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Introduction

• Universe expansion is accelerating: 2 options
⇒ GR is wrong
⇒ The universe is dominated by a material violating the strong

energy condition
Not any fluid, but Dark Energy
Density of DE well constrained by the data: ρDE = 1.42± (0.09)× 10−29 g/cm3

The difference is the time-evolution of ρDE

Described by EOS: w ≡ p
ρ = ρmRT

ρmc2 = C2

c2

Nonrelativistic matter: w = 0
Ultrarelativistic matter: w = 1

3
Cosmic inflation acceleration: w = −1
Phantom energy w < −1
DE models w > −1 ⇒ goal is to show w 6= −1 at any time

Renata Kopečná (University of Heidelberg) Dark Matter with the Euclid Satellite 2/20



Introduction

• Universe expansion is accelerating: 2 options
⇒ GR is wrong
⇒ The universe is dominated by a material violating the strong

energy condition
Not any fluid, but Dark Energy
Density of DE well constrained by the data: ρDE = 1.42± (0.09)× 10−29 g/cm3

The difference between the models is the time-evolution of ρDE

Described by EOS: w ≡ p
ρ = ρmRT

ρmc2 = C2

c2

Nonrelativistic matter: w = 0
Ultrarelativistic matter: w = 1

3
Cosmic inflation acceleration: w = −1
Phantom energy w < −1
DE models w > −1 ⇒ goal is to show w 6= −1 at any time
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Introduction

• Universe expansion is accelerating: 2 options
⇒ GR is wrong
⇒ The universe is dominated by a material violating the strong

energy condition
• Not any fluid, but Dark Energy
• Density of DE well constrained by the data: ρDE = 1.42± (0.09)× 10−29 g/cm3

• The difference between the models is the time-evolution of ρDE

• Described by EOS: w ≡ p
ρ = ρmRT

ρmc2 = C2

c2

• Nonrelativistic matter: w = 0
• Ultrarelativistic matter: w = 1

3
• Vacuum: w = −1
• Phantom energy w < −1
• DE models w > −1 ⇒ goal is to show w 6= −1 at any time
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How to get w?

• Studied via Universe expansion:

H2(z) =
8πG

3

∑
i

ρi(z)

• In order to get an error in DE EOS w = p/ρ of ∼10% we need to
measure changes in H(z) at the level of 1%
⇒ We need a precise ruler
⇒ We need to calibrate the ruler over most of the age of the Universe
⇒ We need to calibrate the ruler over most of the volume of the Universe
• Cosmological objects not uniform enough
• Assuming the laws of physics are constant over time one can use early Universe

processes
• Using large objects allows to use statistics of the distribution of matter and radiation
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An example of such a ruler?

Baryonic acoustic oscillations!
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An example of such a ruler?
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Baryons Photons Mass profile
baryons, photons

• Start with a single perturbation
• The plasma is uniform except for an excess of matter at the origin
• High pressure drives the gas+photon fluid outward at ≈ c
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Baryons Photons Mass profile
baryons, photons

• Initially both the photons and the baryons move outward together
• The radius of the shell moving at > c/2
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Baryons Photons Mass profile
baryons, photons

• This expansion continues for 105 years
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Baryons Photons Mass profile
baryons, photons

• After 105 years the universe is cool enough the protons capture the
electrons to form neutral H

• This decouples the photons from the baryons
• The former quickly stream away, leaving the baryon peak stalled
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Baryons Photons Mass profile
baryons, photons

• The photons continue to stream away while the baryons, having lost
their motive pressure, remain in place
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Baryons Photons Mass profile
baryons, photons

• The photons continue to stream away while the baryons, having lost
their motive pressure, remain in place. . .
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Baryons Photons Mass profile
baryons, photons

• The photons have become almost completely uniform
• The baryons remain overdense in a shell 100Mpc in radius
• The large gravitational potential well which we started with starts to

draw material back into it
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Baryons Photons Mass profile
baryons, photons

• The perturbation grows by O(1000)
→ The baryons and DM reach equilibrium densities

• The final configuration is our original peak at the center and an
’echo’ in a shell ∼ 100Mpc in radius.

• The radius of this shell is known as the sound horizon
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The acoustic wave
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The acoustic wave: useful links

• http://adh-sj.info/bao_cmb.php
• https://youtu.be/GPiQVRS8kCg
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How do we
measure it?
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Spherical harmonics transform

• Let’s take Fourier transform

f (x) =
∑

k

[bk cos(kx) + ck sin(kx)] =
∑

k

akeikx (1)

ak =

∫
f (x)e−ikxdx . (2)

• For ”noise-like” phenomena, we are only interested the amplitude of
the fluctuations as a function of scale (CMB IS a noise)

• Quantified by the power spectrum, P(k) = |ak |2
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Spherical harmonics transform

• Let’s start with Laplace: ∇2Ψ = 0
• CMB defined on a sphere: Ψ(θ, φ) = Θ(θ)Φ(φ)

⇒ Ψ =

√
2l + 1

4π
(l −m)!

(l + m)!
Plm(cos θ)eimφ ≡ Ylm(θ, φ)

⇒ Analogous to complex exponential in flat space Ylm(θ, φ)↔ eikr

• Instead of wave number k , described via l and m
• l : number of waves along a meridian
• m: number of modes along equator

• Any function can be expanded
into spherical harmonics: TL: Y1,0, TR: Y3,0

BL: Y0,3, BR: Y20,12,
T (θ, φ) =

lmax∑
l=0

l∑
m=−l

almYlm(θ, φ)
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Angular power spectrum

• Spherical transform of CMB→ amplitudes
• Defined as Cl = 1

2l+1

∑l
m=−l |alm|2

• Observed spectrum: specific map, we get

Ĉl =
1

2l + 1

l∑
m=−l

|alm|2

• Theoretical spectrum: Ensemble of maps,
we get

Cl = 〈 1
2l + 1

l∑
m=−l

|alm|2〉ensemble

Great agreement!
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Baryonic Acoustic Oscillations with Euclid

• Acoustic peak: zero velocity, maximum density,
kcstls = π , l ∼ krls

• Sound horizon: s = cstls ls: last scattering

⇒ Acoustic scale: Scale at which galaxies are
correlated set by sound horizon

⇒ Information about universe expansion at any
redshift (hence at any time)

• Similarly to studying CMB, one can search for
statistical imprint on galaxy distribution

• Take home message: BAO provide a precise
ruler for studying DE EOS

• Note that all of the matter sees the acoustic
oscillations, not just the baryons.

A cartoon produced by the BOSS project showing the spheres of
baryons around the initial dark matter clumps.
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Redshift space
distortions,

The Fingers of
God,

Pancakes of God,

The growth of
cosmic structure
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Redshift space distortions

• Observation: Spatial distribution of galaxies appears to be distorted
in the redshift space

• Small peculiar velocities not associated with the Hubble flow can
cause distortions in redshift space

• 2 main ’background’ manifestations: Fingers of God and Kaiser
effect

• The distortions depend on non-linear density and velocity fields,
which are correlated

• Wait, why do we need this?
• Redshift is a measure of space and velocity

zobs = Hr + vpec , vpec ∼ at ∼ (∇∇−2ρ)t
• Using this ⇑ we can measure the growth of structure!
• A key test of DE vs. modified GR models
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The Fingers of God

• Axis of elongation in redshift space points
directly back at observer

• We are not the chosen observers
⇒ the effect is unphysical

• This affects only redshift and not the position
on the sky, the stretching occurs only radially
⇒ Fingers point back to observer
• Important when creating 3D map of Universe:

deviations from Hubble’s law
• Caused by random velocity dispersions in

galaxy clusters
• Peculiar velocities come from the gravity of the

clusters
• Stretching out a cluster in redshift space
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Kaiser effect

• Caused by peculiar velocities of galaxies
bound to a central mass as they undergo
in-fall

• Peculiar velocities are not random, but
coherent towards the central mass

• This leads to elongation: Pancakes of God

• More difficult do quantify

• Large scales
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Redshift space distorstions 2.0

• Correlation function ξ in redshift
space is calculated
• In π and σ
• π: Separation along the line of sight
• σ: Separation across the line of sight
• Central squish due to structure growth

• The distortions depend on
non-linear density and velocity
fields, which are correlated

• The correlation function depends
on galaxy type:
• ”Red”/early-type galaxies tend to cluster

more heavily

The contours represent model predictions, with ξ = 10,5,2,1,0.5,0.2, 0.1
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• Massive effort today to prepare massive galaxy/quasar surveys to
solve the problem of Dark Energy and the origin of late cosmic
acceleration: eBOSS, DES, PFS, Euclid, DESI, WFIRST, ...

Essentially, error scales as Volume-1/2

37
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Backup
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Definitions

z = λobs−λemit
λemit

Angle ∆θ, subtended by the ruler ∆χ ∆θ = ∆χ
da(z)

Einstein field equations (EFE)
Rµν − 1

2gµνR = −8πGTµν
⇒ strong energy condition: ρ + 3p > 0
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Galaxy Clustering (Baryonic Acoustic Oscillations and Redshift Space Distortion)

• Direct distance-redshift probe to explore the
expansion rate of the Universe

• Provides an almost direct probe of dark matter
• Combined with angular distances
→ the expansion rate and the mass density
contrast probe
→ the growth rate of structure and gravity probe

• Every object has intrinsic properties: mass, size
and luminosity/intrinsic brightness

• We can directly measure apparent size or
brightness

A cartoon produced by the BOSS project showing the spheres of
baryons around the initial dark matter clumps.
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Galaxy Clustering (Baryonic Acoustic Oscillations and Redshift Space Distortion)

• Standard candle: Knowing intrinsic brightness +
measuring apparent brightness→ distance

• Standard ruler: Knowing intrinsic size + measuring
apparent size→ expansion

• Acoustic scale: Scale at which galaxies are
correlated
• if you collapse something too much when the Universe is

young, the pressure from radiation will push it back out
again

• baryons are oscillating in-and-out of these overdense
regions
⇒ baryon acoustic oscillations
Information about universe expansion at any redshift
(hence at any time)

• Note: all of the matter sees the acoustic
oscillations, not just the baryons.

A cartoon produced by the BOSS project showing the spheres of
baryons around the initial dark matter clumps.

Renata Kopečná (University of Heidelberg) Dark Matter with the Euclid Satellite 24/20


	anm0: 
	anm1: 


