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1 Model building in Type IIB superstring theory

1.1 First step: Compactification

There are many approaches to do model building in string theory/M-theory depending on which theory one
works in, but the first step always lies at the compactification. And each approaches has its own virtues and
drawbacks. however, it’s fair to say F-theory provides a more economic way to do that in terms of well-
controlled, calculations, etc.

If we restrict ourselves to the class of theories- Standard model, which are already known to exist, we can
make contact with observations by requiring that the extra 6 spatial dimensions X(3) be compact and small - so
small that they have not been discovered in any experiment so far. This leads to the notion of compactification

M(10) = R1,3×X(3) (1.1)

And in order to preserving some supersymmetries in 4d effective theories, one usually choose the internal
space X(3) as Calabi-Yau three-space, which dubbed as Calabi-Yau compactification.

The type of 4d effective theory (massless spectrum, coupling, etc ) will depends on the geometric properties
of Calabi-Yau space such as size, shapes, etc, the detail discussion would be laborious and time-consuming, we
will not cover that in this lecture. And every Calabi-Yau manifolds corresponds one vacuum in string theory→



String Landscape. However, in order to appreciating Calabi-Yau compactification in string theory we start with
simple one–Kaluza-Klein compactification in field theory.

1.2 Kaluza-Klein compactification

Consider therefore a field theory in 5d spacetime dimensions M(5) with metric Gµν ,µ,ν = 0,1, ...,4. Let
dimension x4 be rolled up on a circle, i.e. identify

x4 = x4 +2πR (1.2)

This corresponds to the compactification ansatz

M(5)→ R1,3×S1 (1.3)

The compactified space - here S1 with radius R - is in general called the internal space or the compactification
manifold.

Then decomposition (only focus on massless fields here) of various fields after compactification such as
metric Gµν will gives rise to

i: A Scalar σ = G44
1,

ii: Vector bosons Ai = Gi4, i = 0,1, ...,3,

iii: 4 dim Metric G̃i j, i, j = 0,1, ...,3.

The 5d Einstein- Hilbert action decomposes as 2

S =
1

2k2
5

∫
d5x
√
−GR(5)

=
2πR
2k2

5

∫
d4x
√
−G̃eσ (R(4)− 1

4
e2σ Fi jF i j +∂iσ∂

i
σ)

(1.4)

where Fi j = ∂[iA j] is the 4d gauge field strength. As one can see that the 4d physics such as coupling, fields are
determined by radius of the inner space S1. Note that

Vol(S1) =
∫ 2π

0
dx4
√

G44 = 2π
√

σ (1.5)

Namely the VEV of the scalar field σ =
√

G44, hence known as radion, determines a geometric property of the
internal space S1, the volume of S1. And there is no potential in 4d to constraints it hence it is massless. Such flat
scalar fields whose VEV determine geometric properties of the compactification space are called moduli fields.
One need to stabilize them via other available approaches. In Type IIB/F-theory, There are several trusted
scenarios (KKLT/ Large Volume scenario)can service that, which gives much credits for model-building in
F-theory.

• Lesson: The geometry/topology of internal space determines the low dimensional physics such as coup-
ling, spectrum, etc. Consider more non-trivial space, like Calabi-Yau, there are much more moduli fields arisen
from the geometry of space.

1Of course in this case, σ ∼ R2. But let’s stick to this notation since the point we will get is in general.
2the following action isnt quite of the familiar Einstein-Hilbert form because of that strange factor of eσ thats sitting out front.

Actually it’s known as string frame, one can redefine the fields like G which now depends on σ to absorb this term so that it can put as
the familiar Einstein-Hilbert form.
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1.3 Torus

More non-trivial geometry involves 2d Torus T 2.

Recall that a (two-dimensional) Torus T 2 can be defined as the quotient C/Λ, where Λ is a lattice in C. The
lattice Λ can be defined by two vectors~a,~b∈C, such that the torus is given by identifying~x∼=~x+~a∼=~x+~b. The
area of the torus is given by the area of the parallelogram spanned by~a and~b, while the shape is determined by
the angle and the relative length between the two vectors. In complex geometry, the area is known as the moduli
of Kahler parameter of the torus, and the shape is the moduli of complex structure. Hence one can expect that
kahler moduli and complex moduli will appear as scalar fields in low-dimensional compactified fields.

In the figure (1), we set one of the vectors defining Λ to be 1 ∈ C. Then, the complex structure of the torus
is completely determined by the other vector, which we call τ . In this form, it can be easily shown that the
transformations τ → τ + 1 and τ → τ

τ+1 leave the size of lattice Λ invariant(A Kahler deformation leaves the
shape fixed, but changes the volume. A complex structure deformation leaves the volume fixed, but changes the
shape) . In fact, these transformations generate the full group of SL(2,Z), which is thus the symmetry group of
the torus.

Figure 1: Torus, Adapted from [5]

1.4 Local model with D7-branes

In order to get 4d N = 1 effective theories, one favorable way in Type IIB that is consider Calabi-Yau compac-
tification with space-filling D7-brane, namely the D7-branes spans 4d Minkowski space R1,3 and a complex 2
surface inside Calabi-Yau. As we discussed in the previous two lecture, the matter and couplings of standard
model can arise from intersecting brane model as the below picture shows:

This is commonly way to do model building as a bottom-up approach, in which we first construct a local
configuration realizing a particular gauge sector (Standard model) of physical interest. We then embed this local
sector in a consistent global compactification (incorporate Gravity), which defines a complete string vacuum.
However there are several problems with this local model:

• Like the disadvantage of usual bottom-up approach, it does not keep track of all the global consistency
conditions required by the full string theory. For example, the decoupling from gravity usually gives a constraint
on the possible spaces where the local configuration is located. Thus, local models narrow down the possible
vacua in the string landscape and can give possible requirements of the global geometry. one also should notice
when the 6d internal space is compact, the D7-brane needs O7-plane to cancel its RR charge and tension since
the compact properties of X3 makes the flux run nowhere, which makes X3 losing the property of Calabi-Yau.
Instead, it would be kahler manifold B3.
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Figure 2: Intersecting D-brane model, Adapted from [3]

Except the above common disadvantage of bottom-up approach, there are two main issues associated with
type IIB model building needing to be addressed :

• D-branes are often treated in the probe approximation for perturbative descriptions of Type IIB, where
the backreaction on the geometry and form-potentials due to non-zero tension and RR-charge are neglected far
from the brane. For sources (branes) of high codimension this is often a valid approximation, but in the case
of 7-branes of co-dimension 2 that is no longer true due to the speciality of Possion eqaution in 2d. Namely,
∆Φ(r) = δ (r)→Φ(r) = 1

rn−2 for n > 2.

• Though this is technique issue, the exceptional gauge groups En (which is pistol in Grand Unified theories,
such as E6 in SU(5) GUT model) are hard to generated in the intersecting brane model in perturbative Type IIB
string, one needs go to non-perturbative limit to generate the exceptional gauge group.

2 Back-reaction of D7-brane in Type IIB

Warning: We will only talk about the part from charge back-reaction. For the mass backreaction on background
geometry, this is believed that the 10d background geometry is warped with factors instead being a direct
product.

We have seen that 7-branes carry magnetic charges under C0 (electric charges under C8← SCS = µ
∫

C8)inside
3 τ := C0 + ie−φ , Now we want to see what’s the back-reaction of D7-brane. Define the complex coordinate
z ∈C parametrises the z = x8 + ix9 plane that is orthogonal to the D7-brane where D7-brane is pointlike source
, the equations of motion (2-dim Possion eqaution) for C8 in presence of a 7-brane at z = z0 takes the form

d ∗F9 = δ
2(z− z0) (2.1)

Gauss Law tells us the integrated form should be ( in the normalized unit )

1 =
∫

C
d ∗F9 =

∮
S1

F1 =
∮

S1
dC0 (2.2)

Also with constraints from supersymmetry, which turns out that the axio-dilaton τ must be a holo-morphic
function in z, makes the simple solution:

τ(z) = τ0 +
1

2πi
log(z− z0)+ regular at z0 (2.3)

3the complexities of τ is required by supersymmetry, where the image part is string coupling gs := e−φ
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in the vicinity of a D7-brane. Note that at z = z0, where D7-branes locate, the value of τ diverges. Hence we
can view the degenerations of τ as a ”detection” to signal the D7-branes.

The apparent issue arising from the monodromy of the logarithm, i.e. τ → τ + 1 when we move around
z0 in a circle. At first sight this might come as a shock as it seems to make a consistent interpretation of the
background solution impossible.

The deus ex machina approaching to our rescue is the fact that Type IIB is invariant under SL(2,Z). The

Monodromy above can be given by the matrix
(

1 1
0 1

)
i.e. a symmetry of the theory. This suggests that one

can identify D7-branes by their monodromy effect on the axio-dilaton profile τ .

2.1 SL(2,Z) invariance of Type IIB

We have discussed the the low-energy limit of Type IIB in the last lecture, here just review the basics. Its
bosonic field content is summarised in the following table (3).

Figure 3: Bosonic field content of 10D type IIB SUGRA

Its action takes the form

SSUGRA =
2π

l8
s

∫
d10x(

√
−GR− 1

2(Imτ)2 dτ ∧∗dτ̄ +
1

Imτ
dG3∧∗dḠ3 +

1
2

F̃5∧ F̃5 +C4∧H3∧F3) (2.4)

with G3 = F3− τH3, F̃5 = F5− 1
2C2∧H3 +

1
2 B2∧F3 and τ =C0 + ie−φ . Here the field strength tensors we have

introduced in last lecture as Fn+1 = dCn,H3 = dB2.

One crucial property of this action is an SL(2,R) symmetry, which acting the fields as(
C4
G

)
→
(

C4
G

)
, τ → aτ +b

cτ +d
,

(
C2
B2

)
→
(

a b
c d

)(
C2
B2

)
,

(
a b
c d

)
∈ SL(2,R) (2.5)

When going to quantum level, due to the D(-1)-instanton, only SL(2,Z) survives. Note that the S-duality
τ → −1

τ
is included in this symmetry.

3 Introduction to F-theory

Hence how to describe the back-reaction of D7-brane on the geometry? Given the fact we discussed above,
the crucial observation one can make is that by identifying the axio-dilaton τ with the modular parameter of
an auxiliary torus, which we briefly introduced in section 1, the SL(2,Z) invariance of Type IIB can be seen as
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simply the symmetry transformation of that torus, which is fibered over the 10-dimensional Type IIB geometry
R1,3×B3 so that the Torus fibered over B3 gives rise to a Calabi-Yau four-fold 4.

Note that since τ various on the B3 and τ :=C0+ ie−φ , hence the string coupling gs := e−φ can be infinities
over some place on the B3. This leads to

• Definition: F-theory is a non-perturbative formulation of Type IIB compactification with 7-branes back-
reaction on the geometry 5.

We should stress that the B3 is the physical space-time where the Torus T 2 is only a auxiliary space which
encoded the physics of the 7-branes. Hence the in F-theory the space-times is 12, the real physical space-time
is still 10.

3.1 Elliptic fibration of CY

Algebraic speaking, a elliptic curve (Torus with a marked point) can be defined as the loci {[x : y : z]} inside the
weighted projective space P231

6 satisfying the so-called Weierstrass form 7:

y2 = x3 + f xz4 +gz6 (3.1)

and the point where τ diverges is described by zeros of ∆ := 4 f 3 +27g2.

Figure 4: Torus degeration, Adapted from [5]

Armed with this representation of a single elliptic curve, we can proceed to elliptic fibrations 8. Suppose
we have some n-complex dimensional manifold Bn, covered by local coordinates ui. Then a fibration of the
Weierstrass curve over Bn is obtained by promoting the constants f and g to suitable polynomials in the coor-
diates ui of Bn, f = f (ui),g = g(ui) and further satisfying certain condition in order to be a Calabi-Yau space
9. Hence the complex structure τ is now dependent on the base coordinates ui. In particular, the elliptic fiber
degenerates on a codimension-one sublocus on Bn determined by the vanishing of the likewise ui-dependent
discriminant ∆ = 27g2 + 4 f 3. In view of what we said before, this vanishing locus must be interpreted as a
divisor (codimension 1 surface inside Bn) wrapped by a stack of 7-branes.

From a physics perspective the most essential data of an elliptic fibration are the locus and the type of
fiber degenerations because these allow us to deduce the nature of the 7-branes wrapping the corresponding

4Note that Minkowski space does not being 4 dimension. In principle F-theory can defined on R1,11−2d ×Xd with d = 1,2,3,4,5,
here in order to get a phenomenological viable model we need to consider compactifications of F-theory down to 4 real dimensions.

5There are various ways to define f-theory depending on which angle one look at it. For example, one can also view it as a limit of
vanishing size of elliptic in elliptic fibered Calabi-Yau manifold compactification of M-theory.

6Namely, (x,y,z)∼= (λ 2x,λ 3y,λ z),λ ∈ C−0
7There are different ways to describe an elliptic curve, here we use the simplest one, namely being as a hypersurface or, more

generally, as a complete intersection of some weighted projective space. Every elliptic fibration with a section can be represented by a
Weierstrass model defined in terms of f and g.

8A fibration is a generalization of the notion of a fiber bundle, except that the fibers need not be the same space, nor even homeo-
morphic; rather, they are just homotopy equivalent. One without those backgrounds can roughly view this as relation between hair and
head

9The condition is f ∈ Γ(Bn,L),g ∈ Γ(Bn,L),c1(L) = c1(Bn)
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Figure 5: A Calabi-Yau four-fold as elliptic fibration over B3

divisor. The different ways how the complex structure of the elliptic fiber can degenerate have been classified
by Kodaira for the case of a Weierstrass model.

sing. discr. gauge enhancement coefficient vanishing degrees
type deg(∆) type group a1 a2 a3 a4 a6

I0 0 — 0 0 0 0 0
I1 1 — 0 0 1 1 1
I2 2 A1 SU(2) 0 0 1 1 2

Ins
2k 2k C2k SP(2k) 0 0 k k 2k

Is
2k 2k A2k−1 SU(2k) 0 1 k k 2k

Ins
2k+1 2k+1 [unconv.] 0 0 k+1 k+1 2k+1

Is
2k+1 2k+1 A2k SU(2k+1) 0 1 k k+1 2k+1

II 2 — 1 1 1 1 1
III 3 A1 SU(2) 1 1 1 1 2

IVns 4 [unconv.] 1 1 1 2 2
IVs 4 A2 SU(3) 1 1 1 2 3
I∗ns
0 6 G2 G2 1 1 2 2 3

I∗ss
0 6 B3 SO(7) 1 1 2 2 4
I∗s
0 6 D4 SO(8) 1 1 2 2 4

I∗ns
1 7 B4 SO(9) 1 1 2 3 4
I∗s
1 7 D5 SO(10) 1 1 2 3 5

I∗ns
2 8 B5 SO(11) 1 1 3 3 5
I∗s
2 8 D6 SO(12) 1 1 3 3 5

I∗ns
2k−3 2k+3 B2k SO(4k+1) 1 1 k k+1 2k

I∗s
2k−3 2k+3 D2k+1 SO(4k+2) 1 1 k k+1 2k+1

I∗ns
2k−2 2k+4 B2k+1 SO(4k+3) 1 1 k+1 k+1 2k+1

I∗s
2k−2 2k+4 D2k+2 SO(4k+4) 1 1 k+1 k+1 2k+1

IV∗ns 8 F4 F4 1 2 2 3 4
IV∗s 8 E6 E6 1 2 2 3 5
III∗ 9 E7 E7 1 2 3 3 5
II∗ 10 E8 E8 1 2 3 4 5

non-min 12 — 1 2 3 4 6

Table 3.1: Refined Kodaira classification resulting from Tate’s algorithm, Adapted from [4].
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For our purpose, we introduce the so-called Tate form ( A general Weierstrass form can be locally viewed
as a Tate form )

y2 = x3 + xyza1 + x2z2a2 + yz3a3 + xz4a4 + z6a6 (3.2)

where the coefficients ai is the function in the base and f ,g in Weierstrass model can be expressed with ai.
Hence the Kadaira classification of the type of singularities can be labeled by the ai, which listed in the (3.1).

• Important Fact: The types of singularities dictates the types of gauge group living on the D7-branes,
which can be seen from (3.1).

The above fact, dubbed as ADE classification, can be understood from dual M-theory perspective, which
beyond the scope of our lecture, hence we skip the discussion and refer to references like [1]. However, one
should bear in mind that the physical space B3 is always smooth in F-theory compactification, the singularities
we discussed above only refers to the extra 2d elliptic curve.

As we have stressed above, the location of 7-branes are determined by where the discriminant vanishes

∆ = ∏
i

pi(ui) = 0 (3.3)

where we have factorized into several polynomials pi and each polynomial pi define a 4-cycle (Divisor Si := pi)
inside the base space B3 wrapped by a stack of 7-branes.

And two stacks of 7-branes can intersect on 2-cycles Σi j:

Σi j = Si
⋂

S j (3.4)

which are dubbed as matter curves inside B3, aka the matters located. We have discussed the reason in the last
lecture, Generally we can simply identify the localized matter by considering a general breaking pattern for the
intersecting branes

GΣ→ Gi×G j

GΣ→ (Ad(Gi),1 j)⊕ (1i,Ad(G j))⊕m [(Rm
i ,R

m
j )⊕ c.c]

(3.5)

However, in order to obtaining the chiral matter, the essential piece should be added is G4 flux (the part
descending to gauge fluxes when going back to Type IIB perturbative limit)

ξR = nR−nR∗ ∼
∫

Σ

G4 (3.6)

where G4 = dC3 fluxes can be understood as VeV of background field strength G4, which also heavily depends
on the Calabi-Yau manifolds which F-theory compactificaties).

Yukawa points hence are given by three matter curves Σi intersecting at a point

p = Σi∩Σ j ∩Σk (3.7)

This can be understood that the Yukawa coupling is determined by an overlap integral of the internal wave
functions on the 7-brane, which depends on the local properties of the p on the 7-branes. The texture of
Yukawa couplings crucially depends on the geometry.

In Summary,

9



Figure 6: The dimension of geometry corresponds the various physics in F-theory

4 Toy model-SU(5) GUT

To give a basic idea of how it works, we now try to building SU(5) GUT in F-theory. Firstly defining w as one of
the coordinates in the Base B3 we can realize the SU(5) gauge group on a divisor S : w = 0, which corresponds
to a singularity type I5 in the above Table, the following vanishing degrees dictates the configuration:

a1 = b5, a2 = b4w, a3 = b3w2, a4 = b2w3, a6 = b0w5 (4.1)

This results in a discriminant given by

∆ =
w5

16
(b5P+wb2

5(8b4P+b5R)+w2(16b2
3b2

4 +b5Q)+O(w3)) (4.2)

where P = b2
3b4−b2b3b5 +b0b2

5 and likewise R and Q involve simple terms of bi.

Here ∆ factorizes such that the first term ∝ w5, which is consistent with the location of a divisor S with
gauge group SU(5), and the term in brackets does not generically factorize more and therefore corresponds to
a simple abelian I1- singularity away from S, denoted as S′ with gauge group U(1). Now further enhancements
can occur at sub-loci S∩S′, such that higher rank gauge groups localize along matter curves Σ := S∩S′ where
the enhanced gauge group can be identified by Tate’s algorithm.

Figure 7: Matter curves, Adapted from [6]

Since the S′ carries no non-abelian gauge group, the singularity gets enhanced by rank one. the matter
curves and its associated spectrum are:

• The 5 and its conjugate arises on matter curves ΣSU(6) : ΣSU(6) : w = 0∩P = 0 under a gauge enhancement
to SU(6), along which the discriminant ∆ scales like w6, as required for a SU(6) singularity:

SU(6)→ SU(5)×U(1)

35→ 240⊕10⊕51⊕ 5̄−1
(4.3)

• The 10 and its conjugate arises on matter curves ΣSO(10) : w = 0∩b5 = 0 under a gauge enhancement to
SO(10), along which the discriminant ∆ scales like w7, as required for a SO(10) singularity.
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SO(10)→ SU(5)×U(1)

45→ 240⊕10⊕104⊕ 1̄0−4
(4.4)

and Yukawa coupling point:

• The 10 10 5H Yukawa (for generating mass of down quarks) is localized at a point pE6 : w = 0∩b5 =

b4 = 0. Namely:

E6→ SU(5)×U(1)×U(1)

78→ 240,0⊕10,0⊕10,0⊕ [10−1,−3⊕104,0⊕5−3,3⊕ c.c]⊕15,3⊕1−5,−3
(4.5)

• The 10 5̄m 5̄H Yukawa (for generating mass of up quarks) is localized at a point pSO(12) : w = 0∩b5 =

b3 = 0 .

SO(12)→ SU(5)×U(1)×U(1)

66→ 240,0⊕10,0⊕10,0⊕ [104,0⊕ 5̄−2,2⊕ 5̄−2,−2⊕ c.c]
(4.6)

•The coupling 5H 5̄m1 Yukawa is localized at a point pSU(7) : w = 0∩P = R = 0, while b5,b4 6= 0, the
singularity type enhances to A6. The state 1 represents a (possibly localised) GUT singlet, can be viewed as
neutrinos. Hence one can utilize this type of Yukawa coupling to generate masses for Neutrino masses.

SU(7)→ SU(5)×U(1)×U(1)

48→ 240,0⊕10,0⊕10,0⊕50,6⊕5−7,1⊕ c.c]
(4.7)

The global picture looks like the following: Note here we skip the Base B3 and instead look into the GUT

Figure 8: Illustration of SU(5) GUT in F-theory. Adapted from [6]

divisor S which we take del Pezzo surfaces dPn for reason of decoupling gravity. The red matter curve denotes
SO(10) which can be arisen from S intersecting with b5 = 0 as above shows. The two black matter curve
enhance the gauge group to SU(6), which can also be arisen like above shows. The enhancement of SU(7) can
be obtained by tuning on a matter curves perpendicular to GUT divisor S.

Note that for generic SU(5) geometries above, the matter curve for the 5 representation is a single connected
object; in this situation all three generations of 5m and the vector-like pair 5H + 5̄H are localised on the same
curve. this is unacceptable for phenomenological reasons such as generating dangerous proton decay. This can
in principle fixed by introducing extra symmetries as a selection rule, such as U(1) symmetries, which is the
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focus in last past years. The abelian symmetry is F-theory is connected with the global properties of Calabi-
Yau manifold, more precisely is global section, and this is beyond the scope of the lecture, one can refer to vast
references.

We also have not discussed the chirality of the matter. This is dictated by the choices of the G4 fluxes, as
above section mentioned. The G4 := dC3 fluxes heavily depends on the geometry of Calabi-Yau four-fold. In
precise term, G4 ∈ H(2,2)(X̂4,

1
2Z)∩H(2,2)(X̂4). In this SU(5) model building, there are also other requirements

on gauge fluxes for addressing the issue with the common GUT such as avoiding bulk exotic matter when
breaking GUT group SU(5), the gauge coupling unification in MSSM. etc. We refer to [1] for details.

There are still many GUT problem, we will not discus here due to time reason, such as GUT breaking (via
hypercharge flux localized on the GUT brane), Proton decay (for example, avoiding through U(1) symmetries
to forbid some dangerous couplings, implies that the 5 representation of SU(5) localized on different curves
) , doublet-triplet splitting (e.g Imposing certain conditions on matter curves gauge fluxes F ), Absence of
massless bulk exotics, etc. In principle, F-theory model can provide nice and clear methods (e.g. considering
SU(5)×U(1) theories in 4d) to attack those GUT problems [4], that is one of exciting sides of F-theory.

However, one should notice that there are general issues associated with model building in string theory.
The first prominent one is the string landscape. Namely there are too much vacuum (corresponding to the
number of Calabi-Yau spaces as well as some background configurations like fluxes, In F-theory it’s estimated
as around 10500) that satisfying features of standard model or MSSM but there is no first principle to pick
up one, if people do not satisfy the Anthropic principle. The smallness of cosmological constants is also an
obstinate one in string theory. As so far, there is no satisfying solution to this problem.
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A Standard model

The Standard model spectrum are listed in the following figure

Figure 9: Standard model

It produce the masses for quarks Qi,U i,Di and leptons Li,E i through the Yukawa coupling

LY = Y i j
U Q̄iU jH∗+Y i j

D Q̄iD jH +Y i j
L L̄iE jH +h.c. (A.1)

where i, j are generation indices and YU,D,E are coupling constant.

B SU(5) GUT

SU(5) is the mother of all GUT groups. In Georgi-Glashow SU(5) models, the embedding of the MSSM gauge
group SU(3)× SU(2)×U(1)Y rests on the identification of the U(1)Y generator with the Cartan generator
T = diag(2,2,2,−3,−3) within SU(5). The MSSM matter is organised into SU(5) multiplets as

10M ↔ (QL,uc
R,e

c
R), 5̄m↔ (dc

R,L) 5̄H ↔ (T d ,Hd) 5H ↔ (T u,Hu),1↔ ν
c
R (B.1)

where the triplets Tu,Td , which are not present in the MSSM, must receive high-scale masses via doublet-triplet
splitting. The interaction terms for up and down type quarks are respectively controlled by

QUHu← 10M ·10M ·5H (B.2)

LEHd +QDHD← 10M · 5̄M · 5̄H (B.3)

C SU(5) GUT breaking via Hypercharge fluxes

The philosophy behind this scenario is turning on hypercharge fluxes associated with U(1)Y so that the com-
mutator is SU(3)×SU(2)×U(1)Y .

.............

D Soft SUSY breaking

The general philosophy of soft SUSY breaking is that the SUSY is dynamically broken in the hidden sector
and communicate with visable sector through Messages fields. In the hidden sector supersymmetry is broken
dynamically and can be parametrised by chiral super
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eld, X , that has a non-zero vev

X = x+θF (D.1)

The scale of the supersymmetry breaking in the hidden sector is then set by
√

F .

There are two types of soft SUSY breaking scenario in MSSM. one is gravity mediation breaking and the
other is gauge mediation breaking. the form will generate troublesome Flavor changing neutral current (FCNC).
The later the FCNC is suppressed but work has to be done with the µ problem.

In an SU(5) GUT model arising from F-theory compactification, the messengers fields f , f̄ are comprised
of vector-like pairs 5+ 5̄ or 10+ 1̄0. The X field is a GUT singlet and the correspond matter curve normal to
GUT Brane. The the superpotential term

W ⊃ λX f f̄ (D.2)

will generate a mass for f , f̄ through the VEV of X . The SUSY breaking is then communicated to the visible
sector because the MSSM fields also interact with the messenger fields.

The µ problem is arisen from the term

W ⊃ µHuHd (D.3)

The natural scale for µ is the GUT scale but the electroweak symmetry breaking of the Standard Model requires
it to lie at the weak scale.

In F-theory one can utilize the fact that Hu and Hd live on different matter curves via PQ symmetry to
evading this coupling. And a weak scale term can then be generated by coupling the messenger fields to the
Higgs.
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