. Given the fairly large uncertainty on350

ZK3⇡ from CLEO-c data, we assume that these data can be divided into at most three351

bins while still providing meaningful constraints on ZK3⇡

⌦

in each bin. With BES III352

statistics, we expect it will be possible to match the binnings defined in Sec. 4.2, with353

up to eight bins. Figure 9 illustrates in the x± � y± plane the dramatic e↵ect that the354

combination of mixing constraints and binned ZK3⇡

⌦

constraints from a future analysis355

of BES III threshold data could have. Not only are the uncertainties on x±, y± much356

reduced compared to either constraint being applied individually (see Tab. 2 for nu-357

merical results), but the BES III input also removes the previously existing ambiguities358

in x± and y±. Figure 10, described below, confirms this observation for 1-dimensional359

parameters scans of x± and �.360
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(BES III) charm threshold constraints on binned Z

K3⇡

⌦

. Right: that, combined with D mixing.

(Same format as in Fig. 4.)

4.6.3 Binned constraints from the charm threshold341

In this section we compare the performance of a binned analysis relying on charm342

threshold data for the charm interference parameter, as proposed in [7], with the novel343

method proposed in this letter, and with a combined approach using binned threshold344

and charm mixing data. We analyse the charm threshold data in the same phase-space345

bins as B⌥ ! DK⌥ and charm mixing. This provides a constraint from threshold data346

on each individual ZK3⇡

⌦

, rather than only their weighted sum as in Sec. 4.6.2. To347

estimate the uncertainties on ZK3⇡

⌦

from such an analysis, we take the results on ZK3⇡

348

from [14], and assume that uncertainties scale with the inverse square-root of the num-349

ber of signal events used for the measurement. Given the fairly large uncertainty on350

ZK3⇡ from CLEO-c data, we assume that these data can be divided into at most three351

bins while still providing meaningful constraints on ZK3⇡

⌦

in each bin. With BES III352

statistics, we expect it will be possible to match the binnings defined in Sec. 4.2, with353

up to eight bins. Figure 9 illustrates in the x± � y± plane the dramatic e↵ect that the354

combination of mixing constraints and binned ZK3⇡

⌦

constraints from a future analysis355

of BES III threshold data could have. Not only are the uncertainties on x±, y± much356

reduced compared to either constraint being applied individually (see Tab. 2 for nu-357

merical results), but the BES III input also removes the previously existing ambiguities358

in x± and y±. Figure 10, described below, confirms this observation for 1-dimensional359

parameters scans of x± and �.360
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Figure 8. Constraints on x± and y±, obtained by combining simulated B⌥ ! DK⌥ data

(LHCb Run II statistics) with di↵erent constraints from charm. Left: future (BES III) charm

threshold constraints on ZK3⇡ (only the e↵ect on x�, y� is shown, results for x

+

, y

+

are

similar). Centre: D mixing constraints. Right: Both. (Same format as in Fig. 4.)

to obtain point-estimates, 68% confidence regions can still be interpreted in terms of325

uncertainties on �, �
B

and r
B

, as described in Sec. 4.7. Averaging over 10 simulated326

experiments, we find �(�) = 56� (64�), �(�
B

) = 53� (66�) and �(r
B

) = 0.92 · 10�2

327

(4.1 · 10�2) with (without) input from D mixing. While the constraints on � and �
B

328

are rather weak, the precision on r
B

is excellent. As [14] have shown, input from such329

an analysis would play an important role in a global fit to measure �.330

4.6.2 Global constraints from the charm threshold, with a binned B⌥ ! DK⌥
331

and D mixing analysis332

Performing the fit on the absolute decay rates (see Sections 2.5 and 4.2) rather than333

the fractions, it is possible to incorporate constraints on the total coherence factor Zf

334

from the charm threshold while still performing the binned analysis of B⌥ ! DK⌥ and335

charm mixing data as described above, using the relation336

X

all ⌦i

A
⌦iB⌦iZ

f

⌦i
= ABZf . (4.4)

In the above expressions, A,B,Zf are the equivalent quantities to A
⌦

,B
⌦

,Zf

⌦

for a337

volume that encompasses the entire phase space. Figure 8 illustrates the significant338

benefit of such additional constraints, numerical results can be found in Tab. 2. The339

predicted BES III uncertainties on ZK3⇡ are taken from [14].340
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D-mixing 
(binned, LHCb 
run II statistics)

x± = rB cos(�B ± �)

y± = rB sin(�B ± �)
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Gets even better if we divide the 5-D space into bins
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Searches for CPV by comparing binned Dalitz plots

• Compare yields in  
CP-conjugate bins 
 

• Calculate p-value for no-
CPV hypothesis based on 

• Model independent. Many 
production and detection 
effects cancel.

changing sign from left to right. This sign change means
the CPV causes only a 0.1% difference in the total decay
rate between Dþ and D". This illustrates the strength of
our method, as the asymmetry would be much more diffi-
cult to detect in a measurement that was integrated over the
Dalitz plot. Even with no systematic uncertainties, to see a
0.1% asymmetry at the 3! level would require 2:25# 106

events. With the method and much smaller data set used
here we would observe this signal at the 3! level with 76%
probability, as shown in Table IV below.

The sensitivity to a particular manifestation of CPV
depends on the choice of binning. The fact that the
CP-violating region in most of the pseudo-experiments
covers a broad area of the Dalitz plot suggests that the
optimal number of bins for this type of asymmetry is low.
Each bin adds a degree of freedom without changing the "2

value for consistency with no CPV. However, if CP asym-
metries change sign within a bin, they will not be seen.
Similarly, the sensitivity is reduced if only a small part
of a large bin has any CPV in it. To avoid effects due
to excessive fluctuations, bins that contain fewer than
50 candidates are not used anywhere in the analysis.
Such bins are very rare.

The binnings are chosen to reflect the highly nonuniform
structure of the Dalitz plot. A simple adaptive binning
algorithm was devised to define binnings of approximately
equal population without separating Dþ and D". Two bin-
nings that are found to have good sensitivity to the simu-
lated asymmetries contain 25 bins (‘‘Adaptive I’’) arranged
as shown in Fig. 4(a), and 106 bins (‘‘Adaptive II’’) arranged
as shown in Fig. 4(b). For Adaptive I, a simulation of the
relative value of the strong phase across the Dalitz plot in
the CLEO-c amplitude model is used to refine the results
of the algorithm: if the strong phase varies significantly
across a bin, CP asymmetries are more likely to change
sign. Therefore the bin boundaries are adjusted to minimize
changes in the strong phase within bins. The model-
dependence of this simulation could, in principle, influence
the binning and therefore the sensitivity to CPV, but it
cannot introduce model-dependence into the final results
as no artificial signal could result purely from the choice of
binning. Two further binning schemes, ‘‘Uniform I’’ and
‘‘Uniform II,’’ are defined. These use regular arrays of
rectangular bins of equal size.
The adaptive binnings are used to determine the sensi-

tivity to several manifestations of CPV. With 200 test
experiments of approximately the same size as the signal
sample in data, including no asymmetries, no CP-violating
signals are observed at the 3! level with Adaptive I or
Adaptive II. The expectation is 0.3.
With the chosen binnings, a number of sets of 100

pseudo-experiments with different CP-violating asymme-
tries are produced. The probability of observing a given
signal in either the #ð1020Þ or $ð800Þ resonances with 3!
significance is calculated in samples of the same size as the
data set. The results are given in Table IV. The CPV shows
up both in the "2=ndf and in the width of the fitted SCP

distribution.
For comparison, the asymmetries in the # phase and

$ magnitude measured by the CLEO Collaboration
using the same amplitude model were ð6& 6þ0þ6

"2"2Þ' and
ð"12& 12þ6þ2

"1"10Þ%, [15] where the uncertainties are sta-
tistical, systematic and model-dependent, respectively.

TABLE IV. Results from sets of 100 pseudo-experiments with
different CP asymmetries and Adaptive I and II binnings. pð3!Þ
is the probability of a 3! observation of CPV. hSi is the mean
significance with which CPV is observed.

CPV Adaptive I Adaptive II
pð3!Þ hSi pð3!Þ hSi

No CPV 0 0:84! 1% 0:84!
6' in #ð1020Þ phase 99% 7:0! 98% 5:2!
5' in #ð1020Þ phase 97% 5:5! 79% 3:8!
4' in #ð1020Þ phase 76% 3:8! 41% 2:7!
3' in #ð1020Þ phase 38% 2:8! 12% 1:9!
2' in #ð1020Þ phase 5% 1:6! 2% 1:2!
6.3% in $ð800Þ magnitude 16% 1:9! 24% 2:2!
11% in $ð800Þ magnitude 83% 4:2! 95% 5:6!
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FIG. 4 (color online). Layout of the (a) ‘‘Adaptive I’’ and (b) ‘‘Adaptive II’’ binnings on the Dalitz plot of data.

R. AAIJ et al. PHYSICAL REVIEW D 84, 112008 (2011)
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1 Introduction

In the Standard Model (SM), CP violation in processes involving charm hadrons is small.
However, physics beyond the SM can significantly enhance the rate of CP violation [1]
making the charm sector a promising area to search for increased CP violation.

The LHCb collaboration has recently found first evidence for CP violation (CPV) in
the charm sector in D0 ! ⇡+⇡�, D0 ! K+K� decays [2], at the level of 0.8%. Several
potential explanations for such a level of CP violation in charm have been put forward,
including physics beyond the SM as well as SM sources of CP violation [3,4]. This note
describes a complementary search for CPV in D0 ! ⇡�⇡+⇡+⇡� decays. D0 ! ⇡�⇡+⇡+⇡�

occurs through a variety of intermediate resonances (predominantly D0 ! ⇢0⇢0 and D0

! a
1

(1260)+⇡�) resulting in a rich structure of interfering amplitudes. These can be
studied in a four-body generalisation of the Dalitz plot, which now has five instead of two
dimensions.

In this study, we perform a model-independent search for CP violating variations in the
shape of this five-dimensional phase space distribution, in a similar manner as suggested
for Dalitz plots in [5]. Our study is therefore sensitive to local CP violation e↵ects across
phase space. On the other hand, we do not compare the total decay rates, making us
insensitive to global CP asymmetries, but also to global production and detection e↵ects.

Our study uses the decay D⇤+ ! D0(⇡�⇡+⇡+⇡�)⇡+

s , where the charge of the slow
pion (⇡+

s ) tags the flavour of the D0.
The five-dimensional phase space for the D0 ! ⇡�⇡+⇡+⇡� decay is divided into bins,

and the D0 and D0 decay rates to CP -conjugate bins are compared. The following CP
asymmetry variable is defined [5–7] for each pair of CP -conjugate bins:

Si
CP =

N i(D0)� ↵N i(D0)q
N i(D0) + ↵2N i(D0)

, ↵ =

P
i N

i(D0)
P

i N
i(D0)

, (1)

where N i(D0) is the number of D0 candidates in the ith bin and N i(D0) is the number of
candidates in the CP -conjugate bin, and ↵ is a normalisation constant. This normalisation
makes the method insensitive to global asymmetries.

In the absence of CPV, the Si
CP values for all bins in phase space result in a Gaussian

distribution, with mean 0 and width 1. Any significant deviation from this distribution is
evidence for local asymmetries.

The degree of asymmetry is quantified by calculating the �2 and its probability value
under the hypothesis of no CPV,

�2 =
X

i

(Si
CP )

2, (2)

N
dof

= N
bins

� 1. (3)

The number of degrees of freedom is equal to the number of bins subtracting one for
the normalisation constraint.

1

respectively. The samples are separated according to
the magnet polarity and the same studies are repeated. In
all cases the p-values are consistent with no CPV, with
values ranging from 4% to 99%. We conclude that there is
no evidence for CPV in our data sample of Dþ !
K"Kþ!þ.

VI. CONCLUSION

Because of the rich structure of their Dalitz plots, three-
body charm decays are sensitive to CP violating phases
within and beyond the standard model. Here, a model-
independent search for direct CP violation is performed
in the Cabibbo-suppressed decay Dþ ! K"Kþ!þ with
35 pb"1 of data collected by the LHCb experiment, and no
evidence for CPV is found. Several binnings are used to
compare normalized Dþ and D" Dalitz plot distributions.
This technique is validated with large numbers of simu-
lated pseudo-experiments and with Cabibbo favored con-
trol channels from the data: no false positive signals are
seen. To our knowledge this is the first time a search for
CPV is performed using adaptive bins which reflect the
structure of the Dalitz plot.

Monte Carlo simulations illustrate that large localized
asymmetries can occur without causing detectable

differences in integrated decay rates. The technique used
here is shown to be sensitive to such asymmetries.
Assuming the decay model, efficiency parameterization
and background model described in Sec. III we would be
90% confident of seeing a CP violating difference of either
5# in the phase of the "!þ or 11% in the magnitude of the
#ð800ÞKþ with 3$ significance. Since we find no evidence
of CPV, effects of this size are unlikely to exist.
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FIG. 8. Distribution of Si
CP fitted to Gaussian functions, for (a) ‘‘Adaptive I,’’ (b) ‘‘Adaptive II,’’ (c) ‘‘Uniform I’’ and (d) ‘‘Uniform

II.’’ The fit results are given in Table IX.

R. AAIJ et al. PHYSICAL REVIEW D 84, 112008 (2011)

112008-12
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330k D+→K–K+π+ in 35/pb
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Ni � ↵N i
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5-D binned analysis in Dº→K+K–π+π–, Dº→π+π–π+π–

• Binning in 5-
dimensional  hyper-
cuboids.


• Adaptive binning to 
ensure similar number 
of entries per bin.


• Plots show for each bin 
the range in invariant 
mass squared and SCP 
value in that bin.
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Bin phase space in 5D 

• Create 5D 
hypercube bins

• Adaptive binning 
to ensure similar 
number of 
entries per bin

• Bins defined in 
terms of 5 
invariant mass 
squared 
combinations
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Bin phase space in 5D 

• Create 5D 
hypercube bins

• Adaptive binning 
to ensure similar 
number of 
entries per bin

• Bins defined in 
terms of 5 
invariant mass 
squared 
combinations
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Model-dependent CPV search in Dº→K+ K– π+ π–

103

CLEO: Phys.Rev. D85 122002 (2012)

FIG. 5: The (a) s12, (b) s13, (c) s14, (d) s23, (e) s24, and (f) s34 projections for all flavor-tagged

data (points with error bars) with the best fit (solid line) superimposed. The indices correspond
to K+ = 1, K− = 2, π+ = 3, and π− = 4. The contributions from mistag (filled region) and
background plus mistag (dashed line) are also shown.

22

1-D projections of 5-D 
amplitude fit 

(Dº, Dºbar combined, charge 
assignments in m2(K+π–) etc are for Dº 

and are reversed for Dºbar) m2(K+K–)
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FIG. 6: Distribution of for the three-body invariant-mass observables: The (a) s123, (b) s124, (c)
s134, and (d) s234 projections for all flavor-tagged data (points with error bars) with the best
fit (solid line) superimposed. The contributions from mistag (filled region) and background plus

mistag (dashed line) are also shown.
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Towards γ with B±→D(KKππ)K±

104

Towards a measurement of CKM gamma
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B→DK B→Dπ

• Cleanly reconstruct B→D(KKππ)K decays and B→D(KKππ)π (which we use to 
control our efficiencies)

• ~1000 B→D(KKππ)K events

• ~7000 B→D(KKππ)π events

Towards a measurement of CKM gamma
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• Cleanly reconstruct B→D(KKππ)K decays and B→D(KKππ)π (which we use to 
control our efficiencies)

• ~1000 B→D(KKππ)K events

• ~7000 B→D(KKππ)π events
Signal Control Channel
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Figure 4: (colour online) Measured AN

CP

in Dalitz plot bins of background-subtracted and
acceptance-corrected events for (a) B± ! K±⇡+⇡�, (b) B± ! K±K+K�, (c) B± ! ⇡±⇡+⇡�

and (d) B± ! ⇡±K+K� decays.

and m2

K

+
K

�
low

< m2

K

+
K

�
high

, respectively. The signal region is defined as the three-body255

invariant mass region within ±34 MeV/c2 of the fitted mass central value, except for the256

B± ! ⇡±K+K� channel, for which the mass window is restricted to ±17 MeV/c2 of the257

peak due to the larger background. The expected background contribution has not been258

subtracted from the data presented in these figures. To improve the resolution, the Dalitz259

kinematic variables were calculated after refitting the candidates with their invariant mass260

constrained to the world average value of the B mass [28]. In all plots, the events are261

concentrated in low mass regions, as expected for charmless decays dominated by resonant262

contributions.263

For B± ! K±K+K� decays, we can associate the narrow resonances in the regions264

of m2

K

+
K

�
low

around 1.0 GeV2/c4 and m2

K

+
K

�
high

around 11.5 GeV2/c4 with the �(1020)265

and �
c0

(1P ), respectively. There is also a broad concentration at the m2

K

+
K

�
low

mass266

above 2 GeV2/c4, which could correspond to the f
2

(1525) resonance. The contribution of267

B± ! J/ K± decays with J/ ! K+K� is visible around 9.6 GeV2/c4 in m2

K

+
K

�
low

.268

In the B± ! K±⇡+⇡� Dalitz plot, we can identify the low-mass K⇤0 resonances coupled269

to K±⇡⌥ as well as the resonances coupled to ⇡+⇡�, such as ⇢0(770), f
0

(980) and �
c0

(1P ).270
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CPV in B±→π±K+K–
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local ACP at low m(KK)2, not 
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FIG. 1. Invariant mass spectra of (a) B± ! ⇡+⇡�⇡± decays and (b) B± ! K+K�⇡± decays. The left panel in each figure
shows the B� modes and the right panel shows the B+ modes. The results of the unbinned maximum likelihood fits are overlaid.
The main components of the fit are also shown.

EvtGen [26], in which final-state radiation is generated
using Photos [27]. The interaction of the generated par-
ticles with the detector and its response are implemented
using the Geant4 toolkit [28] as described in Ref. [29].
Unbinned extended maximum likelihood fits to the

mass spectra of the selected B± candidates are performed
to obtain the signal yields and raw asymmetries. The
B± ! K+K�⇡± and B± ! ⇡+⇡�⇡± signal components
are parametrized by a Cruij↵ function [30] with equal
left and right widths and di↵erent radiative tails to ac-
count for the asymmetric e↵ect of final-state radiation
on the signal shape. The means and widths are left to
float in the fit, while the tail parameters are fixed to
the values obtained from simulation. The combinato-
rial background is described by an exponential distribu-
tion whose parameter is left free in the fit. The back-
grounds due to partially reconstructed four-body B de-
cays are parametrized by an ARGUS distribution [31]
convolved with a Gaussian resolution function. For
B± ! ⇡+⇡�⇡± decays the shape and yield parameters
describing the backgrounds are varied in the fit, while
for B± ! K+K�⇡± decays they are taken from sim-
ulation, due to a further contribution from four-body
B0

s decays such as B0

s ! D�
s (K

+K�⇡�)⇡+. We define
peaking backgrounds as decay modes with one misiden-
tified particle, namely the channels B± ! K±⇡+⇡�

for the B± ! ⇡+⇡�⇡± mode, and B± ! K±⇡+⇡� and
B± ! K±K+K� for the B± ! K+K�⇡± mode. The
shapes and yields of the peaking backgrounds are obtained
from simulation. The yields of the peaking and partially
reconstructed background components are constrained
to be equal for B+ and B� decays. The invariant mass
spectra of the B± ! K+K�⇡± and B± ! ⇡+⇡�⇡± can-
didates are shown in Fig. 1.

The signal yields obtained are N(KK⇡) = 1870± 133
and N(⇡⇡⇡) = 4904 ± 148, and the raw asymmetries
are A

raw

(KK⇡) = �0.143 ± 0.040 and A
raw

(⇡⇡⇡) =

0.124± 0.020, where the uncertainties are statistical. The
CP asymmetries are expressed in terms of the measured
raw asymmetries, corrected for e↵ects induced by the
detector acceptance and interactions of final-state pions
with matter A

D

(⇡±), as well as for a possible B-meson
production asymmetry A

P

(B±),

ACP =A
raw

�A
D

(⇡±)�A
P

(B±). (2)

The pion detection asymmetry, A
D

(⇡±) = 0.0000±0.0025,
has been previously measured by LHCb [32]. The produc-
tion asymmetry A

P

(B±) is measured from a data sample
of approximately 6.3⇥ 104 B± ! J/ (µ+µ�)K± decays.
The B± ! J/ K± sample passes the same trigger, kine-
matic, and kaon particle identification selection criteria
as the signal samples, and it has a similar event topology.
The A

P

(B±) term is obtained from the raw asymmetry
of the B± ! J/ K± mode as

A
P

(B±) = A
raw

(J/ K)�ACP (J/ K)�A
D

(K±), (3)

where ACP (J/ K) = 0.001 ± 0.007 [23] is the world
average CP asymmetry of B± ! J/ K± decays, and
A

D

(K±) = �0.010± 0.003 is the kaon interaction asym-
metry obtained from D0 ! K±⇡⌥ and D0 ! K+K� de-
cays [33], and corrected for A

D

(⇡±). The CP asymmetries
of the B± ! K+K�⇡± and B± ! ⇡+⇡�⇡± channels are
then determined using Eqs. 2 and 3.

Since the detector e�ciencies for the signal modes are
not uniform across the Dalitz plot, and the raw asymme-
tries are also not uniformly distributed, an acceptance
correction is applied to the integrated raw asymmetries.
It is determined by the ratio between the B� and B+

average e�ciencies in simulated events, reweighted to re-
produce the population of signal data over the phase space.
Furthermore, the detector acceptance and reconstruction
depend on the trigger selection. The e�ciency of the
hadronic hardware trigger is found to have a small charge

B+B–

ACP bin =
Nbin(B�)�Nbin(B+)

Nbin(B�) +Nbin(B+)

Phys. Rev. Lett. 112, 011801 (2014)
Phys. Rev. Lett. 111, 101801 (2013)
3/fb update: arXiv:1501.06777 (2014)

Also found large local CPV in low mass regions w/o clear 
association to known resonances in other B±→hhh modes: 
 B±→K±π+π–,  B±→K±K+K–, B±→π±π+π–,  B±→π±K+K–

http://inspirehep.net/record/1261027?ln=en
http://inspirehep.net/record/1237228?ln=en
http://inspirehep.net/record/1341286?ln=en
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Phase Bins

• Amplitude Analyses are a very powerful tool used at LHCb and 
elsewhere for wide variety of measurements, including

• searching for new resonances and characterising them

• precision CP violation and mixing measurements in charm and beauty


• They are not “just” Dalitz plots. Vectors in final state, 4 body analyses,….


• Most remarkable strength: unique sensitivity to phases.


• Most annoying weakness: theoretically not well understood. This is 
increasingly problematic with increasingly ginormous data samples.


• Theorists are making tangible progress on theoretically sound models.


• Future: improved models, model independent methods, pragmatic 
compromises.
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Special thanks to Antimo Palano and Marco Pagapallo, from whose 
excellent talks I lifted a particularly large number of plots.
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Bs→DKπ at LHCb
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Bs -> DKπ (Dan) 

•  Resolved the DsJ*(2860) state into spin 1 and spin 3 states 
•  Now part of a renaissance in D(s) spectroscopy (15 citations so far) 

•  Other results 
•  Mass, width and spin of Ds2* 
•  Fit fractions 
•  Branching fractions 
•  Complex amplitudes 
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Figure 14: Projections of the data and Dalitz plot fit results with alternative models onto the cosine
of the helicity angle of the D0K� system, cos ✓(D0K�), for 2.77 < m(D0K�) < 2.91GeV/c2.
The data are shown as black points, the result of the baseline fit with both spin-1 and spin-3
resonances is given as a solid blue curve, and results of fits from the best models with only either
a spin-1 or a spin-3 resonance are shown as dashed red and dotted green lines, respectively. The
dip at cos ✓(D0K�) ⇡ �0.6 is due to the D0 veto. Comparison of the data and the di↵erent fit
results in the 50 bins of this projection gives �2 values of 47.3, 214.0 and 150.0 for the default,
spin-1 only and spin-3 only models, respectively.
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Figure 15: Fits of �2 functions to the 2�NLL distributions obtained from fits to pseudoex-
periments generated with (left) no D⇤

s1

(2860)� and (right) no D⇤
s3

(2860)� component. The
corresponding 2�NLL values observed in data are 273 and 314, respectively (see Table 7).

of the K

�
⇡

+ S-wave, the addition of the K

⇤
4

(2045)0 state and the variation of the D

0

mass are considered. The conclusion is that two states are required in this region with
significance of at least 10 standard deviations.

31

Table 14: Results for the complex amplitudes and their uncertainties. The three quoted errors are
statistical, experimental systematic and model uncertainties, respectively. The central values and
statistical uncertainties are as reported in Table 5, while the experimental and model systematic
uncertainties are as reported in Tables 8 and 11.

Resonance Real part Imaginary part Magnitude Phase (radians)

K

⇤(892)0 �0.75±0.08±0.16±0.72 0.74±0.08±0.13±0.33 1.06±0.02±0.03±0.03 2.36±0.13±0.20±0.76
K

⇤(1410)0 �0.25±0.03±0.02±0.15 �0.04±0.05±0.12±0.22 0.25±0.04±0.02±0.14 �2.96±0.21±0.50±1.09
LASS nonresonant �0.43±0.09±0.16±0.14 0.59±0.06±0.06±0.18 0.73±0.06±0.05±0.11 2.19±0.16±0.26±0.26
K

⇤
0

(1430)0 �0.49±0.10±0.22±0.14 0.73±0.07±0.07±0.08 0.88±0.04±0.03±0.07 2.16±0.20±0.25±0.16
K

⇤
2

(1430)0 0.09±0.05±0.08±0.26 �0.37±0.03±0.02±0.03 0.38±0.03±0.02±0.05 �1.34±0.10±0.20±0.65
K

⇤(1680)0 �0.08±0.04±0.06±0.14 0.12±0.04±0.02±0.20 0.14±0.06±0.04±0.11 2.16±0.26±0.32±2.66
K

⇤
0

(1950)0 0.11±0.03±0.03±0.21 �0.01±0.04±0.04±0.23 0.11±0.04±0.03±0.22 �0.09±0.41±0.32±1.71
D

⇤
s2

(2573)� 1.00 0.00 1.00 0.00
D

⇤
s1

(2700)� �0.22±0.04±0.02±0.06 �0.13±0.04±0.06±0.13 0.25±0.04±0.03±0.04 �2.61±0.17±0.18±0.53
D

⇤
s1

(2860)� �0.41±0.05±0.05±0.24 0.16±0.06±0.05±0.09 0.44±0.05±0.03±0.17 2.78±0.20±0.12±0.52
D

⇤
s3

(2860)� 0.27±0.02±0.03±0.05 �0.12±0.03±0.02±0.04 0.29±0.02±0.02±0.03 �0.42±0.07±0.10±0.18
Nonresonant 0.58±0.07±0.25±0.28 �0.39±0.06±0.04±0.28 0.70±0.08±0.15±0.19 �0.59±0.10±0.36±0.48
D

⇤�
s v

0.36±0.04±0.04±0.18 0.23±0.05±0.05±0.17 0.43±0.05±0.05±0.16 0.57±0.12±0.08±0.43
D

⇤
s0 v

(2317)� 0.18±0.08±0.22±0.18 0.24±0.04±0.05±0.09 0.30±0.06±0.16±0.13 0.91±0.21±0.72±0.43
B

⇤+
v

�0.09±0.10±0.08±0.25 �0.26±0.05±0.11±0.31 0.27±0.09±0.06±0.13 �1.90±0.40±0.34±1.53

The masses and widths of these three states are determined to be

m(D⇤
s2

(2573)�) = 2568.39± 0.29± 0.19± 0.18MeV/c2 ,

�(D⇤
s2

(2573)�) = 16.9± 0.5± 0.4± 0.4MeV/c2 ,

m(D⇤
s1

(2860)�) = 2859± 12± 6± 23MeV/c2 ,

�(D⇤
s1

(2860)�) = 159± 23± 27± 72MeV/c2 ,

m(D⇤
s3

(2860)�) = 2860.5± 2.6± 2.5± 6.0MeV/c2 ,

�(D⇤
s3

(2860)�) = 53± 7± 4± 6MeV/c2 ,

where the first uncertainty is statistical, the second is due to experimental systematic
e↵ects and the third due to model variations. The phase di↵erence between the D⇤

s1

(2860)�

and D

⇤
s3

(2860)� amplitudes is consistent with ⇡ within a large model uncertainty. The
results for the complex amplitudes, expressed both as real and imaginary parts and as
magnitudes and phases, are given in Table 14. The results for the fit fractions are given in
Table 15, while results for the interference fit fractions are given in App. A.

For resonances without a significant signal, it is possible to set upper limits on their
fit fractions, and therefore on their branching fractions. This is done for the K

⇤(1680)0,
K

⇤
0

(1950)0, D⇤
s0 v

(2317)� and B

⇤+
v

components of the default model, as well as for the
K

⇤
3

(1780)0 and K

⇤
4

(2045)0 states. The values of 2NLL as functions of the fit fractions are
obtained, and converted into likelihood functions. The e↵ect of systematic uncertainties
is included by convolving the likelihood function with a Gaussian of width given by the
systematic uncertainty. These are then used to set 90% and 95% confidence level (CL)
upper limits by integrating the likelihood. The upper limits obtained with this procedure
are included in Table 15.

The fit fractions of the resonant components are converted into quasi-two-body branch-

32

(Phys.Rev. D90 (2014) 072003)

http://inspirehep.net/record/1308737?ln=en
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TABLE IV. Numbers of events in Dalitz plot bins for the
B±

→ DK±, D → K0
Sπ

+π− sample with the optimal
binning. Results of the independent 4D fits with variables
(Mbc,∆E, cos θthr,F) fit to data.

Bin i N−

i
N+

i

-8 49.8± 8.2 37.8± 7.5

-7 42.2± 8.6 24.9± 7.2

-6 0.0± 1.9 3.4± 2.9

-5 9.6± 4.5 23.6± 6.2

-4 32.9± 7.5 42.1± 8.3

-3 3.5± 2.8 0.7± 2.5

-2 11.3± 4.1 0.0± 1.3

-1 16.6± 5.4 7.7± 4.4

1 37.6± 8.0 65.1± 9.9

2 68.6± 9.6 75.5± 9.8

3 83.4± 10.1 82.4± 10.2

4 49.3± 9.1 86.5± 11.4

5 34.0± 7.3 38.3± 7.6

6 34.8± 6.8 41.9± 7.5

7 70.8± 10.6 46.4± 9.0

8 9.4± 4.3 14.2± 5.1

Total 574.9 ± 29.9 601.6 ± 30.8

Bin
-8 -6 -4 -2 0 2 4 6 8

N
um

be
r o

f e
ve

nt
s

0

20

40

60

80

100 -B
+B

Bin
-8 -6 -4 -2 0 2 4 6 8

)-
)-N

(B
+

N
(B

-50
-40
-30
-20
-10

0
10
20
30
40
50  / ndf 2%  33.31 / 15

Prob   0.004247

Bin
-8 -6 -4 -2 0 2 4 6 8

)-N
(fl

av
or

)
-

N
(B

-50
-40
-30
-20
-10

0
10
20
30
40
50

/ndf(fit)=13.9/13  P=0.382%
/ndf(flavor)=27.1/15  P=0.032%

Bin
-8 -6 -4 -2 0 2 4 6 8

)-N
(fl

av
or

)
+

N
(B

-50
-40
-30
-20
-10

0
10
20
30
40
50

/ndf(fit)=7.6/13  P=0.872%
/ndf(flavor)=19.0/15  P=0.212%

(a) (b)

(c) (d)

FIG. 7. Results of the fit of B±
→ DK± control sample.

(a) Numbers of events in bins of D → K0
Sπ

+π− Dalitz plot:
from B−

→ DK− (red), B+
→ DK+ (blue) and flavor sam-

ple (histogram). (b) Difference of the number of events from
B+

→ DK+ and B−
→ DK− decays. (c) Difference of the

number of events from B−
→ DK− and flavor sample (nor-

malized to the total number of B−
→ DK− decays): data

(points with the error bars), and as a result of the (x, y) fit
(horizontal bars). (d) Same for B+

→ DK+ data.

x
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

y

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

+B

−B

3
&

3
&

FIG. 8. One-, two-, and three standard deviations levels for
x, y fit of B±

→ DK± mode.

relations obtained from the combined fit are as follows:

x− = −0.0045± 0.0087± 0.0050± 0.0026,

y− = −0.0231± 0.0107± 0.0050± 0.0065,

corr(x−, y−) = −0.189,

x+ = −0.0172± 0.0089± 0.0060± 0.0026,

y+ = +0.0129± 0.0103± 0.0060± 0.0065,

corr(x+, y+) = −0.205
(14)

for B± → Dπ± control sample and

x− = +0.095± 0.045± 0.014± 0.017,

y− = +0.137+0.053
−0.057 ± 0.019± 0.029,

corr(x−, y−) = −0.315,

x+ = −0.110± 0.043± 0.014± 0.016,

y+ = −0.050+0.052
−0.055 ± 0.011± 0.021,

corr(x+, y+) = +0.059

(15)

for B± → DK± sample. Here the first error is statisti-
cal, the second error is the systematic uncertainty, and
the third error is the uncertainty due to the errors of
ci, si terms. The measured values of (x±, y±) with their
likelihood contours are shown in Fig. 8.

IX. SYSTEMATIC ERRORS

Systematic errors in the x, y fit are obtained for the
default procedure of the combined fit with the optimal
binning. The systematic errors are summarized in Ta-
ble V.
The uncertainty of the signal shape used in the fit in-

cludes the following sources:

13

TABLE V. Systematic errors of x, y measurement for B±
→ Dπ± and B±

→ DK± samples in units of 10−3.

B±
→ Dπ± B±

→ DK±

Source of uncertainty ∆x− ∆y− ∆x+ ∆y+ ∆x− ∆y− ∆x+ ∆y+

Signal shape 0.9 1.9 1.1 5.0 7.3 7.4 7.3 5.1

u, d, s, c continuum background 0.9 1.4 0.8 1.3 6.7 5.6 6.6 3.2

BB background 3.3 1.6 4.5 1.1 7.8 12.2 7.2 6.1

B±
→ Dπ± background − − − − 1.2 4.2 1.9 1.9

Dalitz plot efficiency 3.0 1.9 3.2 1.6 4.8 2.0 5.6 2.1

Cross-feed between bins 0.4 3.0 0.7 0.9 0.4 9.0 0.6 3.0

Flavor-tagged statistics 1.7 2.0 1.6 2.0 1.5 2.7 1.7 1.9

Fit bias 0.4 0.5 0.4 0.5 3.2 5.8 3.2 5.8

ci, si precision 2.6 6.5 2.6 6.5 10.1 22.5 7.2 17.4

Total without ci,si precision 5.0 5.0 6.0 6.0 14.0 19.4 14.0 11.3

Total 5.6 8.2 6.5 8.8 17.3 29.7 15.7 20.7
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FIG. 9. Two-dimensional projections of confidence region
onto (φ3, δB) and (φ3, rB) planes (one-, two-, and three stan-
dard deviations).

The difference with the previous Belle analyses is that
the probability density p(z|µ) is a multivariate Gaussian
PDF with the errors and correlations between x± and y±
taken from the data fit result. In the previous analyses,
this PDF was taken from MC pseudo-experiments.

As a result of this procedure, we obtain the confidence
levels (CL) for the set of physical parameters φ3, rB, δB.
The confidence levels for one and two standard deviations
are taken at 20% and 74% (the case of three-dimensional
Gaussian distribution). The projections of the 3D sur-
faces bounding one and two standard deviations volumes
onto φ3 variable, and (φ3, rB) and (φ3, δB) planes are
shown in Fig. 9.

Systematic errors in µ are obtained by varying the mea-
sured parameters z within their systematic errors (Gaus-
sian distribution is taken) and calculating the RMS of
µbest(z). In this calculation we assume that the system-
atic errors are uncorrelated. In the case of ci, si system-
atics, we test that assumption: when the fluctuation in ci
and si is generated, we perform the fits to both B+ and
B− data with the same fluctuated ci, si. We observe no

significant correlation between resulting x− and x+ (y−
and y+).
The final results are:

φ3 = (77.3+15.1
−14.9 ± 4.2± 4.3)◦

rB = 0.145± 0.030± 0.011± 0.011

δB = (129.9± 15.0± 3.9± 4.7)◦,

(18)

where the first error is statistical, the second is systematic
error without ci, si uncertainty, and the third error is due
to ci, si uncertainty.
We do not calculate the statistical significance of CP

violation as it is done in the previous analyses by tak-
ing the CL for φ3 = 0: this number is purely based on
the behavior of the tails of p(z|µ) distribution far from
the central value, and Gaussian assumption can lead to
overestimation of CP violation significance. As a prelim-
inary number we use the estimate of probability of the
fluctuation in the difference of number of events in bins
for B+ and B− data: the probability of such fluctuation
in the case of CP conservation is p = 0.42%.

XI. CONCLUSION

We report the results of a measurement of the unitarity
triangle angle φ3 using a model-independent Dalitz plot
analysis of D → K0

Sπ
+π− decay in the process B± →

DK±. The measurement was performed with a full data
sample of 711 fb−1 (772 × 106 BB pairs) collected by
the Belle detector at Υ(4S). The model independence
is reached by binning the Dalitz plot of D → K0

Sπ
+π−

decay and using the strong phase coefficients for bins
measured by CLEO experiment [12]. We obtain the value
φ3 = (77.3+15.1

−14.9±4.2±4.3)◦; of the two possible solutions
we choose the one with 0 < φ3 < 180◦. We also obtain
the value of the amplitude ratio rB = 0.145 ± 0.030 ±
0.011± 0.011. These results are preliminary.
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�3: Dalitz analysis of D decay from B± ⇤ DK±

[A. Giri, Yu. Grossman, A. So�er, J. Zupan, PRD 68, 054018 (2003)]

[A. Bondar, Belle Dalitz analysis meeting, 24-26 Sep. 2002]

Use B± ⇤ DK± modes with 3-body decay D ⇤ K 0
S�+��.

Dalitz plot density: d⇥±(m2
+,m2

�) ⇥ |M±|2dm2
+dm2

�

|M±(m2
+,m2

�)|2 = |fD(m2
+,m2

�) + re i�B±i⇥3fD(m2
�,m2

+)|2

=

�������
+ re i�B±i⇥3

�������

2

D0 ⇤ K 0
S�+�� amplitude fD is extracted from continuum (D⇥± ⇤ D�±),

parametrized as a set of two-body amplitudes.

Only |fD |2 is observable ⌅ Model dependence as a result .

Latest Belle result: ⇤3 = [78+11
�12 ± 4(syst) ± 9(model)]⌅ (605 fb�1)

rB = 0.16 ± 0.04 ± 0.01(syst)+0.05
�0.01(model)

Model error would dominate precise measurements at Super B factories.
Anton Poluektov Recent EW results from Belle Moriond EW, 16 March 2011 11/20

Flavour-tagged 
D→KSππ Dalitz 

plot

where the last uncertainty on γ of 4.3º the former 
model uncertainty of 8.9º

�3: Binned Dalitz plot analysis

Solution: use binned Dalitz plot and deal with numbers of events in bins.
[A. Giri, Yu. Grossman, A. So⇥er, J. Zupan, PRD 68, 054018 (2003)]

[A. Bondar, A. P. EPJ C 47, 347 (2006); EPJ C 55, 51 (2008)]

M±
i = h{Ki +r2

BK�i +2
�

KiK�i (x±ci +y±si )}

x± = rB cos(�B ± ⇤3) y± = rB sin(�B ± ⇤3)

M±
i : numbers of events in D ⇥ K 0

S⇥+⇥� bins from B± ⇥ DK±

Ki : numbers of events in bins of flavor D0 ⇥ K 0
S⇥+⇥� from D⇥ ⇥ D⇥.

ci , si contain information about strong phase di⇥erence between symmetric
Dalitz plot points (m2

K0
S�+ ,m2

K0
S��

) and (m2
K0

S��
,m2

K0
S�+):

ci = ⇧cos ��D⌃, si = ⇧sin��D⌃
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BELLE: arXiv:1106.4046. See also Anton Poluektov’s talk at Moriond EW 2011 (from which I lifted several of the plots shown here): http://
belle.kek.jp/belle/talks/moriondEW11/poluektov.pdf 
CLEO-c input:Phys.Rev.D82:112006,2010.

γ

http://arxiv.org/abs/1106.4046
http://belle.kek.jp/belle/talks/moriondEW11/poluektov.pdf
http://www-spires.dur.ac.uk/spires/find/hep/www?eprint=arXiv:1010.2817
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LHCb model-independent γ from B±→(KSππ)DK and 
B±→(KSKK)DK

• Binned, model-independent 
analysis using CLEO-c input.


• Plots show LHCb 2012 data - the 
colours represent the bins, 
shaped to optimise sensitivity.


• Result of combined analysis (2011 
& 2012 data, KSππ & KSKK):
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Table 1: Yields of each signal and background category in the signal region. The category
‘DK

± mis-ID’ indicates B

± ! D⇡

± candidates that are misidentified as B

± ! DK

± signal.

Parameter D ! K

0

S⇡
+

⇡

�
D ! K

0

SK
+

K

�

LL DD LL DD
DK

± signal 422 ± 14 964 ± 32 61 ± 3 140 ± 5
DK

± mis-ID 31 ± 5 67 ± 8 4 ± 2 10 ± 3
DK

± combinatorial 13 ± 4 22 ± 5 1 ± 1 3 ± 1
DK

± low mass 22 ± 2 60 ± 3 4 ± 1 8 ± 1
D⇡

± signal 6709 ± 85 15276 ± 136 961 ± 31 2211 ± 46
D⇡

± combinatorial 50 ± 5 201 ± 11 19 ± 3 31 ± 4
D⇡

± low mass 63 ± 1 145 ± 2 9 ± 1 21 ± 1

Table 2: Purity for each decay type in the signal region.

B

± decay mode D ! K

0

S⇡
+

⇡

�
D ! K

0

SK
+

K

�

LL DD LL DD
B

± ! DK

± (86.4± 1.3)% (86.6± 0.9)% (86.0± 2.8)% (87.1± 1.9)%
B

± ! D⇡

± (98.4± 0.1)% (97.8± 0.0)% (97.2± 0.1)% (97.7± 0.1)%

We split the data in categories depending on the decay type (D⇡

± or DK

±), K

0

S type
(LL or DD), B charge (plus or minus) and which Dalitz plot bin the event falls into. The
log likelihood is the sum of the log likelihoods for each category of candidates in every
bin of the D

0 Dalitz plot

logL =
X

charge

X

LL,DD K0
S

(logLD⇡± + logLDK±). (4)
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B+ B–

CLEO-c input:: Phys. Rev. D 82 112006. 
Model-independent method: Giri, Grossmann, Soffer, Zupan, Phys Rev D 68, 054018 (2003). 
Optimal binning: Bondar, Poluektov hep-ph/0703267v1 (2007) 
BELLE’s first model-independent γ measurement: PRD 85 (2012) 112014
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The log likelihood for D⇡

± candidates is determined by summing the log likelihoods
over all the bins in Dalitz space (labelled �8 to +8)

logLD⇡± =
8X

i=�8, 6=0

log

 
N

i
D⇡±,sig SD⇡±(mD⇡±) +

2X

j=1

N

i
D⇡±,bkg,j BD⇡±,j(mD⇡±)

!
, (5)

where SD⇡± is the signal shape, BD⇡±,{1,2} are the two background shapes and the yields
of these three components, N

i
D⇡±,sig and N

i
D⇡±,bkg,{1,2}, are varied independently in each

bin. The log likelihood for B

± ! DK

± candidates is

logLDK± =
8X

i=�8, 6=0

log

 
N

i
DK±,sig SDK±(mDK±) +

3X
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i
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, (6)

where in this case there are three background components, and the signal yield is deter-
mined as follows. The yield of B

± ! DK

± candidates in each bin is

Y

�
±i / N

±i
D⇡�,sig + r

2

BN
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D⇡�,sig + 2

q
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for B

� and B

+, respectively, where we have used the D⇡

± yield in each bin to represent
"iKi; we assume e�ciencies in opposite bins are the same and that there is no interference
in the B

± ! D⇡

± system (i.e. the value of rB(D⇡

±) is zero). The normalised yield
N

i
DK±,sig is then
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i
DK±,sig = NDK±,tot
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±
iP
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+ and B
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the statistical uncertainties and correlations only. The star indicates the central value and the
contours indicate the 1�, 2� and 3� boundaries moving from the centre outwards.

is conservatively assigned. The results that were obtained in 2011 are

x

+

= (�10.3± 4.5± 1.8± 1.4)⇥ 10�2

, x� = (0.0± 4.3± 1.5± 0.6)⇥ 10�2

,

y

+

= (�0.9± 3.7± 0.8± 3.0)⇥ 10�2

, y� = (2.7± 5.2± 0.8± 2.3)⇥ 10�2

.

The following results are obtained for the combined CP parameters

hx
+

i = (�8.9± 3.1)⇥ 10�2

, hx�i = (3.5± 2.9)⇥ 10�2

,

hy
+

i = (�0.1± 3.7)⇥ 10�2

, hy�i = (7.9± 3.8)⇥ 10�2

.

The correlation matrix for the combined parameters is given in Table 4.

Table 4: Correlation matrix between CP parameters in combination of 2011 and 2012 results.

x

+

x� y

+

y�
x

+

1.000 �0.136 0.106 �0.186
x� �0.136 1.000 �0.031 �0.053
y

+

0.106 �0.031 1.000 �0.074
y� �0.186 �0.053 �0.074 1.000

The results can be interpreted in terms of the underlying physics parameters �, rB

and �B. This is done using the frequentist approach described in Ref. [2]. The results
are shown in Fig. 7 which show the two-dimensional projections of the confidence regions
onto the (�, rB) and (�, �B) planes.

The solution for the physics parameters has a two-fold ambiguity: (�, �B) and (�+180�,
�B + 180�). Choosing the solution that satisfies 0 < � < 180� yields � = (57 ± 16)�,
rB = (8.8+2.3

�2.4)⇥ 10�2 and �B = (124+15

�17

)�.
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onto the (�, rB) and (�, �B) planes.

The solution for the physics parameters has a two-fold ambiguity: (�, �B) and (�+180�,
�B + 180�). Choosing the solution that satisfies 0 < � < 180� yields � = (57 ± 16)�,
rB = (8.8+2.3

�2.4)⇥ 10�2 and �B = (124+15

�17

)�.
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�(�) �(�
B

) �(r
B

) �(x
+

) �(y
+

) �(x�) �(y�)

L
H
C
b

sc
en
ar
io

D
0

m
ix
?

ch
ar
m

th
re
sh
ol
d
?

[�] [�] ⇥102 ⇥102 ⇥102 ⇥102 ⇥102

run I 26 47 1.6 8.7 9.1 8.8 8.2

run II Y 22 29 1.4 7.6 6.9 4.5 4.0

upgr n
on

e

15 14 0.17 4.7 5.2 0.56 0.98

run I 20 29 0.82 6.4 5.7 6.6 5.9

run II Y 15 19 0.62 5.4 3.9 2.5 2.7

upgr C
L
E
O

gl
ob

al
11 10 0.16 3.8 2.8 0.44 0.50

run I 19 25 0.78 6.4 5.5 6.5 5.8

run II Y 14 18 0.57 5.4 3.9 2.4 2.7

upgr B
E
S
II
I

gl
ob

al

9.0 8.2 0.15 3.7 2.7 0.43 0.48

run I 46 35 3.2 6.9 6.5 8.6 10

run II N 50 34 3.3 6.9 6.7 8.9 11

upgr C
L
E
O

b
in
n
ed

52 35 3.3 7.6 6.7 8.9 11

run I 40 24 2.6 4.1 5.0 5.7 6.2

run II N 34 17 2.5 3.6 4.1 5.0 5.1

upgr B
E
S
II
I

b
in
n
ed

39 14 2.9 3.9 4.1 4.3 5.6

run I 16 18 0.78 2.1 3.5 2.6 3.1

run II Y 12 13 0.53 1.7 3.1 1.7 2.0

upgr C
L
E
O

b
in
n
ed

7.8 7.2 0.15 1.1 2.6 0.40 0.46

run I 12 14 0.68 1.6 2.6 2.0 2.5

run II Y 8.6 9.6 0.47 0.90 2.1 1.5 1.5

upgr B
E
S
II
I

b
in
n
ed

4.1 3.9 0.14 0.53 1.3 0.35 0.38

Table 2. Uncertainties on key parameters, obtained based on the default amplitude model

in di↵erent configurations, averaged over 50 simulated experiments. All results are for the

binned approach applied to B⌥ ! DK⌥ and, where used, charm mixing data. The first

column refers to the scenarios defined in Tab. 1. The second column defines whether charm

mixing input was used (Y), or not (N). The third column describes additional input from

the charm threshold. “CLEO global” refers to the phase-space integrated input from [14].

“BES III global” is the same, but uses the uncertainties predicted in [14] for a data sample

3.5 times as large as that collected by CLEO-c. “CLEO binned” and “BES III binned”

extrapolate to a potential binned analysis of the charm threshold data described in Sec. 4.6.3.
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We have presented a new method for the amplitude model-independent measurement of398

the CP violation parameter � from B⌥ ! DK⌥ decays, based on a combined analysis of399
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