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Elastic and inelastic hadronic scattering cross-sections are dominated by soft interactions. For
these there is no large momentum transfer or mass present that would give rise to a hard scale
at which αs � 1. Consequently, these processes cannot be calculated in perturbative QCD and
alternative models are needed to calculate them. In Table 1 the total pp cross-section at the

√
s = 13

TeV is compared to some example hard processes; even the dominant inclusive jet production cross-
section lies several orders below the total cross-section.

σpp(total) ∼ 110 mb
σpp(elastic) ∼ 30 mb
σpp(incl. jet R = 0.4, |y| < 3) ∼ 1.9 µb
σpp(W ) ∼ 190 nb
σpp(tt̄) ∼ 800 pb

Table 1: Cross-sections for selected processes at
√
s = 13 TeV. The large gap between typical per-

turbative processes and the total cross-section is filled by soft interactions, a significant contribution
to which comes from elastic scattering.

In the lecture we’ll first have a look at some qualitative properties of soft diffractive interactions.
Then we’ll try to investigate the energy dependence of hadronic cross-sections in the framework of
Regge Theory. Finally, we’ll have a look at my own research and the measurement of diffractive
vector-meson photoproduction at HERA.

1 Phenomenology of Soft Diffraction
Before we have a look at some key features of diffractive scattering events, we’ll quickly need to
define some kinematic variables.

1.1 Kinematics of 2→ 2 Scattering
Let’s consider 2→ 2 scattering a+ b→ c+ d.

a(pa) c(pc)

b(pb) d(pd)

t

s

From the four-momenta of the particles three Lorentz-invariant variables, the Mandelstam
variables can be formed:

s = (pa + pb)
2

t = (pa − pc)2

u = (pa − pd)2

Only two of them are independent because∑
i=a,b,c,d

m2
i = s+ t+ u.
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Here, we will use the center-of-mass energy s and the momentum transfer t. In particular, t is
related to the scattering angle between a and c in the center-of-mass frame. If we assume all
participating masses are equal to m, the relation is simply

cos θ =
~pa · ~pc
|~pa| |~pc|

= 1 +
2t

s− 4m2
.

Under the equal mass assumption, the phyical values for the Mandelstam variables are s > 4m2,
t < 0, and u < 0; which is still mostly true in the general mass case.

1.2 Differential Diffractive Cross-Sections
The total and elastic pp scattering cross-section are shown in Figure 1 as a function of the center-
of-mass energy s. Both are driven by soft diffractive interactions and exhibit the same qualitative
behaviour to be expected for all diffractive processes. At first, the cross-sections fall off with some
power of s at low energies before they start to slowly rise with s at higher energies. Noticeably,
the elastic cross-section changes more steeply with s.
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Figure 1: Total and elastic pp cross-section as a function of the center-of-mass energy
√
s (left)

and differential elastic cross-section dσpp/dt as a function of momentum transfer t at
√
s = 7 TeV

(right).

A further characteristic of hadronic scattering is the generally small momentum transfer t, i.e.
particles are predominantly scattered under small angles. As an example, the differential elastic
pp cross-section dσ/dt measured at

√
s = 7 TeV is also shown in Figure 1 as a function of t and the

scattering angle θ between in- and out-going proton. The cross-section falls off exponentially at
small −t and then transitions into a softer power law dependence at larger −t, where perturbative
QCD again becomes applicable. Similarities in the structure of differential hadron-hadron cross-
sections to the intensity pattern that can be observed in Fraunhofer diffraction when a light wave
is diffracted off an obstacle historically gave rise to the term “diffraction” to describe these kinds of
processes. The structure is related to shape and absorptive properties of the proton, but we can’t
discuss this here.

1.3 Large Rapidity Gaps
A key feature of diffractive scattering is that no strong color flows between the scattering objects
and the exchange of other quantum numbers (charge, strong isospin) is suppressed. This is nat-
urally true for elastic scattering but also holds for diffractive dissociation where one of the final
state particles disintegrates. As a consequence, a key signature of diffractive scattering events in
a particle detector are large rapidity1 gaps in the measured activity. In a deep inelastic/hard in-
teraction color can flow between the scattering centers. Radiation and hadronization occurs along
the way and fills the region between the centers with particles.

Depending on the event toplogy different types of diffractive scattering events can be defined.
The most basic are illustrated in Figure 2.

The idea of large rapidity gaps to identify diffractive events has its limitations though. There
is a significant chance that the gaps filled with secondary particles arising from additional soft
interactions. One thus has to take into account a rapidity gap survival probability.

1Pseudorapidity η = − ln [tan(θ/2)] ∈ (−∞,∞)
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Figure 2: Basic types of proton-proton scattering with the expected activity to be observed in a
particle detector: elastic (left), single diffractive dissociation (center left), central diffraction (center
right), and non-diffractive (right). The diffractive types can be arbitrarily combined to form more
complex topologies.

2 Regge Theory
Regge Theory (after Tullio Regge) is the attempt to describe hadronic cross-sections from basic
principles of scattering theory. First developed in the 1950s and ’60s it predates QCD. It builds on
the idea that hadron-exchange carries the strong force over larger distances but instead of individual
hadrons, the correlated exchange of whole hadron families (orbital excitations) is considered. The
exchanges are characterized by Regge Trajectories, interpolations of angular momenta from discrete
to continuous complex values. We will study some of the key ideas on the example of elastic 2→ 2
scattering in order to gain insight on the energy dependence of hadronic cross-sections.

2.1 Scattering Theory
The transition of the asymptotic initial state |i〉 = |a, b〉 to the asymptotic final state |f〉 = |c, d〉
is described by a scattering matrix S that relates to the transition probability for i going to f :

Pi→f = |〈f |Ŝ|i〉|2

Typically, S is written in terms of a scattering amplitude A by factoring out the case where no
interaction takes place:

Sif = δif + i(2π)4δ4(pi − pf )Aif ,

which is related to the scattering cross-section

dσ(i→ f) =
1

Φ
|Aif |2dΠ

Here, Φ is a flux-factor and dΠ the Lorentz-invariant phasespace available to the final state. For
2→ 2 scattering one finds in the high-energy limit:

dσ

dt
=

1

16πs2
|Aif (s, t)|2

Irrespective of the underlying interaction, S is expected to have several fundamental properties:

1. Lorentz invariance:
S should be Lorentz invariant and thus be a function of only Lorentz invariant variables, i.e.,
S ≡ S(s, t).

2. unitarity and the optical theorem:
To conserve total probability, S should be unitary, i.e.:

1 = S · S† = S† · S

To ensure the unitarity condition the scattering matrix A must satisfy:

2Im [Aif ] = (2π)4δ4(Pi − Pf )
∑
k

AikA
†
kf
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An interesting consequence arises when we consider the case of elastic forward scattering
(f = i, t = 0) with vanishing momentum transfer. Then

2Im [(Aii(s, t = 0)] = (2π)4
∑
k

δ4(Pi − Pk)|Ai→k|2 ∝ σtot,

i.e. the total cross-section is given by the imaginary part of the forward elastic amplitude.
This relation is called the optical theorem and central to the study of hadronic cross-sections.
In the high energy limit the proportionality constant is a flux factor Φ ' 2s and we get:

σtot(s) =
1

s
Im [Aelas(s, t = 0)] .

3. analysticity and crossing-symmetry:
The assumption that S(A) is a (complex) analytic function is a bit more involved. It is
connected to causality and has has multiple consequences such as on the singularity structure
of S. For this lecture it is only relevant in relation to crossing-symmetry. First, we assume
that A(s, t) can be continued beyond the physical region of ab → cd, which is given by
s > 4m2, t < 0, and u < 0 to all values of s, t, and u. Then we require the crossed process
a(pa)c̄(−pc)→ b̄(−pb)d(pd) with:

st = (pa + (−pc))2 = t > 4m2

tt = (pa − (−pb))2 = s < 0

to be described by the same amplitude once s and t are interchanged:

Aab→cd(s, t) = Aac̄→b̄d(t, s).

Crossing symmetry holds order by order in perturbative quantum field theory; take for exam-
ple e−e− → e−e− Coulomb-scattering in the t-channel vs e−e+ → e+e− Bhabha-scattering
s-channel.
One consequence of crossing-symmetry is the idea that an s-channel resonance in ac̄ → b̄d
can be exchanged in the t-channel in the scattering ab→ cd as is depicted in Figure 3.

a(pa) c(pc)

X, X ′, . . .

b(pb) d(pd)

t

s

a(pa) b̄(−pb)

X, X ′, . . .

c̄(−pc) d(pd)

s

t

Figure 3: Diagrams for an s-cannel resonance in ab→ cd (left) that is exchanged in the t-channel
in the crossed process ac̄→ b̄d (right).

2.2 t-Channel Exchange Amplitude
We are interested in the high energy behavior of the amplitude Aab→cd(s, t) for t-channel exchange.
Using crossing symmetry we can express Aab→cd(s, t) in terms of Aac̄→b̄d(t, s) continued to the
regime s > 4m2, t < 0. In general, we can expand Aac̄→b̄d(s, t) as a series of Legendre polynomials
in a so-called partial wave expansion:

Aac̄→b̄d(s, t) =

∞∑
l=0

(2l + 1)al(s)Pl(cos θ(s, t)),

where the sum is over the contributing angular momenta l, al(s) is the so-called partial wave
amplitude and Pl(x) a Legendre polynomial of order l. If there is resonance of spin J and mass
MJ it gives rise to a pole in s around which it becomes the dominant contribution2:

Aac̄→b̄d(s, t) ∼ Ares(s, t) ∼
PJ(cos θ(s, t))

s−M2
J

2The argument that follows is very handwaving. One can do this more thoroughly but that is beyond this lecture.
The formalism to do so is to make the angular momentum complex and, using Cauchy’s integral formula, write the
partial wave equation as a contour integral in the complex l-plane. By choosing appropriate boundary conditions
al(t) can be uniquely continued to a(l, t) with a(l, t) = al(t) for integer l such that the integral/series converges.
Also, do resonances have a width?

4



Using crossing symmetry and replacing cos θ(s, t) = 1 + 2t
s−4m2 we can use this to obtain the

amplitude for t-channel exchange of the resonance in ab→ cd:

Aab→cd(s, t) = Aac̄→b̄d(t, s) ∼
PJ(1 + 2s

t−4m2 )

t−M2
J

.

As |t| � s (for diffractive events) for large enough s → ∞ we can express PJ by the leading
exponent, PJ(1 + 2s

t−4m2 ) ∼ sJ . Using the optical theorem we then find for the energy dependence
of single particle exchange:

σtot
s→∞∝ sJ

s
= sJ−1


s−1, for J=0
s0, for J=1
s1, for J=2

Which does not match neither the low nor high energy dependence that we observed for example
in the pp scattering cross-section in Figure 1. Even worse, for higher spin resonances even violates
unitarity.

2.3 Regge Trajectories and Resonance Families
The way out of this problem lies in realizing that the resonances/hadrons that are exchanged are
not elementary particles but composite objects. As such they can have orbital excitations which
can also be exchanged. For example for the spin-1 ρ(770) meson in the ground state, one can also
observe a spin-3 ρ(1690) and spin-5 ρ(2350) excited state. In order to get the right amplitude, we
have to sum them all up. At first glance it’s not clear how one would correctly do that, however
it turns out that the orbital excitations are strongly correlated.

]2  [GeV2t / m
2− 0 2 4 6 8 10

(t
) 

/ s
pi

n 
α 

3−

2−

1−

0

1

2

3

4

5

6

→s-channel resonances 

 t-channel exchange←

→~0.5
ω, ρ

3ω, 
3

ρ

5
ρ

2
, a2f

4
, a4f

6
, a6f

Figure 4: Chew-Frautchi plot for the four dominant and degenerate Regge trajectories from the ρ,
ω, f2 and a meson families

In Figure 4 the spin of mesons from the ρ, ω, f2 and a families is plotted against their mass
squared. And as you can see there’s a clear linear relation3. The line in the spin-mass plane the
mesons from one family lie on is called a Regge-Trajectory:

αIR = α0 + α′ t,

where for a resonance αIR(t = M2
J) = J . The most important Regge trajectories indeed come from

ρ, ω, f2 and a as are shown. They are degenerate with α0 ∼ 0.5 and α′ ∼ 0.9 GeV−2.
3You can take this as an experimental observation. However, it also follows from simple hadron models where

they are assumed to be rotating systems of quarks connected by an open color string. If the force between any two
points of the string is constant, then the contribution from the string to J is proportional to its contribution to the
mass squared: Jstring ∝M2

string . As a consequence the Regge trajectories are linear with a universal slope.
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If we insert the Regge trajectorie in the sum over all resonance contributions to the amplitude,
i.e. we replace

t−MJ =
αIR(t)− J

α′

we can calculate it:

Aab→cd(s, t)
s→∞→

∞∑
l=0

(2l + 1)
βl(t)

t−M2
l

sl =

∞∑
l=0

(2l + 1)
βl(t)α

′

l − αIR(t)
sl.

The dominant contribution comes from the pole at l = αIR(t) and we get:

Aab→cd(s, t)
s→∞∼ sαIR(t).

This looks very similar to the exchange of a single resonance with t-dependent spin αIR(t) which
is why one sometimes speaks of Reggeon exchange. However, Reggeons are not real particles but
the combined effect of multiple resonance exchange. With the Reggeon intercept α0, Reggeon
exchange nicely describes hadronic cross-sections at low energies s ∼ 10 GeV.

2.4 The Pomeron
There is no clear evidence for a hadronic Regge trajectory with an intercept close to 1 that could
describe the observed high energy rise of hadronic cross-sections. That is why an ad-hoc trajectory,
called Pomeron (IP , after Isaak Pomerantschuk), is introduced to fill that role. It’s parameters are
roughly given by:

αIP ' 1.0808 + 0.25 GeV−2t.

While it is difficult to say what kind of physical object the (soft) Pomeron exactly is, it’s quantum
numbers are known: It has no electric charge, even spin and is even under charge conjugation.
Intuitively, one could think of it as a colorless object of two bound gluons. This idea is supported
by a perturbatively calculable hard Pomeron whose structure can be studied in hard diffractive
scattering such as diffractive jet or heavy vector meson production.

2.5 Some Remarks
Intuitively, a rising cross-section seems to violate unitarity. In fact, the total cross-section is only
constraint by unitarity by the Froissart bound:

σtot ≤
π

m2
π

log2(s/s0)

While s0 is not known, assuming s0 = 1 GeV gives σtot(13 TeV) . 22 barns so in practice one need
not worry about the rising cross-section anytime soon. Nonetheless, the Pomeron picture can not
be complete or completely correct and at the very least needs additions or corrections at higher
energies. Another problem with Regge theory is that Regge trajectories can not be continued to
arbitrarily large masses because eventually the heavy hadrons will fragment into multiple lighter
ones. However, because it describes a wide range of data it is still useful.
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