Long-lived new particles at present and future colliders

Oliver Fischer

Colliding Pizza Seminar Heidelberg, June 12, 2018

Disclaimer:

Next two slides borrowed from J. Beacham and B. Shuve.

Long-Lived Particles in the SM

• The world is **full** of long-lived particles

James Beacham [Ohio State] LHC LLP Workshop — CERN□ ► ◀륨 Mav > 018 ≥ ► 6

Particle lifetime

Proper lifetime of particle i (lifetime in its own restframe)

$$\tau_i^{\text{proper}}[s] = 1/\Gamma_i \times 6.58 \times 10^{-25}$$

 Γ_i (in GeV) is the total decay width.

- \Rightarrow Small $\Gamma_i \Leftrightarrow$ long lifetime
- Example 1, charged muon:
 - Decay channel $\mu o
 u_\mu$ e u_e , $\Gamma_\mu \propto g_W^4 (m_\mu/m_W)^4 m_\mu$
 - Lifetime $\sim 2 \times 10^{-6}$ s.
- Example 2, neutron:
 - Decay channel $n o p \, e \,
 u_e, \, \Gamma_n \propto g_W^4 (\Delta m/m_W)^4 \Delta m$
 - $\Delta m = m_n m_p$
 - n lifetime ~ 850 s.
- Example 3, Z boson:
 - Total decay width $\Gamma_Z = 2.1876$ GeV.
 - Z lifetime $\sim 3 \times 10^{-25}$ s.

Laboratory lifetime

Experiments measure the laboratory lifetime, τ^{lab} .

$$\tau^{\rm lab} = \gamma \beta \tau^{\rm proper}$$

- ▶ Relativistic velocity: $\gamma \beta = \sqrt{E^2 m^2}/m \sim E/m$
- Example 4, cosmic muons:
 - production \sim 15 km above ground.
 - Most of them have $E \ge 10$ GeV.
 - Decay length: $c \, au_{\mu}^{\mathrm{lab}} \geq$ 57 km.
- Large E/m enhances accessibility of short proper lifetimes...
 ... but it suppresses long ones!

(LHC experiments 'see' displaced vertices from many SM particles.)

Decay probability

- ▶ LLP produced at origin & propagates until it decays.
- Decay governed by the probability distribution:

$$D_{\text{decay}}[t] = \exp[-t/\tau^{\text{lab}}]$$

▶ The probability for LLP to decay between the times t_1 and t_2 :

$$P_{ ext{decay}}[t_1, t_2, au^{ ext{lab}}] = rac{1}{ au^{ ext{lab}}} \int_{t_1}^{t_2} D_{ ext{decay}}[t] dt$$

- ▶ Can be translated to distances via the velocity βc ($c = 3 \times 10^8 m/s$)
- Simplification if $\tau^{\rm lab} \gg t_1, t_2$:

$$P_{
m decay} pprox (t_2-t_1)/ au_{
m lab}$$

LLP production at the LHC

- Strongly model dependent.
- ▶ Direct, from the beams: $pp \rightarrow \text{LLP } +X$, X SM particle(s).
- Indirect, from decays:
 - SM mesons.
 - W or Z bosons on the mass shell.
 - ► Top quark.

Relevant properties

- ▶ Production cross section ⇒ Total number of LLP.
- LLP Momentum spectrum.
 - \Rightarrow NOT (only) $P_t!$
 - \Rightarrow fixed LLP mass gives the $\beta\gamma$ spectrum
 - \Rightarrow Tails can be relevant.
- LLP angular spectra.
 - Allow one to incorporate detector geometry.
 - ▶ For detectors with (approximate) spherical symmetry: θ .
 - For full geometry also ϕ necessary.
- Associated visible particles, very important (next slide).

The displaced vertex event

- ightharpoonup Associated particles for triggering; P_t and angular thresholds.
- Reconstruct the point of origin: The primary vertex (PV).
- Displaced vertex (DV): charged tracks crossing at a distance from PV.
- ▶ In case of only one visible track: Impact parameter.
- ▶ Distance between DV and PV must be larger than experimental resolution x_{res} .

The detector response

- Schematic view of the detector components.
- The respective sensitivities do overlap significantly.
- Particle ID strongly depends on where the decay occurs.
- ▶ Lower boundary: number of events produced.
- ▶ Left boundary: long lifetimes "escape" from the detector
- ▶ Right boundary: lifetimes below the resolution x_{res} are prompt.

A word on backgrounds

There are many, especially for short lifetimes, for instance...

- Proton beam halo.
- Detector noise.
- ▶ Long lived SM particles: τ , π^0 , K_s^0 , ...
- Pile up!
- ⇒ Loss in efficiency to deal with those.
- ⇒ Difficult to recast existing analyses.

The chapter on backgrounds of the LHC-LLP white paper (in preparation) includes also scary and unexpected ones

Now for a specific example: Dispaced vertices from Heavy Neutrinos at the LHC

Motivation

courtsy M. Shaposhnikov

- ▶ No right-handed neutrinos in the Standard Model (SM).
- ▶ No mass matrix, no mixing of the neutrino flavour states.
- ⇒ Neutrino oscillations are evidence of physics beyond the SM.

The Big Picture

Heavy neutrino interactions

Charged current (CC):

$$j_{\mu}^{\pm}=rac{\mathcal{g}}{2}\, heta_{lpha}\,ar{\ell}_{lpha}\,\gamma_{\mu}\left(-\mathrm{i} extsf{N}_{1}+ extsf{N}_{2}
ight)$$

Neutral current (NC):

$$j_{\mu}^{0} = \frac{g}{2 c_{W}} \left[\theta^{2} \bar{N}_{2} \gamma_{\mu} N_{2} + (\bar{\nu}_{i} \gamma_{\mu} \xi_{\alpha 1} N_{1} + \bar{\nu}_{i} \gamma_{\mu} \xi_{\alpha 2} N_{2} + \text{H.c}) \right]$$

Higgs boson Yukawa interaction:

$$\mathscr{L}_{\mathrm{Yukawa}} = \sum_{i=1}^{3} \xi_{\alpha 2} \frac{\sqrt{2} M}{v_{\mathrm{EW}}} \nu_{i} \phi^{0} \left(\overline{N}_{1} + \overline{N}_{2} \right)$$

▶ With the mixing parameters: $\xi_{\alpha 1} = (-i) \mathcal{N}_{\alpha \beta}^* \frac{\theta_{\beta}}{\sqrt{2}}, \ \xi_{\alpha 2} = i \xi_{\alpha 1}$

"Naturally" long lived

- For $M < m_W$ all decays are via off-shell weak gauge bosons (and the Higgs).
- Current direct searches require: total mixing squared $|\theta|^2 < 10^{-5}$.
- ▶ Total decay width $\propto |\theta|^2 \times G_f$ tiny.
 - \Rightarrow Macroscopic life times!

Number of displaced events at the LHC

$$N_{\mathrm{dv}}(\sqrt{s}, \mathcal{L}, M, |\theta|^2) = N_{\mathsf{xN}} \times \int D_{\mathsf{xN}}(\vartheta, \gamma) P_{\mathrm{dv}}(x_{\mathrm{min}}, x_{\mathrm{max}}, \Delta x_{\mathrm{lab}}) d\vartheta d\gamma$$

- ▶ $N_{\times N} = \sum_{\mathbf{x} = \nu, \ell^{\pm}} \sigma_{\times N}(\sqrt{s}, M, |\theta|^2) \times \operatorname{Br}_{\mu jj} \times \operatorname{luminosity}$ $\sigma_{\times N} \sim \mathcal{O}(1000) \text{ pb } \times |\theta|^2 \times \operatorname{efficiency}$
- ▶ $D_{\times N}$ distribution of events in γ, ϑ
- ▶ P_{dv} distribution of events in a given (lab) volume
- v angle wrt. beam axis
- $ightharpoonup \gamma$ Lorentz boost of N proper frame wrt. lab frame
- $\triangleright x_{\min}, x_{\max}$ are functions of ϑ

We evaluated this for the LHCb experiment $_{\rm using\ WHIZARD}$

▶ Distributions for the process $pp \rightarrow \nu N$:

including the angular acceptance of LHCb

- ▶ Dist.s for $pp \rightarrow \ell^{\pm}N$ similar, but smaller values for ϑ
- ▶ Dist.s for $pp \rightarrow \ell^+ N$ get closest to the beam
- ► Consider for decay products:
 - $2 < \eta(f) < 5$, $f = \mu, j$
 - $P_t(\mu) > 12 \text{ GeV}$

Search for massive long-lived particles decaying semileptonically in the LHCb detector

The LHCb collaboration[†]

Abstract

A search is presented for massive long-lived particles decaying into a muon and two quarks. The dataset consists of proton-proton interactions at centre-of-mass energies of 7 and 8 TeV, corresponding to integrated luminosities of 1 and 2 fb⁻¹, respectively. The analysis is performed assuming a set of production mechanisms with simple topologies, including the production of a Higgs-like particle decaying into two long-lived particles. The mass range from 20 to 80 GeV/c² and lifetimes from 5 to 100 ps are explored. Results are also interpreted in terms of neutralino production in different R-Parity violating supersymmetric models, with masses in the 23–198 GeV/c² range. No excess above the background expectation is observed and upper limits are set on the production cross-section for various points in the parameter space of theoretical models.

LHCb analysis result

- Search for one displaced vertex with invariant mass > 5 GeV and one muon.
- ▶ Before preselection no event with radial displacement > 2 cm.
- ▶ After preselection no event above 5 mm.

Our recast of the LHCb result

- Assuming 100% efficiency and $\Delta r > 5$ mm, $\Delta z < 2$ m.
- ▶ black dotted: sensitivities for the present amount of data of 5 fb⁻¹
- ▶ black dashed: 380 fb^{-1} for the high-luminosity run.
- All limits for $|\theta|^2 = |\theta_{\mu}|^2$ (i.e. $|\theta_e| = |\theta_{\tau}| = 0$).

Next:

Future colliders (electron-positron, electron-proton).

No details on the colliders in the talk. Ask!

Displaced vertex searches at Electron-Proton colliders

- DIS jet for excellent determination of PV.
- Advantages over LHC searches:
 - Clean environment, no pile up, no QCD backgrounds.
 - Excellent resolution for DV determination.
- Disadvantages:
 - Lower production rates.
 - Lower \sqrt{s} (1.2 TeV for LHeC) no problem here.
- Complementary with and comparable reach to LHC.

Displaced vertex searches at Future Lepton Colliders

- Substantial missing energy.
- Assumption: no SM background for displacements > 0.1 mm.
- Applies to CEPC, FCC-ee, ILC. CLIC
- ▶ Possible at different \sqrt{s}

External detector: MATHUSLA

- ► MAssive Timing Hodoscope for Ulrtastable neutraL pArticles.
- Proposal: build on surface close to ATLAS/CMS
- Goal: detect decays from long lived particles produced at the interaction points.
- Comparatively simple technology and superb background control.
- Can be used conjointly with (HL-)LHC and FCC
- Synergies with Cosmic Ray and Neutrino Physics.

Outlook

Gaps in current LHC data taking procedures:

- System optimized for prompt SUSY signatures.
- Difficulty at testing many models with "natural" LLPs.
- ► LHC LLP: A growing community trying to address this.

Many ways to continue from here:

- LHC detector upgrades.
- External detectors: CODEX, MILLIQAN, FASER, MATHUSLA.
- Beam dumps: NA62, SHiP, ...
- ▶ LHC 'upgrade' with electron beam: LHeC.
- Future colliders: ILC, FCC, CEPC/SppC, CLIC.
- Many models left untested.

Brian Shuve: Are we ready to discover a new (long lived) particle?

