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1 | Dualities in String Theory

For anyone unfamiliar with string theory, we will not give an introduction to the subject, but rather state
a minimum amount of facts necessary to appreciate the role of dualities.

What is string theory? What you get when you quantize a theory where the fundamental objects
are 1-dimensional (strings).

Why string theory? It is arguably the leading theory which unifies gravity with quantum field the-
ory, and provides an anomaly free and UV complete description for quantum gravity.

Uniqueness of string theory? A supersymmetric string theory requires 10 spacetime dimensions, but
there exists five consistent formulations:

Type I, Type IIA, Type IIB, E8 × E8 Heterotic and SO(32) Heterotic.

In the early nineties important lessons where however learned about the connection between these five
theories:

The second superstring revolution (Early 90’s):
All the superstring theories are related by dualities, and they are all limits of an
11-dimensional theory (M-theory) (See figure 1.1).

Another type of duality which has its origin in string theory, but which we will not discuss is the celebrated
AdS/CFT correspondence conjectured by Maldacena [1]:
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M-theory

Figure 1.1: String theories in 10-dimensions and 11-dimensional supergravity are all conjectured to arise
from limits of an 11-dimensional M-theory.
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AdS/CFT Correspondence (Gauge/gravity duality):
Type IIB superstring theory on AdS5 × S5 is dynamically equivalent to N = 4 Super
Yang-Mills theory with gauge group SU(N) in 3+1 dimensions, with maps between
parameters

g2YM = 2πgs and 2g2YMN =
L4

α′2
(1.1)

with string coupling gs, Yang-Mills coupling gYM and AdS/S5 radius L.

1.1 Type IIB string theory

As already mentioned Type IIB string theory is defined on a 9+1 dimensional spacetime, and the low-energy
limit which is the chiral N = (2, 0) maximal supergravity in 10 dimensions has a bosonic spectrum given
by the following set of fields:

Graviton: Gµν (1.2)

Dilatino: Φ (1.3)

Form fields: B2, C0, C2, C4 (1.4)

where one can define the so-called axio-dilaton:

Axio-dilaton: τ ≡ C0 + ie−Φ, 〈eΦ〉 = gs (String coupling). (1.5)

Conventionally the Type IIB low energy effective action (Type IIB supergravity) for the bosonic sector can
be split in three terms

SIIB = SNS−NS + SR−R + SCS (1.6)

where each sector (NS = Neveu-Schwarz, R=Ramond and CS = Chern-Simons) is given by

SNS−NS =
1

2κ2
10

∫

d10x
√
−G e−2Φ

(

R+ 4∂µΦ∂
µΦ− 1

2
|H3|2

)

(1.7a)

SR−R = − 1

4κ2
10

∫

d10x
√
−G

(

|F1|2 + |F̃3|2 +
1

2
|F̃5|2

)

(1.7b)

SCS = − 1

4κ2
10

∫

S.T.

C4 ∧H3 ∧ F3. (1.7c)

Here R is the Ricci scalar, κ10 is the gravitational coupling constant in 10 dimensions, the superstring
coupling constant is encoded by gs = 〈eΦ〉 and the field strengths follow the definitions:

Fn+1 ≡ dCn (1.8a)

H3 ≡ dB2 (1.8b)

F̃3 ≡ F3 − C0 ∧H3 (1.8c)

F̃5 ≡ F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3. (1.8d)

However, this action does not automatically include the self-duality of the 5-form field strength, as it can
not be included covariantly. Thus we have to impose at the level of the equations of motion that

F̃5 = ⋆F̃5. (1.9)

The Type IIB action is invariant under SL(2,Z) transformations, where in particular the axio-dilaton
transforms as:

τ 7→ aτ + b

cτ + d
,

(

a b
c d

)

∈ SL(2,Z). (1.10)

Since the dilaton determines the string coupling, the transformation τ 7→ −1/τ in Type IIB is also a
weak/strong coupling duality:

gs = 〈eΦ〉 dual←−−→ 〈e−Φ〉 = 1

gs
. (1.11)
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1.1.1 A rough guide to form fields and branes

Due to the higher dimensionality of string theory, higher form fields are natural, as opposed to simply the
vector potential and its field strength in four dimensions. In order to discuss their interpretation, we will
start by a formal definition:

Differential forms:
A differential form of order r (r-form) is a totally anti-symmetric (0, r)-tensor.

Using the wedge product ∧ of one-forms dxµi defined by

dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµr =
∑

P∈Sr

sgn(P )dxµP (1) ∧ dxµP (2) ∧ · · · ∧ dxµP (r) (1.12)

then any element Cr in the set of r-forms on a manifold M , Ωr (M), can be written
as:

Cr =
1

r!
Cµ1µ2···µr

dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµr . (1.13)

For the familiar Yang-Mills gauge potential, we say that A is a 1-form:

A1 = Aµdx
µ. (1.14)

To define the field strength in this language, we will need the notion of an exterior derivative:

Exterior derivative:
The exterior derivative d is a map from Ωr (M) to Ωr+1 (M) with an action on an
r-form

Cr =
1

r!
Cµ1µ2···µr

dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµr , (1.15)

defined by

dCr =
1

r!

(

∂

∂xν
Cµ1µ2···µr

)

dxν ∧ dxµ1 ∧ dxµ2 ∧ · · · ∧ dxµr , (1.16)

with the important property that
d2 = 0. (1.17)

We can now write the field strength as the 2-form obtained when acting with the exterior derivative on the
gauge potential

F2 = dA1 = (∂µAν − ∂νAµ)dx
µ ∧ dxν . (1.18)

and gauge invariance is the statement that the field strength is invariant under transformations:

A1 → A′

1 = A1 + dΛ0 since F ′

2 = d(A′

1) = d(A1) = F2, (1.19)

using that d2 = 0. Also recall that a charge particle interacting with the gauge field A, in the action is
described by integrating along the world-line γ of the particle

S ⊃ q

∫

Aµdx
µ = q

∫

γ

A1. (1.20)

This is a particle solution, but now we can equally call it a D0-brane (because a particle has 0 spatial
dimensions).

Now for a p-form potential Cp we can define a field strength Fp+1 = dCp, and write down an electric
coupling

S ⊃ µp

∫

Σp

Cp =⇒ D(p− 1)brane. (1.21)
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Thus, we see that the Cp form fields are generalisations of the vector potentials, and the electrically charged
objects under these field are D(p − 1)-branes. These are dynamical, but non-perturbative, objectives in
string theory.

In addition one can define the hodge ⋆ operator on an m-dimensional manifold M , which is a linear map

⋆m : Ω(M)r → Ω(M)m−r (1.22)

and the dual field strength
F̃m−p−1 ≡ ⋆Fp+1 = dC̃m−p−2 (1.23)

then couples magnetically to an extended object by

S ⊃ µm−p−2

∫

Σm−p−2

C̃m−p−2 =⇒ D(m− p− 3)brane. (1.24)

i.e. the magnetically charged objects under a form field Cp are D(m − p − 3)-branes. We leave it as an
exercise to find the brane content of Type IIB string theory (m = 10), and focus on one particular form
field

C0 ⇒
{

D(−1)-brane (i.e. an instanton)

D7-brane
(1.25)

because, heuristically due to their size, 7-branes play an important role in Type IIB string theory, and leads
to the definition of F-theory to deal with them, as we shall demonstrate.

1.1.2 7-branes and monodromies

We now consider Type IIB string theory on a manifold

M10 = R
1,7 × C (1.26)

and analyse the situation of encircling a D7-brane which extends along the R1,7 directions, i.e. it sits at a
point z0 in the complex plane C described by the complex coordinate z = x8 + ix9:

Now the D7-brane is a magnetic source for the C0 field, which was part of the axio-dilaton, τ ≡ C0 + ie−Φ,
and one can show that the solution for τ in the transverse space to the D7-brane has to be of the form

τ(z) =
1

2πi
ln (z − z0) + (regular at z0). (1.27)

Due to the branch cut in the logarithmic function, it means that encircling the brane induces a monodromy
of τ

τ → τ + 1, (1.28)

thus we see that placing a 7-brane in the spacetime has non-trivial effects, a back-reaction on the space,
which has to be accounted for. That τ seems to be multivalued is not at problem since τ → τ +1 is part of
the SL(2,Z) duality symmetry of Type IIB. What we have seen is that a D7-brane introduces a monodromy
identified by the monodromy matrix:

MD7 =

(

1 1
0 1

)

∈ SL(2,Z) (1.29)

If we considered N D7-branes located at the same point we would have a monodromy

MN×D7 =

(

1 N
0 1

)

∈ SL(2,Z) (1.30)
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and by applying the SL(2,Z) duality transformations one is automatically required to also include so-called
[p, q]-7-branes with monodromy matrix:

M[p,q] =

(

1− pq p2

−q2 1 + pq

)

∈ SL(2,Z). (1.31)

Thus we have seen that 7-branes have direct implications for the variation of τ , and in particular the presence
of 7-branes necessarily makes τ vary over the spacetime, such that generically one can not control the weak
coupling limit everywhere on the manifold.
Let us try and see it from the opposite perspective and conclude what the τ profile tells us about 7-branes:

� The divergence of τ , from ln (z − z0), indicates the location of a 7-brane.

� The monodromy of τ indicates which 7-branes are located there.

Given the importance of τ and its variations under SL(2,Z) transformations we have to comment on the
connection with the geometry of the torus, which we have so far neglected.

SL(2,ZZZ) as the symmetry group of the torus:
Consider the complex plane C with a lattice Λ (ω1, ω2) , ω1, ω2 ∈ C, defined by

Λ = {k1ω1 + k2ω2 | k1, k2 ∈ Z}, (1.32)

where ω1 and ω2 considered as vectors in the plane should be none-parallel, i.e
Im (ω2/ω1) > 0. By identifying points on the lattice by an equivalence

z ∼ z + ω1, z ∼ z + ω2, ∀z ∈ C (1.33)

we obtain the structure of the torus by a homeomorphism from the quotient space
C/Λ ≃ T 2:

ω2

ω1

ω1 + ω2

To find the moduli space of the torus we need to identify equivalences of the complex
structure determined by (ω1, ω2). We introduce the modular parameter τ ≡ ω2/ω1

such that when scaling equation (1.33) by a factor of 1/ω1 it takes the form

z′ ∼ z′ + 1, z′ ∼ z′ + τ, ∀z′ ∈ C. (1.34)

where τ ∈ C|Im(τ) ≥ 0. Hence, we can consider a lattice generated by 1 and τ , and
consider the transformations which merely generates a different choice of fundamental
domain for the torus. These operations preserve the complex structure, and they can
all be generated by the transformations:

S : τ → − 1

τ
T : τ → τ + 1 (1.35)

i.e. they generate the group SL(2,Z) - the modular group of the torus, with transfor-
mations of τ in a general form given by a Möbius transformation (or linear fractional
transformation)

τ 7→ aτ + b

cτ + d
with a, b, c, d ∈ Z and ad− bc = 1. (1.36)

Thus we see that it seems reasonable to interpret the axio-dilaton as the complex structure of a torus.
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1.2 Defining F-theory

The heuristic idea/definition of F-theory1[2], is to describe Type IIB string theory in which one deals
consistently with the back-reaction from 7-branes on the spacetime. This is done by encoding the information
of the axio-dilaton, τ , in an auxiliary torus T 2 attached over every point of the spacetime. Attaching a
geometry at every point over a space in an appropriate way defines a fibration.

Fibrations
A fibration is obtained by fibering a space F (the fiber) over each point of another
space B (the base). The total space space we will call X , and there must then exist a
map

π : X → B (1.37)

such that for (almost) any points b, b′ ∈ B we have π−1(b) ∼= π−1(b′). A trivial example
is the cylinder which is an interval [a, b] trivially fibered over S1, but if the fibration
of the interval is defined with a twist, one instead obtains the Möbius strip:

In this language, F-theory is defined by a torus (elliptic) fibration over the Type IIB spacetime (See Figure
1.2) and our previous statements about τ and 7-branes can be rephrased in a geometrical language:

� A degeneration (singularity) of the torus indicates the location of 7-branes.

� The type of degeneration (singularity) determines the monodromy, i.e. the type of 7-brane configura-
tion (by the so-called Kodaira classification).

What makes this so useful is, that the objective to write down a consistent model with 7-branes in Type IIB
string theory, then translates into studying well defined elliptic fibrations. In particular, for phenomenology
one would want to consider F-theory compactifications on manifolds of the type

R
1,3 × CY4 (1.38)

where CY4 is an elliptically fibered Calabi-Yau manifold, π : CY4 → B3, of dimension

dimR (CY4) = 2dimC (CY4) = 2× 4 = 8. (1.39)

In this sense, F-theory studies a 12-dimensional geometry, even though only 10 of them are physical, and
the remaining two belong to the auxiliary torus.

Figure 1.2: Illustration of the elliptic fibration in an F-theory compactification. The total space CYn has
to be of the Calabi-Yau type, and the elliptic fibration is over a base space Bn−1.

1We unfortunately do not have time to comment on the duality with M-theory in this lecture.



In discussing phenomenology, it is a known fact in string theory, that gauges theories are located on branes.
The type of gauge group is determined by the number and type of branes, and is dictated by the singularity
type of the torus. In particular, F-theory has the virtue of being able to describe exceptional Lie groups,
useful for the realisation of Grand Unified Theories (GUTs).

The mathematically consistent elliptic fibrations in F-theory therefore encodes all the information about
the 7-brane content, the geometric singularities, and gauge symmetries as illustrated in Figure 1.3. Behind
all this lies the SL(2,Z) duality symmetry, and research continues into ways to utilise this symmetry to the
fullest in describing F-theory compactifications.

Figure 1.3: Illustration of the connection between elements in F-theory, which are all encoded in the
study of elliptic fibrations.
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