Scalar-tensor theories in cosmology

Student Lecture 3 by Manuel Wittner

Horndeski theories and some basic properties

e Often, stability is tied to second-order equations of motion (eom):
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— Fourth-order eom requires four initial values
— Corresponds two canonical field variables (incl. their momenta)
— One of those is a ghost (= wrong sign in kinetic term)

e Horndeski theories: most general 4D scalar-tensor theory with 2nd-order derivatives
in equations of motion

e They are specified by four functions G;(¢, X) where X = —¢**0,,¢0,¢/2 is kinetic
term of scalar field ¢:
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e Horndeski contains a plethora of well-known theories, e.g.:
— ACDM: GQ = —2A, G4 = M]%/Q, G375 =0
— Quintessence: Gy = X —V, Gy = M%/2, G35 =0
— Brans-Dicke theory: Gy = wX /¢, Gy = ¢M3/2, G35 =0

e Conditions of stability: restrictions on G;’s. For the simple case of quintessence:
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= kinetic term positive!



e Horndeski theories are form-invariant under disformal transformations of the met-
ric:

G = Guv = C(¢)guv + D(¢)au¢au¢

That is, if a scalar-tensor theory £4(¢, ¢,,) C Ly is a Horndeski theory, another
theory given by Ly = L1(¢,g,,) will also be C Ly. Or in other words: the
second-order nature of the eoms is preserved under a disformal transformation.

An exemplary Horndeski theory: Coupled Dark Energy

e Consider following theory:
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where

1 v
Lo=—59"0,00,6 = V(6),
1, = baryonic matter,
e = (cold) dark matter,
G = C(Cb)g;w-
e We consider theory in terms of g,, (“Einstein frame”), not g, (“Dark-matter

frame”). That is, gravity is considered standard but dark matter feels additional
fifth force ¢.



e Let us calculate Einstein field equations:
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e Conservation equations:
VAT, =0,
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= only total EM tensor of dark sector conserved whereas individual components:
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where T° = g T}, and
B 1 dC(¢)

is so called coupling function.
e Background equations:

— Friedmann equation and baryonic-matter conservation remain standard
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p, +3Hp, =0
— Dark matter and ¢-conservation equation get modified:

Py +3(1+wy)py = Qped’
i+ 3pe = —Qpcd’
— Let us choose
C(¢) o< e,

so that ) ~ const. Of course, if () > 0, energy flows from DM to DE and, if
@ < 0, from DE to DM.

In our case, we choose Q > 0, i.e. § < 0, and for the sake of clarity V(¢) =
Voo™, with a > 0 (“Peebles-Ratra potential”) so that ¢’ > 0.
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— Can then solve conservation equation:

= PO Q(b0—9)
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= DM density decays exponentially with ¢

e Solution to Hubble tension?

— Due to exponential, DM energy density was larger in early times than in
ACDM

— Since during recombination era H? ~ p,, this implies larger Hubble function
at early times and therefore smaller comoving sound horizon:

trec Cs dt Grec Cs da
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— Remembering that Hubble factor is extracted from measurement of angular
diameter distance:

H()OCDzl = —,

Ts
this might potentially increase the Hubble value measured from CMB

— However, data analysis shows that this model can only slightly alleviate Hub-
ble tension: Hy ~ 69km s~ Mpc™

= Generalise: C'(¢)? Non-canonical kinetic term? Disformal coupling?
Transient weak gravity in Coupled Dark Energy

e og-parameter = “clustering strength”
— og-tension: og measured via CMB assuming ACDM larger than from measure-
ments using large scale structure

= want to weaken gravity

e However, typically in CDE with @) ~ const:
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Leads to real-space potential:

Vir) = —Gim (1 + 2Q2e_m¢r)

= Yukawa correction that makes gravity even stronger = og-tension gets worse.
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e Our approach: allow ¢-dependence of (), e.g. consider
C(g) = ™ ¥

Then close to minimum of C' at ¢ = 0, we have new mass scale:

aQ 1
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This enters the equations in such a way that the resulting potential is
Gym 2ME(Q')? i
V() == ll— o (1—e )

= weakens gravity on large scales and could potentially alleviate og-tension

Summary and Conclusions

ACDM is good model but not perfect

Hubble tension: HO,CMB+ACDM < HO,local

Scalar-tensor theories modify gravity via additional scalar degree of freedom

Stability is a delicate issue

Coupled Dark Energy can perhaps solve problems but needs more research

There are many other good ST theories!
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