

CMOS Detectors Ingeniously Simple!

A.Schöning University Heidelberg

B-Workshop Neckarzimmern 18.-20.2.2015

Detector System on Chip?

ATLAS Pixel Module

-

~

33

ATLAS Pixel Module

DETECTOR CH

ELECTRONIC CHIP

ATLAS Pixel Module

ATLAS Pixel Module

DETECTOR CH

ELECTRONIC CHI

ATLAS Insertable B-Layer

ATLAS Pixel Module

Silicon Hybrid Detectors

Features

- high signal and high noise
- complex compound
- bump bonding
- wire wrapping
- custom-made sensor
- Iots of material (radiation lengths!)
- expensive (e.g. ATLAS II pixel HW: 16 mill.CHF for ~5m²)
- scalability problem (e.g. Future experiments at FCC)
- miniaturization problem >10⁸/m² bump bonds?
- quality assurance problem

Silicon Detector

Silicon Detector --> CMOS chip

- no composite
- no interconnects
- simplified design (ASIC design)
- profits from miniaturisation

CMOS Features

minimum pixel size 10-20 feature size
 → 5µm possible!!!

- Iow power (CMOS)
- Iow noise compared to hybrids
- compact VLSI design
- standard process
- cheap

A.Schöning, Uni Heidelberg

Dopings

p-type

holes are majority charge carriers

n-type

electrons are majority charge carriers

What is CMOS?

Complementary Metal Oxide Semiconductors
n-channel MOSFET (NMOS)
p-channel MOSFET (PMOS)

MOSFET= metal oxide semiconductor field effect transistor

Metal-Isolator-Semiconductor (MISFIT)- structure

What is CMOS?

Complementary Metal Oxide Semiconductors
n-channel MOSFET (NMOS)
p-channel MOSFET (PMOS)

MOSFET=metal oxide semiconductor field effect transistor

Linear operating region (ohmic mode)

Advantages of CMOS

- fast switching characteristics \rightarrow used for CPUs
- no ohmic resistors needed
 → low power
- easy to implement capacitors

CMOS Inverter

Monolithic Active Pixel Sensors (MAPS)

How to design a CMOS particle detector?

The MAPS Principle

D.Husson, NIMA 461 (2001) 511-513

MIMOSA = Minimum Ionizing MOS Active pixel sensor

- diffusion
- random walk
- recombination!

time scale: $\tau \sim 100$ ns

MIMOSA Schema

Idea dates back to the 1980ies → SSC Sh. Parker, NIMA 275 (1989) 494

<u>Challenge:</u> separation of analog and control signals

e.g. readout control should not affect signal

MIMOSA Pixel Layout

1-diode pixel

4-diode pixel

transistors (intelligence) on sensor!

Rolling Shutter MAPS Readout

Turchetta et al. NIMA 458 (2000) 677

MIMOSA: Energy Distribution

Berst et al., LEPSI 99-15

The charge collection efficiency

D. Husson, NIMA 461 (2001) 511

charge is spread over many pixels!

ENC = equivalent noise charge

MAPS Charge Collection Time

Berst et al. (2001)

Noise in CMOS Sensors

usually dominant source is the so called Reset or Capacitive Noise:

$$V_{RMS} = \sqrt{\frac{kT}{C}}$$
$$Q = CV_{RMS}$$
$$n_{RMS} = \frac{\sqrt{kTC}}{e}$$

typical signal over noise: S/N=20-50

Other sources:

- thermal noise $S_v(w) = 4kTR$
- shot noise
- flickering noise (1/f)

MAPS Applications

- MIMOSA originally proposed for ILD vertex detector
- used in DESY Aconite telescope (EUDET)
- STAR vertex detector (350 mill. pixel)
- new ALICE vertex detector (~ 10 m²)

applications where time resolution is not an serious issue

High Voltage MAPS

Ivan Perić, NIMA 582 (2007) 876

	Metal 4
NMOS PMOS	
¥ *	
P-well Low Voltage	
Deep N-well	
$\begin{array}{c} + + + + + + + + + + + + + + + + + + +$	
Depleted	
	P-subs
P Substrate	

- Floating structure
- MOSFETS in well
- 100% fill factor

• high depletion at 50 V

HV-MAPS Pixel Design

Fast circuit and thin sensor!

DAC = digital to analog converter \rightarrow adjustment of threshold

A.Schöning, Uni Heidelberg

Neckarzimmern Workshop, 18.February 2015

HV-MAPS and Multiple Scattering

HV-MAPS:

- allow for small pixel sizes
- can measure very low momentum tracks (thin sensor)

→ multiple scattering regime

Mu3e Experiment

Fast and very thin detector required \rightarrow MuPix sensor

Mupix Chip

Mupix Chip

Mupix7 prototype:

- ~ 3 x 3 mm²
- ~1200 pixels
- pixel size ~ 80 x 100 µm²

Mupix7 features:

- Tune DACS for every pixel
- double stage amplifier (every pixel)
- zero suppression
- timestamp generation up to ~100 MHz \rightarrow 10 ns
- I.2 GHz PLL
- integrated 1.2 (2.4) Gbit/s link
- about 40 pads needed (wire bond)

System on Chip!

Mupix Readout Design

Mupix7 prototype:

- ~ 3 x 3 mm²
- ~1200 pixels
- pixel size ~ 80 x 100 μm²

Readout periphery -

A.Schöning, Uni Heidelberg

Neckarzimmern Workshop, 18.February 2015

MuPix Time Resolution

fastest monolithic pixel sensor!

MuPix Time Resolution

→ timewalk correction possible

MuPix Pixel Efficiency

Efficiency > 99.5%

MuPix Requirements

MuPix Tracker Construction

Ultra-thin detector mock-up:

- sandwich of 25 µm Kapton[®]
- 50/100 µm glass (instead of Si)

50 mu silicon wafer

$X/X_0 \sim 0.1\%$ per layer

Summary

- CMOS detectors = System on Chip
- Provides very thin sensors and small pixels
- used and/or considered for many upgrade projects
 HV-CMOS (HV-MAPS) solves timing and rate issues

→ clearly the way to go in future!

Outlook

HV-MAPS for LHC or FCC experiments?

ATLAS II tracker (ITK) • costs ~130 MCHF

- 14 tracking layers (10 strip + 4 pixel)
- X/X₀ ~ 1-2% per layer

ATLAS stereo strip module

HV-MAPS Pixel only tracker ?

- only 6-9 pixel layers required
- 0.1-1 % per radiation length
- reduced material costs
- reduced assembly costs
- 3D tracking \rightarrow performance

BACKUP

Pulse Shape Measurement with ToT

Noise Measurement with Threshold Scan

Silicon on Insulator (SOI) Concept

- CMOS buried oxide layer (insulator)
- depletion zone
 - depletion ~50 um
 - signal ~ 3000e
 - noise ~ 30e

higher radiation tolerance with n-well and p-well

A.Schöning, Uni Heidelberg

Neckarzimmern Workshop, 18.February 2015

Austria Microsystems[™] (AMS)

- High-Voltage CMOS technology
- H18 process 0.18 um available since March 20122
- 1.8V, 5V, 20V and 50V devices on a single chip without any process modifications

Mu3e Baseline Design

Long cylinder!

not to scale

