Know its limits Constraining Higgs couplings at the LHC and beyond [1812.07587, 1811.08401]

Anke Biekötter

with Tyler Corbett, Dorival Gonçalves, Tilman Plehn

Michihisa Takeuchi and Dirk Zerwas

Student Lecture, May 10, 2019

UNIVERSITÄ HEIDELBERG ZUKUNFT SEIT 1386

Outline

- status of LHC Higgs physics upper limit - evidence - observed
- dimension-6 Lagrangian
- LHC Run-II fit

fermionic operators + EWPD

HE-LHC fit

Higgs self-coupling

Conclusion

[Minho Son's slide]

Status of Higgs physics

$\mu = \frac{\sigma \times BR}{(\sigma \times BR)}$						
((S A BILISM					
branching ratios						
bb	58.2%					
WW^*	21.4 %					
gg	8.2%					
au au	6.2%					
сē	2.9%					
ZZ^*	2.6 %					
$Z\gamma$,	$\sim 0.2 \%$					
$\gamma\gamma$	$\sim 0.2 \%$					

ATLAS Pr	eliminary .5 - 79.8 fb ⁻¹	⊷Tota	I 🗔 Stat	. — \$	Syst.	SM
$m_H = 125.09 \text{ Ge}$ $p_{SM} = 71\%$	eV, <i>Y_H</i> < 2.5			Total	Stat.	Syst.
ggF γγ			0.96	±0.14 (±0.11,	+0.09 -0.08)
ggF ZZ	b		1.04	+0.16 -0.15 (±0.14,	± 0.06)
ggF WW	b		1.08	±0.19 (± 0.11,	± 0.15)
ggF ττ	H in the second		0.96	+0.59 -0.52 (+ 0.37 - 0.36	+0.46 -0.38)
ggF comb.			1.04	±0.09 (±0.07,	+0.07 -0.06)
VBF γγ			1.39	+0.40 -0.35 (+ 0.31	+0.26 -0.19)
VBF ZZ	- E		2.68	+0.98 -0.83 (+ 0.94 - 0.81 ,	+0.27 -0.20)
VBF WW	Herei		0.59	+ 0.36 - 0.35 (+ 0.29 - 0.27 ,	± 0.21)
VBF ττ	-		1.16	+ 0.58 - 0.53 (+ 0.42	+0.40)
VBF bb		-	3.01	^{+ 1.67} - 1.61 (+ 1.63 - 1.57,	+0.39 -0.36)
VBF comb.	-		1.21	+0.24 -0.22 (+0.18 -0.17 ,	+0.16 -0.13)
VH γγ			1.09	+ 0.58 - 0.54 (+ 0.53 - 0.49 ;	+0.25 -0.22)
VH ZZ 🛛 🛏			0.68	+ 1.20 - 0.78 (+ 1.18	+0.18)
VH bb	H ac il		1.19	+ 0.27 - 0.25 (+ 0.18	+0.20 -0.18)
VH comb.	1 90 H		1.15	+0.24 -0.22 (±0.16,	+0.17 -0.16)
ttH+tH γγ	- -		1.10	+0.41 -0.35 (+ 0.36	+0.19 -0.14)
ttH+tH VV		4	1.50	+ 0.59 - 0.57 (+0.43	+0.41 -0.38)
ttH+tH ττ			1.38	+ 1.13 - 0.96 (+0.84 -0.76 ;	+0.75 -0.59)
ttH+tH bb			0.79	+0.60 -0.59 (±0.29,	±0.52)
ttH+tH comb.	••		1.21	+0.26 -0.24 (±0.17,	+0.20 -0.18)
20	2	2	4	6		8
_						

Parameter normalized to SM value

Dimension-6 Lagrangian

HISZ basis [Hagiwara, Ishihara, Szalapski, Zeppenfeld]

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \sum_{x} rac{f_x}{\Lambda^2} \mathcal{O}_x$$

$$\begin{split} & \mathcal{O}_{GG} = \phi^{\dagger} \phi \ G^{a}_{\mu\nu} G^{a\mu\nu} & \mathcal{O}_{WW} = \phi^{\dagger} \bar{w}_{\mu\nu} \bar{w}^{\mu\nu} \phi & \mathcal{O}_{BB} = \phi^{\dagger} \bar{B}_{\mu\nu} B^{\mu\nu} \phi \\ & \mathcal{O}_{W} = (D_{\mu} \phi)^{\dagger} \bar{w}^{\mu\nu} (D_{\nu} \phi) & \mathcal{O}_{B} = (D_{\mu} \phi)^{\dagger} \bar{B}^{\mu\nu} (D_{\nu} \phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger} \phi \right) \partial_{\mu} \left(\phi^{\dagger} \phi \right) \\ & \mathcal{O}_{e\phi,33} = (\phi^{\dagger} \phi) (\bar{L}_{3} \phi e_{R,3}) & \mathcal{O}_{u\phi,33} = (\phi^{\dagger} \phi) (\bar{Q}_{3} \bar{\phi} u_{R,3}) & \mathcal{O}_{d\phi,33} = (\phi^{\dagger} \phi) (\bar{Q}_{3} \phi d_{R,3}) \\ & \mathcal{O}_{WWW} = \operatorname{Tr} \left(\bar{w}_{\mu\nu} \bar{w}^{\nu\rho} \bar{w}^{\mu}_{\rho} \right) \end{split}$$

 $\hat{B}_{\mu\nu} = ig' B_{\mu\nu}/2, \quad \tilde{W}_{\mu\nu} = ig\sigma^a W^a_{\mu\nu}/2$ di-higgs not included for LHC Run II ($\mathcal{O}_{\phi3}$ not included)

Dimension-6 Lagrangian

HISZ basis [Hagiwara, Ishihara, Szalapski, Zeppenfeld]

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \sum_{x} rac{f_x}{\Lambda^2} \mathcal{O}_x$$

$$\begin{array}{lll} & \mathcal{O}_{GG} = \phi^{\dagger} \phi \ G^{a \mu \nu}_{\mu \nu} G^{a \mu \nu} & \mathcal{O}_{WW} = \phi^{\dagger} \bar{W}_{\mu \nu} \bar{W}^{\mu \nu} \phi & \mathcal{O}_{BB} = \phi^{\dagger} \bar{B}_{\mu \nu} \bar{B}^{\mu \nu} \phi \\ \\ & \mathcal{O}_{W} = (D_{\mu} \phi)^{\dagger} \bar{W}^{\mu \nu} (D_{\nu} \phi) & \mathcal{O}_{B} = (D_{\mu} \phi)^{\dagger} \bar{B}^{\mu \nu} (D_{\nu} \phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger} \phi \right) \partial_{\mu} \left(\phi^{\dagger} \phi \right) \\ \\ & \mathcal{O}_{e\phi,33} = (\phi^{\dagger} \phi) (\bar{L}_{3} \phi_{eR,3}) & \mathcal{O}_{u\phi,33} = (\phi^{\dagger} \phi) (\bar{Q}_{3} \bar{\sigma} u_{R,3}) & \mathcal{O}_{d\phi,33} = (\phi^{\dagger} \phi) (\bar{Q}_{3} \phi_{dR,3}) \\ \\ & \mathcal{O}_{WWW} = \mathrm{Tr} \left(\bar{W}_{\mu \nu} \bar{W}^{\nu \rho} \bar{W}_{\rho}^{\mu} \right) & \mathcal{O}_{BW} = \phi^{\dagger} \bar{B}_{\mu \nu} \bar{W}^{\mu \nu} \phi & \mathcal{O}_{\phi,1} = (D_{\mu} \phi)^{\dagger} \phi \phi^{\dagger} (D^{\mu} \phi) \\ \\ & \mathcal{O}_{\phi Q}^{(1)} = \phi^{\dagger} (i \stackrel{\leftrightarrow}{D}_{\mu} \phi) (\bar{Q}_{\gamma} \mu^{\mu} Q) & \mathcal{O}_{\phi Q}^{(3)} = \phi^{\dagger} (i \stackrel{\leftrightarrow}{D}_{\mu} \phi) (\bar{Q}_{\gamma} \mu^{\nu} \sigma^{a} Q) & \mathcal{O}_{\mu u}^{(1)} = \phi^{\dagger} (i \stackrel{\leftrightarrow}{D}_{\mu} \phi) (\bar{u}_{R} \gamma^{\mu} u_{R}) \\ \\ & \mathcal{O}_{\phi d}^{(1)} = \phi^{\dagger} (i \stackrel{\leftrightarrow}{D}_{\mu} \phi) (\bar{d}_{R} \gamma^{\mu} d_{R}) & \mathcal{O}_{\phi e}^{(1)} = \phi^{\dagger} (i \stackrel{\leftrightarrow}{D}_{\mu} \phi) (\bar{e}_{R} \gamma^{\mu} e_{R}) & \mathcal{O}_{LLL} = \phi^{\dagger} (\bar{L} \gamma_{\mu}) (\bar{L} \gamma^{\mu} L) \end{array}$$

$$\hat{B}_{\mu\nu} = ig' B_{\mu\nu}/2, \quad \hat{W}_{\mu\nu} = ig\sigma^a W^a_{\mu\nu}/2$$

di-higgs not included for LHC Run II ($\mathcal{O}_{\phi3}$ not included)

Processes

Higgs + di-boson production (WW, WZ) + EWPD

SFitter

 fits via toy Monte Carlo method shift the data according to uncertainties fit Gaussian to best fit points

[Monte Carlo replica method]

uncertainties:

- flat (theory)
- Poisson (statistical)
- Gaussian (systematics)

• full correlation of systematic uncertainties

luminosity, JES, JER, lepton efficiency,

b-tagging, ...

LHC Run II fit - What's new?

- fermionic operators
- data
 - Run II rate measurements (tth!)
 - ATLAS WZ distribution
 [ATLAS-CONF-2018-034]
 - ATLAS Vh distribution [CERN-EP-2017-250,1712.06518v2]
 - EWPD

 $\Gamma_{Z}, \sigma_{h}^{0}, \mathcal{A}_{l}(\tau^{\text{pol}}), R_{l}^{0}, \mathcal{A}_{l}(\text{SLD}), A_{\text{FB}}^{0,l}, R_{c}^{0}, R_{b}^{0}, \mathcal{A}_{c}, \mathcal{A}_{b}, A_{\text{FB}}^{0,c}, A_{\text{FB}}^{0,b}, A_{\text{FB},\text{SLD/LEP}}^{0,b}$ $M_{W}, \Gamma_{W}, \text{BR}(W \to l\nu)$

[LEP/SLD 0509008, PDG]

LHC Run II fit - Rate measurements

production/decay mode	ATLAS	CMS
$H \rightarrow WW$	Ref. [11]	Ref. [12]
$H \rightarrow ZZ$	Ref. [15]	Ref. [16, 17]
$H ightarrow \gamma \gamma$	Ref. [1]	Ref. [2]
$H \to au ar{ au}$		Ref. [9, 10]
$H ightarrow \mu ar{\mu}$	Ref. [7]	Ref. [8]
$H ightarrow b ar{b}$	Ref. [3]	Ref. [4]
$H \rightarrow Z \gamma$	Ref. [13]	Ref. [14]
$H \rightarrow \text{invisible}$		Ref. [5, 6]
$tar{t}H$ production		
$H ightarrow \gamma \gamma$	Ref. [18]	Ref. [2]
$H \rightarrow leptons$	Ref. [19]	Ref. [20, 21]
$H ightarrow b \overline{b}$	Ref. [18]	Ref. [22]
kinematic distributions	Vh EXO Ref. [25]	
	WZ Ref. [23]	

LHC Run II fit - without fermionic operators

[SFitter Run I: Butter, Éboli, Gonzalez-Fraile, Gonzalez-Garcia, Plehn, Rauch (1604.03105)]
[Ellis, Murphy, Sanz, You (1803.03252)],

[da Silva Almeida, Alves, Rosa Agostinho, Éboli, Gonzalez-Garcia (1812.01009)]

tth measurements disentangle \mathcal{O}_{GG} and \mathcal{O}_t limits on bosonic operators improved by distributions

inclusion of fermionic operators weakens limits on bosonic operators

LHC Run II fit - correlations

LHC Run II fit - correlations

without fermionic operators

 $\begin{array}{c} 0.5 \\ 0.4$

with fermionic operators

correlation between f_B and f_W reintroduced

	Zqq	Wqq′	HZqq	HW qq'	ΖlĪ	Wιν
$\mathcal{O}_{\phi 1}$	×	×			×	×
\mathcal{O}_{BW}	×	×			×	×
${\cal O}_{\phi Q}^{(3)}$	×	×	×	×		
${\cal O}_{\phi Q}^{(1)}$	×		×			
$\mathcal{O}_{\phi u}^{(1)}$	×		×			
$\mathcal{O}_{\phi d}^{(1)}$	×		×			
${\cal O}_{\phi e}^{(1)}$					×	

positive Wilson coefficients dashed

	Zqq	Wqq′	HZqq	HW qq'	Ζιī	Wιν
$\mathcal{O}_{\phi 1}$	×	×			×	×
\mathcal{O}_{BW}	×	×			×	×
${\cal O}_{\phi Q}^{(3)}$	×	×	×	×		
${\cal O}_{\phi Q}^{(1)}$	×		×			
$\mathcal{O}_{\phi u}^{(1)}$	×		×			
$\mathcal{O}_{\phi d}^{(1)}$	×		×			
${\cal O}_{\phi e}^{(1)}$					×	

contributions to ZH production

LHC Run II fit - including fermionic operators

[SFitter Run I: Butter, Éboli, Gonzalez-Fraile, Gonzalez-Garcia, Plehn, Rauch (1604.03105)] [Ellis, Murphy, Sanz, You (1803.03252)], [da Silva Almeida, Alves, Rosa Agostinho, Éboli, Gonzalez-Garcia (1812.01009)]

inclusion of fermionic operators weakens limits on bosonic operators

LHC Run II fit - tighter constraints on fermionic operators

[LEP/SLD 0509008, PDG]

limits on fermionic operators tightened or shifted towards SM values

Measuring self-coupling is truly pain in the neck

Higgs self-coupling included

$$\mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger} \phi \right) \partial_{\mu} \left(\phi^{\dagger} \phi \right)$$
$$\mathcal{O}_{\phi3} = -(\phi^{\dagger} \phi)^{3} / 3$$

[Goncalves, Han, Kling, Plehn, Takeuchi]

 $\left|\frac{\Lambda}{\sqrt{f_{\phi3}}}\right| \gtrsim \begin{cases} 1 \text{ TeV} & 68\% \text{ C.L.} \\ 700 \text{ GeV} & 95\% \text{ C.L.} \end{cases}$

after wave function renormalization $H = \sqrt{1 + \frac{f_{\phi,2}v^2}{\Lambda^2}}\tilde{H}$

$$\mathcal{L}_{\text{self}} = -\frac{m_{H}^{2}}{2v} \left[\left(1 - \frac{f_{\phi,2} v^{2}}{2\Lambda^{2} m_{H}^{2}} - \frac{2f_{\phi,3} v^{4}}{3\Lambda^{2} m_{H}^{2}} \right) H^{3} + \frac{2f_{\phi,2} v^{2}}{\Lambda^{2} m_{H}^{2}} H \partial_{\mu} H \partial^{\mu} H \right]$$

interpolated from 8 TeV results

Higgs self-coupling included [Gonçalves, Han, Kling, Plehn, Takeuchi, (1802.04319)]

10 operators $+\mathcal{O}_{\phi_3}$ (no fermionic operators)

$$\begin{split} \mathcal{O}_{GG} &= \phi^{\dagger} \phi \; G^{a \mu \nu}_{\mu \nu} G^{a \mu \nu} & \mathcal{O}_{WW} = \phi^{\dagger} \bar{W}_{\mu \nu} \bar{W}^{\mu \nu} \phi & \mathcal{O}_{BB} = \phi^{\dagger} \bar{B}_{\mu \nu} B^{\mu \nu} \phi \\ \mathcal{O}_{W} &= (D_{\mu} \phi)^{\dagger} \bar{W}^{\mu \nu} (D_{\nu} \phi) & \mathcal{O}_{B} = (D_{\mu} \phi)^{\dagger} \bar{B}^{\mu \nu} (D_{\nu} \phi) & \mathcal{O}_{\phi,2} = \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger} \phi \right) \partial_{\mu} \left(\phi^{\dagger} \phi \right) \\ \mathcal{O}_{e\phi,33} &= (\phi^{\dagger} \phi) (\bar{L}_{3} \phi e_{R,3}) & \mathcal{O}_{u\phi,33} = (\phi^{\dagger} \phi) (\bar{Q}_{3} \bar{\phi} u_{R,3}) & \mathcal{O}_{d\phi,33} = (\phi^{\dagger} \phi) (\bar{Q}_{3} \phi d_{R,3}) \\ \mathcal{O}_{WWW} &= \operatorname{Tr} \left(\bar{W}_{\mu \nu} \bar{W}^{\nu \rho} \bar{W}^{\mu}_{\rho} \right) & \mathcal{O}_{\phi3} = -(\phi^{\dagger} \phi)^{3} / 3 \end{split}$$

channel	observable	# bins	range [GeV]
$WW \to (\ell\nu)(\ell\nu)$	$m_{\ell\ell'}$	10	0 - 4500
$WW \to (\ell\nu)(\ell\nu)$	$p_T^{\ell_1}$	8	0 - 1750
$WZ \to (\ell\nu)(\ell\ell)$	m_T^{WZ}	11	0 - 5000
$WZ \to (\ell\nu)(\ell\ell)$	$p_T^{\ell\ell} (p_T^Z)$	9	0 - 2400
WBF, $H \rightarrow \gamma \gamma$	$p_T^{\ell_1}$	9	0 - 2400
$VH \rightarrow (0\ell)(b\overline{b})$	p_T^V	7	150 — 750
$VH \rightarrow (1\ell)(b\overline{b})$	$p_T^{\dot{V}}$	7	150 — 750
$VH \to (2\ell) (b\bar{b})$	p_T^{V}	7	150 — 750
$HH ightarrow (b\overline{b})(\gamma\gamma), \ 2j$	m_{HH}	9	200 - 1000
$HH ightarrow (b \overline{b}) (\gamma \gamma), \; 3j$	m_{HH}	9	200 - 1000

full = current systematic and theory uncertainties

95 % CL limits on $\frac{\Lambda}{\sqrt{|f_{\phi,3}|}}$ > 250 GeV (700 GeV single param fit) need precise measurements of other Higgs couplings distributions always statistics dominated

full = current systematic and theory uncertainties

95 % CL limits on $\frac{\Lambda}{\sqrt{|f_{\phi,3}|}}$ > 250 GeV (700 GeV single param fit) need precise measurements of other Higgs couplings distributions always statistics dominated

Higgs limits at a 27 TeV collider - Δ framework

full = current systematic and theory uncertainties rate measurements systematics dominated

Conclusions

LHC Run II

- tth measurements disentangle top and gluon couplings
- fermionic operators and EWPD included
- inclusion of fermionic operators weakens limits on (some) operators

HE-LHC

- Higgs self coupling
- TeV-scale reach for $\mathcal{O}(1)$ couplings

- EFTs are a flexible framework to describe deviations from the SM
- global fits allow to combine data from different sectors and to account for correlations
- LHC is testing local properties of the Higgs potential
- future (colliders): global Higgs potential

Thank you for your attention!

- M. Aaboud *et al.* [ATLAS Collaboration], arXiv:1802.04146 [hep-ex].
- [2] A. M. Sirunyan *et al.* [CMS Collaboration], arXiv:1804.02716 [hep-ex].
- [3] M. Aaboud *et al.* [ATLAS Collaboration], JHEP **1712**, 024 (2017) arXiv:1708.03299 [hep-ex].
- [4] A. M. Sirunyan *et al.* [CMS Collaboration], Phys. Lett. B 780, 501 (2018) [arXiv:1709.07497 [hep-ex].
- [5] A. M. Sirunyan *et al.* [CMS Collaboration], Eur. Phys. J. C
 78, no. 4, 291 (2018) doi:10.1140/epjc/s10052-018-5740-1
 [arXiv:1711.00431 [hep-ex]].
- [6] A. M. Sirunyan [CMS Collaboration], CMS-PAS-HIG-17-023.
- [7] M. Aaboud *et al.* [ATLAS Collaboration], Phys. Rev. Lett.
 119, no. 5, 051802 (2017) arXiv:1705.04582 [hep-ex].

- [8] A. M. Sirunyan *et al.* [CMS Collaboration], arXiv:1807.06325 [hep-ex].
- [9] A. M. Sirunyan *et al.* [CMS Collaboration], Phys. Lett. B 779, 283 (2018) arXiv:1708.00373 [hep-ex].
- [10] A. M. Sirunyan [CMS Collaboration], CMS-PAS-HIG-18-007.
- [11] M. Aaboud *et al.* [ATLAS Collaboration], ATLAS-CONF-2018-004.
- [12] A. M. Sirunyan *et al.* [CMS Collaboration], [arXiv:1806.05246 [hep-ex]].
- [13] M. Aaboud *et al.* [ATLAS Collaboration], JHEP **1710**, 112 (2017) arXiv:1708.00212 [hep-ex].
- [14] A. M. Sirunyan et al. [CMS Collaboration], arXiv:1806.05996 [hep-ex].

- [15] M. Aaboud *et al.* [ATLAS Collaboration], JHEP **1803**, 095
 (2018) arXiv:1712.02304 [hep-ex].
- [16] A. M. Sirunyan *et al.* [CMS Collaboration], JHEP **1711**, 047
 (2017) arXiv:1706.09936 [hep-ex].
- [17] A. M. Sirunyan *et al.* [CMS Collaboration], CMS-PAS-HIG-18-001.
- [18] M. Aaboud *et al.* [ATLAS Collaboration], Phys. Lett. B 784, 173 (2018) arXiv:1806.00425 [hep-ex].
- [19] M. Aaboud *et al.* [ATLAS Collaboration], Phys. Rev. D 97, no. 7, 072003 (2018) doi:10.1103/PhysRevD.97.072003
 [arXiv:1712.08891 [hep-ex]].
- [20] A. M. Sirunyan et al. [CMS Collaboration], CMS-PAS-HIG-17-004.

- [21] A. M. Sirunyan *et al.* [CMS Collaboration], arXiv:1803.05485 [hep-ex].
- [22] A. M. Sirunyan et al. [CMS Collaboration], arXiv:1804.03682 [hep-ex].
- [23] M. Aaboud et al. [ATLAS Collaboration], ATLAS-CONF-2018-034.
- [24] A. M. Sirunyan et al. [CMS Collaboration], CMS-PAS-SMP-18-002.
- [25] M. Aaboud *et al.* [ATLAS Collaboration], JHEP **1803**, 174
 (2018) arXiv:1712.06518 [hep-ex].