Physics Teams: Introduction to Neural Networks

Christian Reichelt

Universitat Heidelberg

April 7, 2017

April 7, 2017 g 1s: Introduction to Neural Networks) wn Reichelt

What is a Neural Network?

Initial motiviation: Model of biological intelligence

m Connected web of neurons
m Each neuron fires if a sum of ”inputs” reaches a threshold

The application in a wide range of subjects (including physics):
m Remove any biological motivation
m Simply a clever non-linear transformation on a set of input variables x to a set
of output variables y.
m The non-linear transformation is adjustable, and tuned on training sets of data

Christian Reichelt

April 7, 2017 > Teams: Introduction to Neural Networks

Why Neural Networks?

m High ability to detect and derive complicated patterns and trends in highly
complex data.

m Universal approximation theorem: Neural networks can approximate any
function (on a compact set) arbitrarily well

We will see applications later, but for now keep in mind Multivariate Analysis
in Particle Physics:

m An event is characterised by some data x in a d-dimensional feature space.
m These variables can in general be correlated

m We seek a transformation f : R* — RN, N << d, for example separating
events from background

April 7, 2017 > Teams: Introduction to Neural Networks Christian Reichelt

Sigmoid Neurons

A single sigmoid neuron takes an input x and gives an output o(a)

X1

X2 |————0c
X3

by first multiplying a weight w and a bias b to give the activation:

a=w'x+b=w'

X, x = (1,z1,29,...). (1)
Then apply the activation function o (Here a sigmoid - 3 many other choices)

output
y

0 activation

April 7, 2017 >hy: 5: Introduction to Neural Networks Christian Reichelt

Feed-forward Neural Network

m Simplest form of neural networks
m Several layers: Input layer, output layer and hidden layers
m Information travels in one direction - no loops

m Can easily be generalized to arbitrary number of layers, nodes, and different
activation functions.

April 7, 2017 >hy: 5: Introduction to Neural Networks Christian Reichelt

Feed-forward Neural Network

Use labels 451 to describe input ¢ to node j in layer [. Then the activation in the
hidden layer is

3
aj = sz‘jwz‘, j=12 (2)
i=0
which provides inputs z; to the output layer, by for example an activation function
of:
Zj = h (aﬂ) = tanh (ajl) 5] = 1, 2. (3)

The activation in the output layer is then

2
a= Z wi122; (4)
=0

with a final output

2 3 -1
g (CL) = {1 + exXp | —wop12 — Z ’u}jlg tanh (’w()jl + Z wijlxi> } (5)

j=1 i=1

April 7, 2017 >hysics Teams: Introduction to Neural Networks Christian Reichelt

Solution of the Neural Network

m Task: Find the weights w which solve our classification problem

m Solution: The set of weights which minimizes a defined cost/error function

m How: By training on known data and adjusting the weights in the direction
which minimizes the error

April 7, 2017 >hy: 5: Introduction to Neural Networks) tian Reichelt

Gradient Descent

First we define an error function of the network, e.g. for a training set {(xi,yi)},
1 2
L=, > o (xi) = yil (6)
i

which by our choice of activation function is a continuous and differentiable
function of the weights. E is minimized through a gradient descent where

oF OF oF
VE=——,—,...,— 7

(8101 8w2 8wl) ()
is used to update the weights in the opposite direction of the gradient:

Aw = —nVE (8)

Here 1 > 0 is the learning rate.
m Small value n — slow learning
m Large value n — fast learning, but potential instability
The learning rate can be gradually decreased during the training.

April 7, 2017 >hysics Teams: Introduction to Neural Networks Christian Reichelt

Gradient Descent

Ideally, the error function would be some globally convex function in weight space:

E

Initial value \@

w

wi

That is of course not always the case... but global optimization is a different
subject.

Task: Evaluate the gradient efficiently — Backpropagation algorithm

April 7, 2017 > Teams: Introduction to Neural Networks Christian Reichelt

Backpropagation

The backpropagation algorithm for training and updating weights follows this
pattern:

m Forward Propagation: Run through the network with a training sample
and receive outputs

m Output error: Find the error of the output layer

m Backpropagate: Propagate the error to inner layers. The error of a layer is
based on the error of neurons it provides inputs to (Basic use of the chain rule)

m Gradient: Finally the gradient of the cost function in weight space can be
computed, and the weights are updated

April 7, 2017 > Teams: Introduction to Neural Networks Christian Reichelt 10 / 13

Backpropagation

Consider the error contribution from a single training F,

OE, OFE, da; OFE,
= = ijl = En’ i 9
Bwijl 80,]'[811}”'1 8ajl “il gl ()

This we could easily evaluate for the output layer [= L. Assume only a single
output node, then for the layer before [= L — 1

_ OE, Oayg1 dariyr dai 41 0zi1,141
Enj = 3 = Epi 41 = Entir15 3 (10)
argyr Oaj daji Zitg41 Oajp
Oh (a;) ,
= Enii+1 § Wit~ —— = Entwjngh (ag) (11)
: jl
(A

i.e. the derivatives are computable recursively by data from later layers.

April 7, 2017 > Teams: Introduction to Neural Networks Christian Reichelt

Regularization

Avoid overtraining, i.e. adjusting weights to noise/fluctuations. Signs are for
example if:

m The accuracy stops increasing, even though the error function decreases

m Accuracy in training reaches 100% but tests are much lower

To avoid this, use a validation sample and stop when the accuracy on the
validation data saturates.
Alternatively one can for example add terms to the error function (weight decay)

A
E— E+ §wTw (12)
making smaller weights more preferable.

In conclusion, both theory and experience goes into choosing hyper-parameters
such as 77, A etc. in order to optimize the neural network performance.

April 7, 2017 > Teams: Introduction to Neural Networks Christian Reichelt

Questions

Questions to the basics?

April 7, 2017 Physics Teams: Introduction to Neural Networks Christian Reichelt

